
WAVE SHAPE PREDICTION IN COMPLEX COASTAL
SYSTEMS





WAVE SHAPE PREDICTION IN COMPLEX COASTAL
SYSTEMS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on Thursday 22 December 2022, 15:00 o’clock

by

Floris Paul DE WIT

Master of Science in Civil Engineering,
Delft University of Technology, The Netherlands,

born in Leidschendam, The Netherlands.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, Chairperson
Prof.dr.ir. A.J.H.M. Reniers Delft University of Technology, promotor
Dr. M.F.S. Tissier Delft University of Technology, copromotor

Independent members:
Prof.dr.ir. S.G.J. Aarninkhof Delft University of Technology
Prof.dr. B.G. Ruessink Utrecht University
Prof.dr.ir. J.A. Roelvink IHE Delft Institute for Water Education

Delft University of Technology
Dr.ir. M. Zijlema Delft University of Technology
Dr. F. Floc’h Université de Bretagne Occidentale, France

This work is part of the research program ’Collaboration Program Water’ with project
number 14489 (SEAWAD), which is (partly) financed by NWO Domain Applied and

Engineering Sciences.

Keywords: wave shape, bound wave height, bispectrum, triads, BWE model

Printed by: Ridderprint

Copyright © 2022 by F.P. de Wit

ISBN 978-94-6384-400-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary vii

Samenvatting ix

1 Introduction 1
1.1 Background and problem description. . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Characterizing wave-shape evolution on an ebb-tidal shoal 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.A Drifter study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.B Validity Delft3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The Relationship between Sea-Swell Bound Wave Height and Wave Shape 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Bound Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.A Accuracy of Bound Wave Height Formulations . . . . . . . . . . . . . . . . 56

4 Wave shape from a bound wave evolution model 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 The spectrum, bispectrum and wave shape . . . . . . . . . . . . . . . . . . 61
4.3 Spectral evolution equations for total and bound variance density . . . . . . 63
4.4 Test simulations and model set-up . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.A Energy conservation SPB . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Field scale application of the wave shape model 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



vi CONTENTS

5.4 Overestimation of the bound wave height over flat bathymetry . . . . . . . . 93
5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.A Nonlinear interaction coefficients and attenuation with depth of bound com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusion 101
6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 107

Summary 124

Acknowledgements 129

About the author 133

List of Publications 135



SUMMARY

When waves propagate towards the coast, nonlinear interactions occur under the influ-
ence of decreasing water depth and variable ambient currents. This changes the initially
harmonic wave shape into a nonlinear wave shape due to the presence of bound waves
accompanying the freely propagating primary waves. The nonlinear wave shape ranges
from skewed waves with steeper crests and flatter troughs to asymmetric waves where the
wave front has pitched forward creating a saw-tooth wave shape at breaking. Analogous to
the nonlinear surface elevation, also the near-bed orbital wave velocity is nonlinear. This
results in a wave-shape driven sediment transport, generally directed in the direction of
wave propagation. For accurate predictions of the sediment transport, it is thus impor-
tant to know the wave shape. This is especially important in complex coastal systems with
strong variations in bathymetry where wave-induced sediment transport gradients affect
the subsequent morphological evolution. Therefore, this thesis focuses on measuring and
modelling of the nonlinear wave shape.

To investigate the spatial and temporal differences in wave shape, a six week measure-
ment campaign was conducted. This was done at the ebb-tidal shoal seaward of the Ame-
land Inlet, where waves and currents were measured at 10 locations. Averaged over these
locations for the full measurement period, the observed wave shape compares really well
against the wave shape parameterization of Ruessink et al. (2012). However, when looking
at specific instances in space and time, observations can deviate significantly from this
parameterization. The largest deviations occur at the shallowest measurement locations
and can be attributed to strong variations in wave-breaking, nonlinear energy transfer
rate, and spatial gradients in tidal currents. It was found that in these strongly varying
conditions, the wave shape is better described as a function of the conditions slightly fur-
ther offshore than as a function of the local conditions. This is explained by the fact that
the wave shape does not respond instantly to changing environmental conditions, but
needs some time and space to adapt.

Both the nonlinear wave shape and the bound superharmonic wave height can be
calculated from surface elevation or pressure time series using bispectral analysis. A clear
relationship is demonstrated between the two by using measured near-bed pressure time
series from three different field experiments. This implies that information on the spatially
varying bound wave height can be used to better predict the nonlinear wave shape. One
way to predict the bound superharmonic wave height is by applying equilibrium second
order wave theory to measured frequency-directional wave spectra. It is shown that this
works well in relatively deep water, provided conditions are not too nonlinear. However,
in relatively shallow water, the mismatch between observed and predicted bound wave
height increases significantly due to wave breaking, strong currents, and increased wave
nonlinearity. This is explained by the fact that an equilibrium theory does not hold under
rapidly changing conditions.

An alternative to using equilibrium second order wave theory to predict the bound
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viii SUMMARY

superharmonic wave height is to use a spectral wave model. Such a model resolves the
action balance equation to predict the evolution of the frequency-directional spectrum
over a variable bathymetry. The energy transfer towards the bound superharmonics is al-
ready included in spectral wave models by the nonlinear triad source term. In this thesis
an extension is presented that keeps track of the amount of energy that has been trans-
ferred to the superharmonics by the triad interactions and resolves the evolution of these
bound harmonics. This extension is called the Bound Wave Evolution (BWE) model. The
resulting spatial distribution of the bound wave height can serve as a proxy for the nonlin-
ear wave shape. The accuracy of the BWE model is highly dependant on the triad source
term. Therefore, the capabilities of two commonly-used triad source terms (LTA and SPB)
to capture the growth of the bound wave height are evaluated after careful calibration. Us-
ing these source terms, the BWE model is well capable of predicting the nonlinear wave
shape in the shoaling zone, where the bound wave energy is dominated by triad wave in-
teractions. In the surf zone, however, where a combination of triads and wave breaking
controls the spectral evolution, the nonlinear wave shape is overestimated. Overall, the
SPB method is more accurate but comes at a higher computational cost.

The BWE model is finally applied to predict wave shape evolution seaward of the Ame-
land ebb-tidal delta. The modeled wave shape is compared to the field measurements and
to two wave shape parameterizations. On the seaward slope of the ebb-tidal delta and on
the shoal, the BWE model provides an accurate estimate of the wave shape. However, be-
yond this region, where depth is increasing after the shoal, further research is required
to accurately predict the wave shape. This further research involves a better representa-
tion of the source terms for triads, breaking and the release of higher harmonics when the
depth is constant or increasing.

In conclusion, it is shown that resolving the bound energy evolution equation is a
promising way to predict the spatial evolution of the nonlinear wave shape in complex
coastal systems.



SAMENVATTING

Golven die naar de kust toe lopen worden beïnvloed door een afnemende waterdiepte
en veranderende stroomsnelheden. Hier zorgen niet-lineaire interacties ervoor dat se-
cundaire golven gebonden worden aan de primaire vrije golven. Hierdoor verandert de
initieel harmonische golfvorm in een niet-lineaire golfvorm. Dit uit zich in gepiekte gol-
ven met stijlere toppen en vlakkere dalen en asymmetrische golven waarbij de golftop
voorover helt vlak voordat de golf breekt.

Zes weken aan veldmetingen zijn gedaan om de ruimtelijke en tijdsafhankelijke vari-
aties in golfvorm te onderzoeken. Dit is gedaan met tien meetpunten zeewaarts van het
Amelander Zeegat waar golven en getij stroming elkaar tegen komen. De gemeten golfvorm
van alle meetpunten over de gehele meetperiode komt goed overeen met de golfvorm
parameterizatie van Ruessink et al. (2012). Maar wanneer naar specifieke momenten of
locaties gekeken wordt, kunnen de metingen flink afwijken van de parameterizatie. De
grootste afwijkingen gebeuren bij de ondiepe meetpunten en kunnen toegeschreven wor-
den aan sterke variaties in golfbreken, niet-lineaire interactie sterkte en getijstroming.
Het bleek dat de golfvorm in deze sterk veranderende omgeving beter voorspelt wordt
door parameters die wat verder zeewaarts verkregen zijn dan lokale parameters. Dit komt
waarschijnlijk doordat de golven zich niet direct aan kunnen passen aan de veranderende
omstandigheden maar wat meer tijd nodig hebben.

Zowel de niet-lineaire golfvorm als de gebonden superharmonische golfhoogte kun-
nen verkregen worden door bispectrale analyse toe te passen op wateroppervlak of druk
tijdseries. Metingen van drie verschillende locaties laten een duidelijke relatie tussen
deze golfvorm en gebonden golfhoogte zien. Dit impliceert dat ruimtelijke informatie
over de gebonden golfhoogte gebruikt kan worden om de niet-lineaire golfvorm te voor-
spellen. Een manier om de gebonden golfhoogte te verkrijgen is door evenwicht tweede
orde golftheorie toe te passen op golfspectra. Zolang de condities niet te niet-lineair zijn
en het in relatief diep water is werkt dit heel aardig. Maar in ondieper water vergroot de
afwijking tussen metingen en tweede-orde voorspelde gebonden golfhoogte. Dit ligt er
aan dat een tweede orde evenwichtstheorie gebruikt wordt terwijl de condities snel ve-
randerend zijn.

In plaats van tweede orde evenwichts golftheorie te gebruiken voor het voorspellen
van de gebonden golfhoogte kan ook een spectraal golf model gebruikt worden. Een
dergelijk model lost de actie balans vergelijkingen op om de evolutie te voorspellen van
frequentie-richting spectra over een variërende bodem. De energie overdracht naar de
gebonden superharmonische componenten is al opgenomen in zulke modellen middels
de niet-lineaire triad bronterm. In dit proefschrift wordt het BWE-model gepresenteerd,
een model uitbereiding die bijhoudt hoeveel energie er al door de triads naar de hogere
harmonische is verplaatst en die vervolgens de voortplanting van de componenten oplost.
Hieruit kan de ruimtelijke verdeling van de gebonden golfhoogte verkregen worden, die
gebruikt kan worden als een benadering voor de niet-lineaire golfvorm. Omdat de accu-
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raatheid van het BWE model sterk afhankelijk is van de triad bronterm, is de prestatie van
twee veelgebruikte triad brontermen (LTA en SPB) om de gebonden golfhoogte te voor-
spellen onderzocht. Na kalibratie van deze brontermen is het BWE model goed in staat de
niet-lineaire golfvorm in de shoaling zone te voorspellen, waar de gebonden golf energie
gedomineerd wordt door triad interacties. In de brandingszone, waar een combinatie van
triads en golfbreken de spectrale ontwikkeling bepaalt, wordt de niet-lineaire golfvorm
overschat. In het algemeen, geeft de SPB methode een betere voorspelling, maar dit gaat
wel ten koste van hogere rekentijd.

Als laatste is het BWE model toegepast om de golfvorm veranderingen zeewaarts van
de Amelander eb delta te voorspellen. De gemodelleerde golfvorm is vergeleken met de
veldmetingen en twee golfvorm parameterisaties. Het BWE model levert een accurate
voospelling van de golfvorm op de zeewaartse vooroever en bovenop de eb delta. In het
gebied hierna daarentegen, waar het weer dieper wordt, is meer onderzoek nodig om de
golfvorm goed te kunnen voorspellen. Dit vervolgonderzoek bestaat uit verbeterde bron-
termen voor triads, golfbreken en het loslaten van hogere harmonische componenten
wanneer de diepte constant is of toeneemt.

Concluderend laat dit proefschrift zien dat het oplossen van de gebonden golfenergie
vergelijking een veelbelovende manier is om de ruimtelijke veranderingen in niet-lineaire
golfvorm te voorspellen in complexe kustsystemen.







1
INTRODUCTION

1.1. BACKGROUND AND PROBLEM DESCRIPTION
Due to sea-level rise, subsidence and other human interventions, the coastline of the
Netherlands is retreating (Mulder, 2000; Ranasinghe & Stive, 2009; Katsman et al., 2011).
To cope with this, the country’s policy is to keep the sand volume in the coastal system
constant (Rijkswaterstaat, 1990). This is done by applying sand nourishments, to ensure
the land area does not decrease and is protected against storm events (Kabat et al., 2009).
Over the years a gradual trend is observed from beach nourishments (Dean, 2002; Han-
son et al., 2002) towards shoreface nourishments (Hamm et al., 2002; Grunnet & Ruessink,
2005), and more recently to mega nourishments (Stive et al., 2013; de Schipper et al., 2016;
Luijendijk et al., 2017; Kroon et al., 2022; Brand et al., 2022).

Apart from the straight coastline, the intertidal Wadden Area in the north of The Nether-
lands is an area of concern from the view point of sediment losses (van der Spek, 2018).
Here a series of barrier islands is located1, alternated by tidal inlets, separating the North
Sea from the intertidal Wadden Sea (see Fig. 1.1). In specific, the sediment volume of the
ebb-tidal deltas (shallow areas seaward of the tidal inlets) is decreasing because of two
reasons. Firstly, the aforementioned relative sea-level rise. And secondly, due to the artifi-
cial closure of the Southern Sea into Lake IJssel and the Wadden Sea by the construction of
a large closure dam (Wang et al., 2018). This closure in combination with relative sea-level
rise distorted the balance between the tidal prism and the channel depths which is com-
pensated by a net import of sediment into the tidal basin to fill the tidal channels (Elias
et al., 2003; Wang et al., 2012). Ebb-tidal deltas serve the important function of protecting
the back barrier basin against incoming storms as well as being a sediment source for the
beaches of the adjacent islands (Pearson et al., 2020; Elias et al., 2019). Furthermore the
deltas are important ecological features containing a rich variety of macro benthic species
(Holzhauer et al., 2022). In order to preserve these functions and features in the future,
it is proposed to apply mega nourishments on the ebb-tidal deltas. Before doing so, it is

1Note that the Wadden area extends until Germany and Denmark, but the focus here is on the Dutch part.
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Figure 1.1: The location of the Ameland Inlet, separating the barrier islands of Ameland and Terschelling, indi-
cated with a red box on the map of the Netherlands. The Ameland inlet is the tidal inlet analysed in this thesis.

important to predict the evolution of such a nourishment.
In order to predict the long-term effect of an artificial intervention, such as a mega

nourishment, commonly process-based morphological evolution models are applied (e.g.,
de Vriend et al., 1993; Cayocca, 2001; Ojeda et al., 2008; Kristensen et al., 2010). The pre-
dictive skill of such models depends on the extent to which the physical processes that
play a role in the area are resolved. For the tidal inlets between the Wadden Islands,
the dominant processes are wind-generated waves and tides (Sha, 1989; Elias & van der
Spek, 2006). Waves come in from the northwestern directions, typically with a wave pe-
riod of 5-12 s, and the tidal flow has a semi-diurnal character which means the period is
approximately 12 h (Elias et al., 2019; Lenstra et al., 2019; van Prooijen et al., 2020). As
the timescale of the waves is so small in comparison with the tide and the lifespan of a
nourishment, it is unfeasible to resolve all individual waves. Therefore the effect of waves
on the evolution of underwater topography is accounted for by wave-averaged models.
Traditionally, the role of waves was assumed to be stirring up the sediment after which
it is horizontally transported by the currents (Bijker, 1967; Bailard, 1981). Whereas the
stirring up of sediment is well represented by wave-averaged parameters (Van Rijn et al.,
2004; Grant & Madsen, 1979; Fredsøe, 1984; Soulsby et al., 1993), also intra-wave pro-
cesses, which are not resolved by wave-averaged models, influence the sediment trans-
port (Watanabe & Isobe, 1991; Madsen & Grant, 1977; Watanabe & Sato, 2005; Bosboom
& Klopman, 2001). Amongst these intra-wave processes is the sediment transport caused
by the nonlinearity of the near-bed velocity signal, which is closely related to the nonlin-
ear wave shape (King Jr, 1991; Miles, 2013; Gonzalez-Rodriguez & Madsen, 2007; Nielsen,
1992; Henriquez et al., 2014). This type of sediment transport is referred to in literature
as wave-induced sediment transport, intra-wave sediment transport, or wave-shape in-
duced sediment transport. This mode of transport is important for the evolution of beach
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Figure 1.2: Sketch of wave shape evolution and corresponding orbital velocities from deep water towards the
coast (from Abreu, 2011)

morphology (Miles, 2013; Roelvink & Stive, 1989; Reniers et al., 2004) and bar migration
(Elgar et al., 2001; Hoefel & Elgar, 2003; Gallagher et al., 1998; Ruessink et al., 2007). Fur-
thermore, it has been shown by both Chen et al. (2015) and Reniers et al. (2019) that this
contribution of the wave shape to the total sediment transport can be dominant in stormy
conditions over an ebb tidal delta, hence when large bathymetric changes are expected.

When waves propagate towards shallower water, the waves transform into a nonlinear
shape (Elgar & Guza, 1985), visualized in Figure 1.2. First, the crests get steeper and shorter
with longer and flatter troughs, which is referred to as skewed waves (Stokes, 1880). Anal-
ogous to the surface elevation, the associated near-bed velocity is stronger beneath the
crest than between the trough of those waves (Freilich & Guza, 1984). With the near-bed
sediment transport proportional to the mean cubed velocity 〈u3〉, this results in a net on-
shore sediment transport (Ribberink & Al-Salem, 1994). Subsequently, when the waves
propagate further and are close to breaking, they get a pitched forward, sawtooth alike
wave shape (Svendsen et al., 1978), called asymmetric waves. The near-bed velocity sig-
nal associated with asymmetric waves has a similar velocity beneath the crest and the
trough, leading to 〈u3〉 = 0. Below the steep front of the wave, however, the velocity is
rapidly accelerated from maximum offshore to maximum onshore (Drake & Calantoni,
2001; Nielsen, 2006). This enhanced acceleration leads to horizontal pressure gradients
(Drake & Calantoni, 2001) and an increase in bottom shear stress (Nielsen, 1992; Hen-
riquez et al., 2014), both resulting in an onshore sediment transport (Hsu & Hanes, 2004;
Calantoni & Puleo, 2006; van der A et al., 2010; Silva et al., 2011). So both skewed and asym-
metric waves can contribute to a net onshore sediment transport. In literature skewness
and asymmetry are sometimes referred to as velocity skewness and acceleration skewness,
respectively. To avoid confusion, this thesis refers to them as skewness and asymmetry.

Most of the present understanding on wave-shape induced sediment transport origi-
nates from cross-shore modelling studies on sandbar migration. From observations it is
known that bar migration is offshore during highly energetic storm periods and onshore
during the calmer periods in between (Sallenger Jr et al., 1985). The offshore bar migration
during storms is quite well understood to be caused by the strong undertow caused by en-
ergetic waves (Thornton et al., 1996; Gallagher et al., 1998). Although it was suspected that
the wave-shape induced sediment transport was responsible for the onshore bar migra-
tion during calmer periods (Dubois, 1988; Osborne & Greenwood, 1992), initial attempts
using nearshore bed load transport models based on the energetics approach, in which
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the sediment transport is proportional to the velocity moments including 〈u3〉 (Bagnold,
1966; Bowen, 1980; Bailard, 1981), did not satisfactory reproduce the onshore bar migra-
tion (Roelvink & Stive, 1989; Wright et al., 1991; Thornton et al., 1996; Gallagher et al., 1998;
Rakha et al., 1997). This was hypothesized to be because this approach ignores the influ-
ence of asymmetry while the effect of skewness was included (Elgar et al., 2001; Drake &
Calantoni, 2001). Hoefel & Elgar (2003) showed onshore bar migration by using an ener-
getics approach sediment transport model forced by the wave asymmetry. However, Hen-
derson et al. (2004) demonstrated that by accounting for the phase shift within the wave
boundary layer, thereby transforming the free-stream asymmetry into near-bed skewness,
could also explain the observed onshore bar migration. This was subsequently supported
by the modeling studies of Hsu et al. (2006), provided that a different bed shear stress
was applied for the current and wave-induced sediment transport, and by Ruessink et al.
(2007) using a skewed-only wave-induced bed shear stress. Findings from these former
studies are confirmed by Fernández-Mora et al. (2015), who also show that the shoaling
zone is dominated by skewness induced transport whereas the inner surf zone is domi-
nated by asymmetry induced transport. Recently, Boechat Albernaz et al. (2019) showed a
significant improvement of morphological evolution on the decadal timescale by applying
a parametrization including both skewness and asymmetry (Ruessink et al., 2012) instead
of a skewness only parameterization (Isobe & Horikawa, 1982).

There are a number of significant differences between a barred coastline and an ebb-
tidal delta. Firstly, the absence of a fixed coastline closely behind the ebb delta will de-
crease the magnitude of the undertow during stormy conditions, potentially increasing
the relative importance of wave-shape induced sediment transport. This might partially
explain why ebb-tidal shoals eventually attach to the downdrift island. A second differ-
ence is the role of tidal currents. Although they can be present at a barred coast, they
are commonly alongshore directed with small gradients in alongshore direction. This re-
sults in small net transport because the updrift and downdrift sediment transport will be
comparable. Furthermore, the effect on wave dynamics is negligible as the directions of
the tidal current and wave propagation are close to perpendicular (de Wit et al., 2017).
In contrast, at the complex bathymetry in the vicinity of a tidal inlet, strong gradients in
tidal currents lead to regions of erosion and deposition. Besides, the tidal direction is
frequently in or against the direction of wave propagation thereby influencing the wave
dynamics. Waves propagating against a current will become shorter, higher and more
nonlinear (Peregrine, 1976; Hedges et al., 1985; Soulsby et al., 1993; Dodet et al., 2013).
Vice versa, waves in the direction of the current will become longer, lower and less nonlin-
ear. A third difference is that the three dimensionality encountered at an ebb-tidal delta is
much greater than at a coastline, where the processes can more easily be distinguished in
cross-shore and alongshore.

As explained, a proper prediction of the wave shape is crucial for accurately capturing
the morphological evolution of complex coastal systems. The current practice in process-
based morphological evolution models is to include the effect of the wave shape by means
of a local wave shape parameterization (e.g., Isobe & Horikawa, 1982; Doering & Bowen,
1995; Ruessink et al., 2012). This practice, however, has two major limitations:

• The influence of current magnitude and direction are not accounted for in present
parametrizations, even though they are known to have significant influence on the
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wave shape.

• Local parametrizations depend on local bulk parameters only such as water depth,
wave height and period. Intrinsically it is thus assumed that the wave shape is in
equilibrium with the local conditions. This means that the validity is questionable
in non-equilibrium conditions, for instance under rapid changes in depth or cur-
rents (Rocha et al., 2013). Furthermore, other (non-local) environmental parame-
ters are known to affect the development of the wave shape such as the bed slope
(De Bakker et al., 2016; Norheim et al., 1998; Filipot, 2015; Chen et al., 2018), spectral
shape (Hasselmann, 1962; Norheim et al., 1998; Rocha et al., 2017) and directional
distribution (Hasselmann, 1962; Freilich et al., 1990; Salmon et al., 2016). Ignoring
these influences will lead to inaccuracies of the predicted wave shape.

1.2. AIM AND APPROACH
This PhD thesis is part of SEAWAD, a scientific research project which ultimate aims is to
develop the system knowledge and tools to predict the morphological and ecological ef-
fects of mega-nourishments on the ebb-tidal deltas of the Wadden Sea. In order to achieve
this, the following four knowledge gaps were identified and addressed in four sub projects:

1. What is the effect of intra-wave processes on sediment transport patterns?

2. What is the influence of bed forms on sediment transport?2

3. How does the grain size distribution influence the sediment pathways?3

4. How do hydrodynamic and sediment parameters affect the response of benthic com-
munities to nourishments?4

This thesis deals with the first sub project. Given that the wave-driven sediment trans-
port is a function of the wave nonlinearity, it is important to first understand this process.
Therefore, the aim of this thesis is to improve the accuracy of the nonlinear wave shape
prediction in complex coastal systems (such as the Ameland ebb-tidal delta). The com-
putational demand of this predictive tool should be limited such that it is applicable in
long-term morphological models. A combination of field data measurements, data analy-
sis techniques and numerical modelling is applied to achieve this aim.

Chapter 2 explores the nonlinear wave shape measurements from the SEAWAD field
campaign (van Prooijen et al., 2020). The measured wave shape is compared against the
commonly used parameterization of Ruessink et al. (2012) to investigate its performance
for varying locations and conditions. The findings of this chapter serve as a basis for the
further research of this thesis. In Chapter 3, bispectral analysis of the same data set shows
that there is a clear relationship between the wave shape and the bound wave height. This
relationship is found not to be site specific as the same is found for two other data sets
at Egmond, The Netherlands (Ruessink et al., 2001; Van Rijn et al., 2002) and Duck, USA
(Birkemeier et al., 1997; Reniers et al., 2004). These findings open a pathway for Chapter

2For the findings within this sub project, see: Brakenhoff et al. (2019, 2020a,b); Brakenhoff (2021).
3For the findings within this sub project, see: Pearson et al. (2020, 2021b,a, 2022); Pearson (2022).
4For the findings within this sub project, see: Holzhauer et al. (2020, 2022).
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4, in which an evolution equation for the bound wave harmonics is added to the spectral
wave model SWAN. From these bound wave harmonics, the bound wave height and thus
the wave shape can be computed. This has the advantage over applying a local parameter-
ization that it accounts for the prior evolution of the wave shape before reaching a certain
location, making it more applicable in non-equilibrium conditions. The performance of
this model is tested by comparing its bound wave height and wave shape to those ob-
tained from the measurements and parameterizations in Chapter 5. Finally, conclusions
and future perspectives are discussed in Chapter 6.



2
CHARACTERIZING WAVE-SHAPE

EVOLUTION ON AN EBB-TIDAL

SHOAL

ABSTRACT
Field measurements of waves and currents were obtained at ten locations on an ebb-tidal
shoal seaward of Ameland Inlet for a six-week period. These measurements were used
to investigate the evolution of the near-bed velocity skewness and asymmetry, as these
are important drivers for wave-induced sediment transport. Wave shape parameters were
compared to traditionally used parameterizations to quantify their performance in a dy-
namic area with waves and tidal currents coming in from different directions over a highly
variable bathymetry. Spatially and temporally averaged, these parameterizations com-
pared very well to the observed wave shape. However, significant scatter was observed
when looking at specific locations or instances in time. The largest deviations from the
parameterization were observed at the shallowest locations, where the contribution of
wave-induced sediment transport was expected to be the largest. This chapter shows that
this scatter was caused by differences in wave-breaking, nonlinear energy transfer rate,
and spatial gradients in tidal currents. As a solution, it is proposed to include the prior
evolution of the wave before reaching a location in future parameterizations in numerical
modeling instead of only using local parameters to predict wave shape.

This chapter is an adapted version from the publication: de Wit, F.P., Tissier, M.F.S. and Reniers, A.J.H.M., (2019),
Characterizing Wave Shape Evolution on an Ebb-Tidal Shoal, Journal of Marine Science and Engineering 7(10),
367.

7



2

8 2. CHARACTERIZING WAVE-SHAPE EVOLUTION ON AN EBB-TIDAL SHOAL

2.1. INTRODUCTION
Tidal inlets and their deltas are highly dynamic systems (Hayes et al., 1970; Oertel, 1972).
Deep channels are formed by the in- and outgoing tidal currents. Sediment is exchanged
through a network of channels between the tidal flats, deltas and adjacent barrier island
coasts (Hayes, 1980; Fitzgerald, 1984). At the seaward end of the ebb channel, a relatively
shallow area is located, the ebb-tidal delta. It is shaped as a result of the decelerating tidal
flow and the influence of waves from offshore. The ebb-tidal delta serves an important
role in these systems. During storm conditions, it provides shelter to the back-barrier
basin by dissipating high incoming waves. Furthermore, the ecosystem has a high ecolog-
ical value containing a large variety of benthic species.

According to Finley (1978), morphodynamic development of the ebb-tidal delta de-
pends on the tidal flow and waves approaching from offshore. Traditionally, it was con-
sidered that waves stir up the sediment, which is then transported by the currents (Grant
& Madsen, 1979). However, as stated by Nielsen (1988), wave-induced sediment transport
itself can be of significant influence, even in presence of strong currents. Properly ac-
counting for wave-induced sediment transport in process-based numerical models (e.g.,
Lesser et al., 2004; Warner et al., 2008) is of high importance to represent bar formation
along a straight coast. In a more complex environment, such as a tidal inlet, the evolu-
tion of the ebb tidal shoal and delta is formed by the wave-induced sediment transport. A
model study by Chen et al. (2015) concluded that morphological changes at the ebb-tidal
delta are dominated by wave-induced sediment transport, where the other surroundings
are dominated by the current-induced sediment transport.

Nonlinearity of the near-bed velocity is an important parameter determining the wave-
induced sediment transport (Hoefel & Elgar, 2003). Nonlinear wave shape can be defined
as the skewness (vertical asymmetry) and asymmetry (horizontal asymmetry) of a time
series (Elgar & Guza, 1985). The initial sinusoidal wave shape, as occurs in deep water
far away from the coast, becomes nonlinear when moving into shallower water. First, it
transforms in a skewed shape with short peaked crests and long flat troughs. Due to the
faster propagation of the crest with respect to the trough, waves become pitched forward
resulting in an asymmetrical wave shape. Eventually, as the waves become more and more
asymmetric and break, skewness decreases. Analogous to gradients in depth, gradients in
coastal currents result in wave shape changes. Wave skewness and asymmetry are intra-
wave properties, which are not resolved in the wave-averaged models that are used to
drive morphodynamic models. Therefore, it is essential to have an accurate parameter-
ization to include their contribution to the total sediment transport. A recent study has
shown that properly parameterizing the near-bed velocity substantially improves mor-
phodynamic predictions on the decadal time-scale (Boechat Albernaz et al., 2019).

The first sediment transport models including the effects of velocity skewness were
developed by Stive (1987) and Roelvink & Stive (1989). The importance of adding velocity
asymmetry was shown by Drake & Calantoni (2001). Doering & Bowen (1995) provided
a parameterization of orbital velocity skewness and asymmetry based on field measure-
ments obtained from four beaches. They found a correlation between skewness/asym-
metry and the Ursell number, namely Ur = 3

4
A

k2d 3 , a local nonlinearity parameter based
on wave amplitude A, wave number k, and mean water depth d . Although the relation-
ship between bi-amplitude (skewness and asymmetry combined) and the Ursell num-
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ber is observable in the shoaling and surf zone, they stated that it is less clear in the surf
zone. In a similar study, based on many more data points (34.000 vs. 48), Ruessink et al.
(2012) found a similar relationship as a function of the Ursell number. Differences be-
tween the two parameterizations are only significant for Ur > 3. Rocha et al. (2013) com-
pared available nonlinearity parameterizations based on field experiments and state that
the Ruessink et al. (2012) parameterization can predict skewness and asymmetry on low-
sloping beaches for specific wave conditions, but that it does not work as well for steeper
beaches and longer wave periods. In a follow-up study, Rocha et al. (2017) used a numer-
ical model to conclude that a decreasing offshore wave steepness, decreasing bed slope,
and decreasing spectral width all lead to a higher maximum nonlinear wave shape (skew-
ness and asymmetry combined) and different development along the beach profile. Al-
though not included in the previously mentioned parameterizations (Doering & Bowen,
1995; Ruessink et al., 2012), the effects of wave steepness (Dibajnia et al., 2001), spectral
bandwidth (Norheim et al., 1998) and bottom slope (Norheim et al., 1998; Dong et al.,
2014; Filipot, 2015) on skewness and asymmetry have been shown in previous research.

Several studies (e.g., Doering & Bowen, 1995; Ruessink et al., 2012; Rocha et al., 2017)
have investigated the parameterization of the wave shape, most of them have focused on
(barred) beaches in the surf zone. It is questionable how applicable these parameteriza-
tions are at an ebb-tidal delta for a number of reasons. Firstly, at an ebb-tidal delta the
bathymetry is much more complex than for an open coastline with milder alongshore
variations, leading to a larger range of incoming directions and spreading. Secondly, tidal
currents might play an important role. Tidal currents opposing the direction of wave prop-
agation can lead to decreasing wave length, increasing wave height and eventually even
wave breaking (e.g., Groeneweg et al., 2009; Rusu et al., 2011). Therefore, it is likely that
tidal currents have an influence on the wave shape. Whereas in coastal waters, tidal cur-
rents are often (almost) perpendicular to the wave direction, hence barely affecting the
waves (Thornton & Guza, 1982; Tissier et al., 2015), at an ebb-tidal delta, the currents and
waves can face each other under any arbitrary angle. Thirdly, depths of the ebb-tidal delta
are generally larger than those investigated in previous studies.

In this chapter, we compare near-bed velocity skewness and asymmetry from a new
dataset of measurements at an ebb-tidal delta to existing parameterizations. Data were
obtained during the CoastalGenesis2/SEAWAD field campaign in September 2017 at the
Ameland Inlet, The Netherlands (van Prooijen et al., 2020). In Section 2.2, the field cam-
paign and data-processing techniques are discussed. Temporal and spatial variations in
wave shape, their dependence on the Ursell number and the role of prior wave transfor-
mation is addressed in Section 2.3. Subsequently, in Section 2.4, we discuss the conse-
quences of the results on sediment transport, and ways to improve future wave shape
parameterizations. Concluding remarks are given in Section 2.5.

2.2. METHODOLOGY

2.2.1. FIELD CAMPAIGN
To obtain the system knowledge necessary to plan future sand nourishments in ebb-tidal
deltas, a large field campaign was conducted in September 2017 at the Ameland Inlet,
the CoastalGenesis2/SEAWAD field campaign (van Prooijen et al., 2020). The Ameland
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Inlet is located in the north of The Netherlands, between barrier Islands Ameland and Ter-
schelling. The area is highly dynamic, with combined action of waves and tidal currents.
The main tidal channel has depth-averaged currents up to 2 m/s in a maximum depth
of 20 m. North of the channel, a shallow sandy area is formed by the deceleration of the
diverging ebb tide, the ebb-tidal delta (see Figure 2.1). This area is shaped by the com-
bination of waves and tide. Waves, locally generated in the North Sea, approach the ebb
delta from north to northwestern directions. They are short (5–10 s) and very variable in
height (0.5–5 m).

Figure 2.1: Bathymetric map of Ameland ebb-tidal delta with instrument frames (black triangles), pressure sen-
sors (pink circles), and offshore wave buoy (green circle). In the bottom left corner is a zoomed-in map of the
ebb-tidal shoal. where most of the instruments were located.

Five instrument frames were deployed for a six-week period, measuring velocities,
waves, water levels, sediment concentrations, bed forms, conductivity, temperature and
density. Eight pressure sensors surrounded the frames to get more spatial information
on waves. Frame and pressure sensor locations are indicated in Figure 2.1. Additionally,
drifter measurements and 13-h tidal-inlet discharge measurements were performed. Fur-
thermore, grab samples, box cores, and water samples were obtained to characterize the
sediment composition in the bed and water column. For a detailed description of the field
campaign, see van Prooijen et al. (2020).

For this study, the focus was on near-bed, high-frequency measurements of veloc-
ity and pressure. At the frames (F), this was measured by a downward-looking High-
Resolution Acoustic Doppler Current Profilers (ADCP), measuring the velocity profile in
the lowest 0.5 m of the water column above the bed and pressure 0.5 m above the bed
at a frequency of 4 Hz. The standalone pressure sensors (P) only measured pressure at a
frequency of 10 Hz approximately 0.5 m above the bed. To compute the depth-averaged
currents, the above-mentioned downward looking ADCPs were used in combination with
upward looking ADCPs measuring the velocity profile from 2.3 m above the bed to the
free surface at a frequency of 1.25 Hz. Mean water depth, bed slope, instrumentation,
and sampling frequency are given in Table 2.1. The bed slope (indicated in Table 2.1)
was computed over a distance of 200 m in the mean direction of wave incidence (north-
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northwest), in order to reflect the slope the waves encountered before reaching a cer-
tain sensor.

Figure 2.2 shows the main bathymetric transect including the positions of the mea-
surement locations. The nine sensors available were grouped into four clusters based on
their position on the ebb-tidal delta:

• Shelf: P1, P8, F4, and P3. These sensors were at the milder shelf in mean depths
between 10.5 and 8 m.

• Seaward slope: P5, P7, and F5. These sensors were at the steeper seaward edge of
the shoal in mean depths between 8 and 5 m.

• Shoal: P2 was at the transition between the seaward slope and the flat top of the
shoal.

• Landward slope: P4 was at the basin end slope of the shoal. It was 300 m more
landward than P2 in a region where the depth starts increasing after the shallowest
point, which was located between P4 and P2.

Table 2.1: Overview of instruments, their location, the mean depth and bed slope they were in, and the sampling
frequency they operated in.

Cluster Location Depth (m) Bed Slope (-) Instrument Frequency (Hz)

Shelf P1 10.4 0.004 PS 10
P8 9.5 0.004 PS 10
F4 8.5 0.004 ADCP down 4

ADCP up 1.25
P3 8.2 0.002 PS 10

Seaward slope P5 7.9 0.005 PS 10
F5 6.6 0.006 ADCP down 4

ADCP up 1.25
P7 5.3 0.009 PS 10

Shoal P2 4.3 0.011 PS 10

Landward slope P4 4.6 −0.002 PS 10

Other F1 6.6 0.009 ADCP down 4
ADCP up 1.25

During the field campaign, a wide range of conditions were encountered with two
storms alternated by calm periods. In Figure 2.3, the conditions throughout the cam-
paign are presented. The offshore wave conditions (Figures 2.3a–c) were obtained from
a wave-buoy (green circle in Figure 2.1), and tidal elevation and depth-averaged velocities
(Figures 2.3d–f) from the most offshore measurement frame F4. Waves, coming in from
the North Sea (northern to western directions), were between 0.5 and 5 m. Two storms
occurred, with significant wave heights up to 5 m. Due to limited fetch, wave periods were
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Figure 2.2: Main bathymetric transect (black line), including the standard deviation in depth (grey area). This
standard deviation was computed over 91 transects with the same length as the main transect rotated through
a fixed point at P2 between −45◦ and +45◦ from the main transect to visualize the three-dimensionality of the
area. Sensor locations are indicated in a red circle if they were on the main transect and in a white circle if they
were not on the main transect. The pressure sensors that were not on the main transect were placed such that
they were at the depth at which they were located.

generally short, 6–8 s, with peaks to 10 s during the second storm. Water levels varied
with a tidal range of 2.6 m. Additionally, a storm surge of up to 1 m was observed. At
the seaward slope of the ebb-tidal delta, the tidal velocities ranged from 0.5 m/s towards
southeast during flood to 0.5 m/s northwest during ebb. During the first storm, an outflow
exceeding 1 m/s was observed, probably related to wind-driven outflow from the Wadden
Sea basin (van Weerdenburg, 2019).

2.2.2. DATA PROCESSING
All instruments operated in burst mode, with bursts of 30 min. The way the signals were
processed in time-averaged quantities is described in this subsection.

VELOCITY

High-resolution (4 Hz) profile measurements of velocity were obtained 0.5 m above the
bed by the downward-looking ADCPs. Additionally, lower resolution (1.25 Hz) profile mea-
surements were obtained above the frame, from 2.3 m above the bed to the water surface.
All velocity signals were filtered based on correlation (Elgar et al., 2005), despiked (Goring
& Nikora, 2002; Mori et al., 2007), and converted to an East–North–Up reference frame.
Depth-averaged currents were computed from the upward- and downward looking ADCP
profiles (with the gap between the two instruments linearly interpolated), and character-
ized by a mean current magnitude U and direction θU .

PRESSURE

Water pressure p was obtained by subtracting the air-pressure pai r from pressure signals
ptot measured by the ADCPs (locations F4 and F5) and pressure sensors (P1-P8). Mean
water depth was calculated using d = zp +〈p〉/ρg , in which zp is the height of the pressure
sensor above the bed, 〈p〉 is the burst averaged pressure, ρ is the water density and g is
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Figure 2.3: Overview of half-hourly averaged conditions during the KG2/SEAWAD field campaign from 29 August
to 10 October: (a) Significant wave height; (b) mean spectral wave period; and (c) mean direction are obtained
from the offshore wave-buoy. (d) Mean surface elevation and depth-averaged velocity in (e) east and (f) north
directions were obtained from the most offshore measurement frame, F4.

the gravitational acceleration. The surface elevation η was reconstructed by using a fre-
quency dependent correction factor, based on linear wave theory, accounting for pressure
attenuation over depth. Significant wave height H = 4

p
m0 and period Tm−1,0 = m−1/m0

were obtained by applying spectral analysis on the surface elevation in the short-wave fre-
quency range (0.05–0.3 Hz), in which m j is the spectral moment of order j . Additionally,
2D spectral analysis was performed on surface elevation, eastward and northward veloc-
ity time series in the same frequency range to obtain the mean wave direction θw and
spreading σθw . Wave number k was computed by iteratively solving the linear dispersion
relationship:

ω=σ+kUn =
√

g kt anh(kd)+kUn (2.1)

with absolute frequency ω= 2π/Tm−1,0, relative frequency σ, and Un the depth-averaged
current in direction of wave propagation, which can be computed from U , θU , and θw .
The estimation of depth-averaged currents, which are required to compute k for locations
P1–P8, where velocity measurements were not available, is described in Section 2.2.3.
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CALCULATION OF NONLINEAR PARAMETERS

Wave skewness, asymmetry and the Ursell number were derived from time series of pres-
sure and velocity. To only consider the short-wave contribution, a frequency filter of 0.05–
0.3 Hz was applied to the time series. For the first analysis (Section 2.3.1), the dimensional
skewness and asymmetry was used, because it is reflective of the amount of wave-induced
sediment transport. They were computed as:

S̃kq = 〈q3〉 (2.2)

Ãsq = 〈H {q}3〉 (2.3)

where q is the filtered time series of a quantity, which can be either velocity or pressure,
H {...} denotes the imaginary part of the Hilbert transform, and 〈...〉 indicates time aver-
aging over the burst. To compare our dataset to previous field campaigns and parameteri-
zations, skewness and asymmetry were also presented in the conventionally used dimen-
sionless form:

Skq = 〈q3〉
〈q2〉3/2

(2.4)

Asq = 〈H {q}3〉
〈q2〉3/2

. (2.5)

As the measured skewness and asymmetry were compared to the Ur -based parame-
terization introduced by Ruessink et al. (2012), the Ursell number was estimated exactly
as in this chapter, i.e.,

Ur = 3

4

A

k2d 3 , (2.6)

with wave amplitude A = H/2, k calculated with Equation (2.1) using Tm−1,0 as a period
estimate, and d the mean depth.

ESTIMATION OF NEAR-BED VELOCITY TIME SERIES FROM PRESSURE SIGNALS

Near-bed velocity data were only available at three locations, in mean water depths be-
tween 7 and 10 m. To extend our dataset to a larger depth range, between 4 and 12 m,
near-bed orbital velocities were also estimated from the pressure time series measured by
the standalone pressure sensors P1–P8. The near-bed orbital velocity signal is computed
from the pressure signal using linear wave theory. This is done by applying a Fast-Fourier-
Transform on the pressure timeseries, subsequently multiplying the near-bed pressure
complex amplitudes with the frequency dependant correction factor Kl i n(σ) = σ

ρg t anh(kd)
to estimate the near-bed velocity spectrum. The near-bed velocity signal up2u(t ) is then
retrieved by performing an inverse Fast-Fourier-Transform. The subscript p2u refers to
the fact that the velocity is derived from the pressure using the steps above.

To verify this method, reconstructed velocity skewness and asymmetry were compared
to directly measured velocity skewness and asymmetry at the measurement frames (Fig-
ure 2.4). For F4, the method systematically over predicts skewness (red data points in
Figure 2.4), which is also reflected in a Root-Mean-Squared-Error (RMSE) of 0.12. For F1
(RMSE = 0.06) and F5 (RMSE = 0.07), skewness is very well predicted. Not a lot of asymme-
try was observed at the measurement frames, and a similar error (RMSE = 0.04) was found
for all three frames.
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Figure 2.4: Correlation between (a) skewness and (b) asymmetry directly measured from the near bed velocity
(Sku and Asu ) and from reconstructed near-bed velocity (Skp2u and Asp2u ) at measurement Frames 1 (blue), 4
(red), and 5 (yellow). The black dashed line is unity.

2.2.3. DEPTH-AVERAGED CURRENTS
At locations P1–P8, the currents were not measured. These were, however, needed to solve
the dispersion relationship (Equation (2.1)). Due to the complex bathymetry, the current
field exhibits strong spatial variations over the domain of interest (see also the exploratory
drifter study in Appendix 2.A). Hence, the currents from the frames cannot directly be
used at the pressure sensors. Therefore, an estimate of burst averaged currents at these
locations was provided by a Delft3D simulation of the campaign, including the effects of
wind, waves and tide for the duration of the field campaign. The setup and details of the
numerical model are described in Nederhoff et al. (2019), and the validity in predicting the
correct magnitude and direction of the currents is shown in Appendix 2.B by comparing
predicted and measured depth-averaged currents at F1, F4, and F5.

The importance of including time-averaged currents in the dispersion relationship is
related to the magnitude of kUn compared to the magnitude of σ. The importance is thus
higher for shorter waves and larger tidal currents in or against direction of wave propa-
gation. Because of mass continuity, largest currents were observed at the shallowest lo-
cation, P2, which was therefore the location where the effect of the current on waves was
expected to be most noticeable. At this location, when not including currents, the average
and maximum error for k was 6% and 33%, respectively. Since k was also included in the
conversion from pressure to surface elevation (Section 2.2.2) and near-bed orbital veloc-
ity (Section 2.2.2), the aforementioned error in k influenced σ, A, Ur , Skp2u , and Asp2u

with maximum errors of 20%, 12%, 38%, 3%, and 3%, respectively. The error introduced
by not including currents is visualized in Figure 2.5, which clearly shows that A, Skp2u ,
and Asp2u were barely influenced, whereas k, σ, and Ur changed significantly when in-
cluding the currents.
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Figure 2.5: Error estimate of wave parameters at P2 when not taking into account currents in the dispersion
relationship. (a) Frequency; (b) wave number; (c) amplitude; (d) Ursell number; (e) skewness; and (f) asymmetry
while not taking into account the current (subscript nc) are plotted as a function of the same parameters but
taking into account the current. The red dashed lines represent unity.

2.3. RESULTS

2.3.1. DATA OVERVIEW AND SELECTION

Significant wave height H , dimensional skewness S̃kp2u and asymmetry Ãsp2u at the deep-
est (P1, d = 10.4 m) and shallowest (P2, d = 4.3 m) locations, are presented in Figure 2.6.
The magnitudes of S̃kp2u and Ãsp2u are highly variable in time (Figure 2.6b,c). The largest
absolute values were mainly observed in stormy periods at 13 September and 3–7 Octo-
ber, where H > 2 m. Depth-induced shoaling generally leads to slightly increasing wave
heights between P1 and P2, apart from the two storms in which wave breaking leads to a
decrease in wave height (Figure 2.6a). It can be seen that S̃kp2u increases while moving to

the shallower sensor, and a clear tidal pattern can be seen in the S̃kp2u during the second
storm. Large values of |Ãsp2u | occur when conditions are close to wave breaking or once
the waves are breaking. This explains why near-zero Ãsp2u was observed at P1, but that
waves get asymmetric at P2.

For the following analyses, the focus was on cases with considerable S̃kp2u and Ãsp2u

for two reasons: first because this reflects when wave-induced sediment transport occurs,
and second to prevent nonphysically high values of dimensionless skewness and asym-

metry when 〈u2〉3/2 is really small. S̃p2u =
√

S̃k
2
p2u + Ãs

2
p2u , a combined nonlinear param-

eter, calculated at the most nonlinear location P2, was used to determine which cases to
include. The threshold was set such that 99% of cumulative nonlinearity S̃p2u was taken
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into account in the following, which was caused by only 42% of the bursts. Eventually, 813
half-hourly bursts were selected (see shaded areas in Figure 2.6), i.e. 17 days of unique
data in which significant S̃kp2u and Ãsp2u are present.

Figure 2.6: Time series of: (a) spectral wave height; (b) dimensional skewness; and (c) dimensional asymmetry
at sensor P1 (blue) and P2 (red). The shaded grey area indicates waves which are taken into account as a result
of the nonlinearity threshold on S̃p2u .

2.3.2. DEPENDENCE OF WAVE SHAPE PARAMETERS ON THE LOCAL URSELL

NUMBER
Traditionally, the Ursell number Ur is used to explain the variations in skewness Sku

and asymmetry Asu (Doering & Bowen, 1995; Ruessink et al., 2012). For our dataset, Ur
ranges from 0 to 0.7, i.e., values similar to those typically found in the shoaling and outer
surf zone. In this range, both Sku and Asu are expected to increase for increasing Ur ,
with the increase in Asu starting at higher Ur -values (see parameterization by Ruessink
et al. (2012), dotted blue lines in Figure 2.7).

When Skp2u and Asp2u of all locations were combined and binned as a function of
their local Ursell number, the results compare remarkably well with the parameteriza-
tion of Ruessink et al. (2012), as can be seen in Figure 2.7a,b. An almost perfect match
was observed between the bin-meaned Skp2u of all locations and the parameterization.
A similar match was found for the Asp2u bins at low Ur , but for Ur > 0.3 observed Asp2u

is significantly lower than the parameterized value. Overall, this suggests that, although
based on measurements on barred beaches, the parameterization is applicable in a more
complex environment such as an ebb-tidal delta. However, it should be noted that the
standard deviation per bin is significant with respect to the mean of the bin, which is also
reflected by the extensive clouds of data points in Figure 2.7a,b. As shown in the following,
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Figure 2.7: Skp2u (left) and Asp2u (right) as a function of Ur at all locations and for different clustered locations
(the clusters are as defined in Table 2.1): (a,b) all sensors combined; (c,d) the shelf; (e,f) seaward slope; (g,h)
ebb-tidal shoal; and (i,j) landward slope. Individual data points, visualized by the dots, are in red when local
wave breaking is expected (G > 0.5) and grey if no wave-breaking is expected (G < 0.5), based on Equation (2.7).
Black error bars indicate mean per bin ± one standard deviation. Five equally sized bins are defined between the
minimum and maximum observed Ur within each subset of the data. The blue dashed line is the parameteriza-
tion by Ruessink et al. (2012).
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although the wave shape parameters are well predicted by parameterizations depending
on Ur for the entire dataset, when considering individual locations or specific wave con-
ditions, the parameterization can systematically under- or overestimate Skp2u and Asp2u .

At the shelf, Skp2u is fully controlled by Ur (Figure 2.7c), with correlation coefficients
R2 between 0.87 and 0.89 (see Table 2.2). When it gets shallower, two trends can be ob-
served. A larger scatter in Skp2u was observed at a given Ur , and the slope of the best lin-
ear fit between Skp2u and Ur decreases from the shelf to the seaward slope (Figure 2.7e).
On top of the shoal and at the landward slope (Figure 2.7g,i), the correlation between
Skp2u and Ur decreases to 0.28 and 0.13, thus variability in Skp2u cannot be well described
by the variability in Ur .

Asp2u is near-zero at the shelf (Figure 2.7d) although Skp2u is already present (Fig-
ure 2.7c), which is as expected for Ur < 0.3 (see blue lines in Figure 2.7). The near-zero
Asp2u at this location explains the low correlation between Asp2u and Ur (Table 2.2).
At the seaward slope, Asp2u starts to develop indicating pitched forward waves, which are
breaking or close to breaking (Figure 2.7f). On top of the shoal, high variability in Asp2u

was observed (Figure 2.7h). There is no clear trend as high |Asp2u | occurs for a wide range
in Ur between 0.25 and 0.4. Moreover, for this range, cases were also observed where
Asp2u is near-zero although Ur is up to 0.45. For the bursts with non-zero Asp2u , there is
a clear difference between the slope of Asp2u as a function of Ur at the seaward slope (Fig-
ure 2.7f) and the shoal (Figure 2.7h), which leads to an increased scatter when all sensors
are combined (Figure 2.7b). At the landward slope, where the depth has slightly increased
Asp2u is near-zero for the full Ur -range. This behavior was also observed and modeled
by Elgar et al. (1997), who found that highly skewed and asymmetric waves can become
symmetrical again in increasing water depths.

In summary, although it is slightly underestimating Skp2u at the shelf and overestimat-
ing Asp2u at the seaward slope, the parameterization by Ruessink et al. (2012) is capable of
predicting Skp2u and Asp2u reasonably well at the shelf and the seaward slope (see dashed
blue lines in Figure 2.7c–f). On top of the shoal, the data cloud suggests that no parameter-
ization based on Ur only can properly predict Skp2u and Asp2u . The same holds for Skp2u

at the landwards slope (see dashed blue lines in Figure 2.7g,i). No Asp2u was observed
behind the ebb-delta, although for higher Ur , some Asp2u would be expected based on
the parameterization (see dashed blue lines in Figure 2.7j). The fact that observed Skp2u

and Asp2u for a given Ur -band (e.g., 0.3–0.4) are very different depending on the location
and that large scatter was observed at the shallow locations suggest that more physical
processes need to be accounted for than local Ur only.

2.3.3. ROLE OF WAVE TRANSFORMATION
Deviations with respect to the parameterization by Ruessink et al. (2012) occur for high
Skp2u in deeper water (Figure 2.7c) and high |Asp2u |-values (Figure 2.7f,h). Besides that,
a significant increase in variability was observed on top of the shoal (Figure 2.7g,h). All
these differences are explored here by examining wave transformation effects associated
with wave breaking, non-linear interactions and currents.
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Table 2.2: Correlation coefficient R2 between measured Skp2u and Asp2u and Ur .

Location Skp2u R2 Asp2u R2

P1 0.89 0.03
P8 0.88 0.05
F4 0.87 0.10
P3 0.89 0.07
P5 0.91 0.29
F5 0.87 0.47
F1 0.83 0.36
P7 0.76 0.74
P4 0.28 0.01
P2 0.13 0.05

VARIABILITY CAUSED BY WAVE BREAKING

High |Asp2u |-values typically correspond to breaking waves. Therefore, the high values at
P2 and P7 (Figure 2.7f,h) suggest that differences in breaking patterns could describe part
of the variability. The relative wave height, H/d , is a common parameter to discriminate
between breaking and non-breaking waves. To quantify whether waves are expected to
break between P1 and P2, a new parameter, G , was defined, which is the predicted wave
height at P2 divided by the water depth at P2. The predicted wave height at P2 was ob-
tained by shoaling the wave height from P1 towards P2 assuming energy conservation and
unidirectional wave propagation. In equation form, G , was computed as:

G = HP1
√

cg ,P1/cg ,P2

dP2
(2.7)

with group celerity cgi at location i computed according to linear wave theory as:

cgi =
(

1

2
+ ki di

si nh(2ki di )

)
σi

ki
. (2.8)

If G is higher than 0.5, which is within the common range of breaking criteria for ir-
regular waves over sloping bathymetry for γ= Hbr /d (Battjes & Stive, 1985), it is assumed
that wave breaking took place. The added value of using G over the more traditional local
estimate of H/d is that it not only indicates whether waves are expected to break or not,
but also for how long waves have been breaking and thus what proportion of a random
wave field is expected to break. Thus, G essentially describes how far in the surf zone the
data have been collected.

Figure 2.8a,b shows how the wave shape parameters, Skp2u and Asp2u , vary as a func-
tion of G . For G > 0.5, the absolute values of Skp2u and Asp2u are also high. For low values
of G , a wide range in Skp2u and near-zero Asp2u was observed. This difference is con-
sistent with the fact that shoaling waves start developing Skp2u earlier than Asp2u . If we
use a threshold of G = 0.5, we clearly see that the two distinct trends in Asp2u at P2 are
explained by the fact whether waves have broken or not before reaching P2 (see red mark-
ers in Figure 2.7h). In addition, we see that most variability in Skp2u is associated with
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low G values, i.e., non-breaking cases. Figure 2.8c finally shows that Ur , although com-
monly used to predict Skp2u and Asp2u , is not able to discriminate between breaking and
non-breaking waves (see for instance the wide range of G for Ur = 0.3 in Figure 2.8c).

Figure 2.8: (a) Skp2u ; (b) Asp2u ; and (c) Ur at P2 as a function of parameter G , defined as the incoming wave
height at P1 shoaled towards P2 divided by the water depth at P2. Red dashed line represents wave breaking
threshold G = 0.5.

To further investigate the role of wave transformation on the observed variability in
Skp2u and Asp2u , we examined the changes in wave characteristics over the bathymetric
transect (Figure 2.2). More specifically, we examined the changes in Skp2u , Asp2u and Ur
during wave propagation from P7 (d = 5.3 m) to P2 (d = 4.3 m), as P7 was the last sen-
sor before scatter in Skp2u and Asp2u as a function of Ur significantly increased. Skp2u

is remarkably constant between the two sensors regardless of the fact whether waves are
breaking or not (Figure 2.9b) while |Asp2u | stays near-zero for non-breaking cases and
slightly increases for breaking cases (Figure 2.9c). The increase in |Asp2u | for breaking
cases is explained by the fact that depth has decreased, thus a larger proportion of the
waves will be breaking waves at P2. This is consistent with the strong dependence of
Asp2u on G described above. In contrast to the marginal changes in Skp2u and Asp2u ,
Ur significantly changes between P7 and P2, with a clear decrease for breaking waves
and an increase for non-breaking waves (Figure 2.9a). The observed decrease in Ur is
caused by increasing k, and decreasing a due to breaking. The observed increase in Ur
for non-breaking cases, on the other hand, is a result of an increase in a and a decrease in
d . This decrease of Ur for breaking waves (high Skp2u) in contrast to the increase for non-
breaking waves (low Skp2u) explains the increased scatter at P2 compared to P7 (black
vs. grey and red markers in Figure 2.9d, in which the red and grey arrows represent the
general trend for breaking and non-breaking cases, respectively). In a similar manner,
scatter in asymmetry is increased from P7 to P2 (see Figure 2.9e). It also explains why the
most asymmetric waves were observed at lower Ur numbers at P2 than at P7 (compare
Figure 2.7f,h). Thus, apparently, when wave-breaking occurs, the Ur -number is not the
best parameter to predict the wave shape, since large scatter was observed. An approach
to reduce the scatter in parameterizations predicting the wave shape is discussed in Sec-
tion 2.4.2.
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Figure 2.9: Development of: (a) Ur ; (b) Skp2u ; and (c) Asp2u for non-breaking (grey) and breaking (colored)
cases, from P7 to P2. Ur , Skp2u and Asp2u at P2 are visualized as a function of Ur , Skp2u and Asp2u at P7,
respectively. Colors for the breaking cases indicate Un (m/s). The black dashed line has slope 1, thus indicates
no change. The effect on (d) Skp2u and (e) Asp2u as a function of Ur is shown by visualizing data-points at P7
in grey (non-breaking) and red (breaking) and at P2 in black (all). The general evolution of data clouds from P7
to P2 for non-breaking and breaking conditions is visualized by grey and red arrows, respectively.

VARIABILITY CAUSED BY NONLINEAR ENERGY TRANSFER RATE

Nonlinear interactions lead to energy transfer from the primary harmonics to the higher
harmonics and are thus essential for the development of Skp2u and Asp2u . From Hassel-
mann (1962), it is known that the wave length, and thus period, of the primary wave field
is a key variable influencing the nonlinear energy transfer strength. As a result, longer
waves are expected to develop Skp2u sooner and at a higher rate than shorter waves. This
was confirmed by the modeling study of Rocha et al. (2017), who showed that waves with
higher period have faster development of Skp2u and Asp2u .

In line with findings by Hasselmann (1962) and Rocha et al. (2017), in this dataset,
the incoming wave period Tm−1,0 (at the deepest sensor P1) explains a significant part of
the variability in Skp2u as a function of Ur at the shallow sensors. Figure 2.10a shows that,
within each Ur -bin, Skp2u varies as a function of Tm−1,0 at P1. Although the wave period
is included in Ur through k, a long low wave can have the same Ur as a shorter higher
wave when in the same depth, whereas a higher amount of Skp2u and |Asp2u | is expected
for the longer wave based on the different nonlinear energy transfer rate.

Besides variability at the shallow sensors, the higher Skp2u in deeper water is also re-
lated to high incoming wave periods. The longer waves, which feel the bottom earlier,
have already transformed into a more skewed wave shape than predicted by the parame-
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terization by Ruessink et al. (2012) based on local Ur (Figure 2.10b).

Figure 2.10: (a) Skp2u as a function of Ur at P2 in d = 4.3m and (b) at P1 in d = 10.4m. Light to dark green colors
indicate the incoming spectral period Tm−1,0 at P1 in seconds. The blue dashed lines represent the Ruessink
et al. (2012) parameterization.

VARIABILITY CAUSED BY CURRENTS

At P2, a large range of Asp2u and Ur is seen for the breaking waves (red dots in Figure 2.7h),
which cannot be explained by a difference in incoming wave period because all those
waves are long (9–10 s, not shown). It can be seen in Figure 2.11c that opposing and fol-
lowing currents lead to two distinct branches. This results in a different Asp2u observed
for opposing and following waves for the same Ur . The two different branches can be
explained by the fact that, in breaking conditions, Ur decreases more when the waves
propagate from P7 to P2 for opposing currents than for following currents (compare blue
and red colors in Figure 2.11a). This stronger decrease is due to the shortening of wave
length if the current magnitude increases in shallow water during the opposing currents,
and subsequently the change in k influences Ur .

Figure 2.11: Influence of the currents on Ur , Skp2u , and Asp2u at P2. (a) Development of Ur from P7 towards P2,
in which grey dots are non-breaking cases and colored dots are breaking cases. The black dashed line represents
unity. (b) Skp2u as a function of Ur . (c) Asp2u as a function of Ur . Blue to red colors indicate the ambient
current in direction of wave propagation Un in m/s.
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2.4. DISCUSSION

2.4.1. RELEVANCE IN MORPHODYNAMIC MODELING
Long-term simulations using process-based models do not model waves to such extent
that the skewness and asymmetry are resolved. Therefore, parameterizations are needed
to predict the skewness and asymmetry, usually as a function of local Ur .

A recent numerical study for this specific tidal inlet by Reniers et al. (2019) investi-
gated the relevance of wave-shape induced transport compared to the traditional trans-
port where sediment is stirred up by waves and transported by the currents. They found
that the contribution of wave-shape transport is the dominating mode of transport in
stormy conditions at the shallow locations, and can counteract the tide-induced sediment
transport leading to a net onshore sediment transport.

This dataset has shown that it is in those conditions, when wave-shape transport is
dominant, that most deviations from the parameterizations are observed (e.g., for break-
ing waves and at the shallow sensors). Since wave-shape transport is always onshore di-
rected, small errors will accumulate over long-term simulations and can thus significantly
influence the development of the shallow ebb-tidal shoal.

2.4.2. CORRECTING FOR DELAYED RESPONSE IN WAVE SHAPE
Changes in Skp2u and Asp2u when waves propagate from P7 to P2 are much less signif-
icant than changes in Ur (see Figure 2.9). This suggests a delayed response of the wave
shape, and in particular of the skewness, to changes in the Ursell number when waves
propagate towards shallower water depths. In the following, we want to check if using an
Ursell number corresponding to an earlier stage of wave transformation, Ur⋆ (defined at
depth d⋆ = d+∆d , with∆d > 0) has better predictive skills than using the local Ursell value
Ur (at depth d). Since P4 (at the landward slope) is in a different regime, where ∆d < 0, it
is excluded for this analysis. We assume that, at the deepest sensor, the skewness is close
to being fully developed and thus has an optimal fit with the Ursell number (see also the
high R2 value in Table 2.2 for P1), which we take as a reference for the optimization proce-
dure. More specifically, we iteratively estimate, for each sensor, the depth correction ∆d
needed to get the best fit with the observation at P1 in terms of both slope and intersect of
the least square linear fit. The modified Ur⋆ is computed as:

Ur⋆ = 3

4

A⋆

k⋆2d⋆3 , (2.9)

with k⋆ obtained by deshoaling k from depth d to d⋆ using linear wave theory, and am-
plitude A⋆, at depth d⋆ obtained by linear interpolation between the location under con-
sideration and the location before it in deeper water.

Table 2.3 shows per location the ∆d by which the Ursell number needs to be corrected
in order to obtain the optimized Ur⋆. It is seen that the delay is negligible (∆d < 0.25 m) at
the deeper sensors (P1, P8, F4, P3, and P5), but is significant at the shallower sensors on the
steeper seaward slope (F5, P7, and P2). Figure 2.12 shows Skp2u and Asp2u as a function
of local Ur and delayed Ur⋆. For Skp2u , it is seen that variability reduces when using Ur⋆

(compare Figure 2.12a,c), which is also reflected by a small decrease in standard deviation
(averaged of the standard deviations of the five bins) from 0.09 to 0.08. Although Ur⋆ is
optimized for Skp2u , Asp2u also seems to be better predicted by Ur⋆ since the individual
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sensors for high |Asp2u | follow similar trends. The averaged standard deviation for Asp2u

does not decrease (0.07 for Ur and Ur⋆), which is probably because most points have
close to zero Asp2u , thus will not be affected by the delayed parameterization. Visually, it
can be seen, however, that it decreases the number of outliers.

Table 2.3: Depth by which Ur needs to be delayed to get Ur⋆ per sensor accompanied by the mean depth and
bed slope the sensors are in.

Location P1 P8 F4 P3 P5 F5 P7 P2

∆d (m) 0 0.25 0.2 0.2 0 1.1 0.8 0.85
d (m) 10.4 9.5 8.5 8.2 7.9 6.6 5.3 4.3

bed slope (-) 0.004 0.004 0.004 0.002 0.005 0.006 0.009 0.011

Figure 2.12: (a) Skp2u and (b) Asp2u of all sensors (excluding P4) as a function of local Ur . (c) Skp2u and (d)
Asp2u of all sensors (excluding P4) as a function of delayed Ur⋆. Black error bars indicate mean per bin ± one
standard deviation.

2.4.3. FUTURE WORK
This chapter characterizes conditions in which the wave shape deviates from commonly
used parameterizations. It is proposed in a follow-up study to include offshore wave
steepness as this determines the shoaling characteristics and the breakpoint of the waves
(Rocha et al., 2017). In addition, the strength of the nonlinear interactions should be in-
cluded since this proved to explain most of the variability at the shallow sensors for non-
breaking waves. Once waves break, the parameterization can be improved by taking into
account the proportion of waves which are breaking, because this was shown to be the
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dominant parameter defining the amount of asymmetry in breaking conditions. Finally, it
should be investigated whether the delayed response of the wave shape to changes in the
Ursell number under rapidly changing conditions should be accounted for, and if so how
it varies with bed slope, wave length and directional spreading.

The efficiency of the above-mentioned improvements cannot be properly quantified
with our field data due to their limited spatial resolution. Although it is an exceptionally
comprehensive dataset, wave characteristics were only measured at ten locations over a
relatively large area, with only one measurement point in the breaking zone and one in the
de-shoaling zone. Future work will include the use of detailed wave-resolving simulations,
from which skewness and asymmetry can be estimated with a high spatial resolution. This
will allow us to study the development of wave shape at many more locations and under
controllable conditions in which only a single input parameter is varied. This will allow us
to further improve our understanding of the physical processes relevant to predict wave
shape evolution and improve future parameterizations.

As mentioned above, parameterizations for skewness and asymmetry are usually used
to parameterize wave-induced sediment transport in process based models. In such a
modeling approach, wave predictions are usually based on a phase-averaged spectral wave
model. It is interesting to note that such models provide much more information than
the wave parameters currently used to calculate Ur and hence to parameterize skew-
ness and asymmetry. They for instance also provide data on directional spreading, fre-
quency spreading and the proportion of breaking waves and associated dissipation pat-
terns, which could also be included in an improved parameterization.

2.5. CONCLUSIONS
This chapter presents a new dataset of waves and currents obtained at 10 locations on
the ebb-tidal shoal seaward of the Ameland Inlet. Pressure signals were transformed in
near-bed orbital velocity signals in order to investigate the occurrence of the near bed
velocity skewness and asymmetry, as these are the main drivers of wave-induced sediment
transport. Significant S̃kp2u and Ãsp2u were observed during the stormy periods with H >
2 m, and it was seen that S̃kp2u and |Ãsp2u | increased moving to shallower water.

Wave shape parameterizations are usually a function of local Ur . For this dataset it
was found that variability in wave shape was well-explained by variability in local Ur in
deeper water. However, for shallower locations, variability in Ur could only partially ex-
plain the variability in Skp2u and Asp2u , indicating that some physical processes are not
properly accounted for. The increased scatter at the shallow locations could be attributed
to a combination of three main physical processes: wave-breaking, spatial variability in
tidal currents, and the nonlinear energy transfer rate.

Towards the shallow sensors, a rapid decrease in Ur for breaking conditions and an in-
crease for non-breaking conditions is observed, although Skp2u and Asp2u only marginally
change. This leads to significant scatter in Skp2u and Asp2u as a function of Ur at these
shallow locations (see Figure 2.9). For opposing currents, this decrease in Ur for breaking
conditions is even bigger than for following currents, because the wave length decreases
and increases, respectively. Another influence contributing to the scatter of Skp2u as a
function of Ur is the nonlinear energy transfer rate, which is not properly accounted for
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in Ur .
It is shown that a potential improvement for future parameterizations would be to cor-

rect for the fact that the wave shape does not instantly respond to changes in depth and
currents. For this dataset, this led to a reduced variance from 0.09 to 0.08 for Skp2u . It is
expected that the added value will be higher if relatively more cases with high nonlinearity
are included in the dataset.
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APPENDICES

2.A. DRIFTER STUDY
To provide insight in the spatial variability of the (surface) currents around the measure-
ment frames and pressure sensors, 30 GPS-equipped floating surface drifters were devel-
oped. These drifters were constructed from water-tight containers filled with concrete to
decrease the buoyancy in order to reduce the effect of the wind. A flag is added for visibil-
ity, a bottom plate to limit the vertical motion and a cell phone as GPS tracking device (see
Fig 2.13).

Figure 2.13: GPS-equipped surface current drifter deployed in the Ameland Inlet.

Figure 2.14 shows the bathymetry of the ebb tidal shoal with the black box indicat-
ing the area where the drifter deployments were performed. The drifter deployments dis-
cussed here were performed on the 9th of September 2017 between flood tide and ebb
tide (see bottom panel of Fig. 2.15 for the associated water levels). Wind and wave condi-
tions were very mild during this day, so the drifter displacements are predominantly tide-
driven. A total of 15 successive drifter deployments were performed (see numbers in Fig.
2.15). Per deployment, 20 drifters were released upstream of the measurement area and
retrieved when all of them had passed the instrumented area. For each of the 15 deploy-
ments, the GPS locations of the drifters were de-spiked and frequency-filtered to retain
the current-related displacement. Subsequently, the velocity along the individual drifter
tracks was obtained by differentiating the displacement in time. Interpolating these tracks
to a regular grid provided a current map for each deployment (see Fig. 2.15).

It can be seen that during flood tide (Fig. 2.15 panels 1-5), velocities are rather uni-
formly distributed with a slight increase in magnitude in the shallower area (southeast).
In contrast, during ebb tide (Fig. 2.15 panels 12-15), stronger currents are more concen-
trated in the ebb channel resulting in stronger spatial velocity gradients. During slack tide
(Fig. 2.15 panels 8-11), a counterclockwise rotation of the currents is observed.
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Figure 2.14: Bathymetry of the Ameland ebb-tidal delta with the black box indicating the area in which drifter
measurements were performed.

Figure 2.15: Velocity maps (in m/s) from the 15 subsequent drifter deployments on the 9th of September 2017
for different tidal phases at the ebb-tidal shoal. Panel numbers are associated with the water levels shown in the
bottom panel.
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2.B. VALIDITY DELFT3D MODEL
The Delft3D model of the Ameland Inlet and surroundings, as described by Nederhoff
et al. (2019), is used to estimate velocities where they were not measured (at the stan-
dalone pressure sensors). Figure 2.16 shows the modeled water levels and depth-averaged
velocities as a function of the measured water levels and depth-averaged velocities at
Frames 1, 4, and 5. Table 2.4 shows that the order of magnitude of water levels and ve-
locities is well-predicted by the model, with RMSE not exceeding 0.25 m and 0.13 m/s for
water levels and depth-averaged velocities, respectively.

Figure 2.16: Comparison between measured and modeled η, Ueast , and Unor th at Frames 1, 4, and 5 where
black dots are individual data points and red dashed lines are unity.

Table 2.4: RMSE between half-hourly-averaged modeled and measured water levels and depth-averaged veloci-
ties at Frames 1, 4, and 5.

F1 F4 F5

η (m) 0.17 0.25 0.16
Ueast (m/s) 0.13 0.12 0.13

Unor th (m/s) 0.10 0.12 0.13
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THE RELATIONSHIP BETWEEN

SEA-SWELL BOUND WAVE HEIGHT

AND WAVE SHAPE

ABSTRACT
The nonlinear wave shape, expressed by skewness and asymmetry, can be calculated from
surface elevation or pressure time series using bispectral analysis. Here, it is shown that
the same analysis technique can be used to calculate the bound superharmonic wave
height. Using measured near-bed pressures from three different field experiments, it is
demonstrated that there is a clear relationship between this bound wave height and the
nonlinear wave shape, independent of the measurement time and location. This implies
that knowledge on the spatially varying bound wave height can be used to improve wave
shape-induced sediment transport predictions. Given the frequency-directional sea-swell
wave spectrum, the bound wave height can be predicted using second order wave theory.
This chapter shows that in relatively deep water, where conditions are not too nonlinear,
this theory can accurately predict the bispectrally estimated bound superharmonic wave
height. However, in relatively shallow water, the mismatch between observed and pre-
dicted bound wave height increases significantly due to wave breaking, strong currents,
and increased wave nonlinearity. These processes are often included in phase-averaged
wind-wave models that predict the evolution of the frequency-directional spectrum over
variable bathymetry through source terms in a wave action balance, including the transfer
of energy to bound super harmonics. The possibility to calculate and compare with the
observed bound super harmonic wave height opens the door to improved model predic-
tions of the bound wave height, nonlinear wave shape and associated sediment transport
in large-scale morphodynamic models at low additional computational cost.

This chapter is an adapted version from the publication: de Wit, F.P., Tissier, M.F.S. and Reniers, A.J.H.M., (2020),
Characterizing Wave Shape Evolution on an Ebb-Tidal Shoal, Journal of Marine Science and Engineering 8(9),
643.
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3.1. INTRODUCTION
Coastal management decisions, such as nourishment strategies and sea level rise scenar-
ios, rely more and more on morphodynamic model simulations. Within these simula-
tions, fluxes in sediment transport, caused by hydrodynamic forcing mechanisms, result
in changes in the bathymetry. An important contribution to the sediment transport fluxes
is the wave shape-induced sediment transport driven by the skewness and asymmetry of
the individual waves (Hoefel & Elgar, 2003; Hsu et al., 2006; Ruessink et al., 2011; Silva et al.,
2011). Although its instantaneous magnitude is often smaller than other contributions, it
can have a considerable net effect on the bathymetric evolution as the contribution is
typically in the dominant wave direction (Kranenburg et al., 2013; Walstra et al., 2012).
As such, it is important for beach recovery after storm impact (Elgar et al., 2001; Masselink
et al., 2007), onshore bar motion (Thornton et al., 1996; Elgar et al., 2001; Aagaard et al.,
2006; Ruessink et al., 2007) and the evolution of ebb-tidal shoals (e.g., Chen et al., 2015;
Reniers et al., 2019).

Current large-scale morphodynamic modeling approaches generally combine a spec-
tral wave transformation model (Booij et al., 1999; Ris et al., 1999; Benoit et al., 1997; Tol-
man, 1991; Janssen et al., 2006) and a flow model (e.g., Lesser et al., 2004; Walstra et al.,
2001; Elias et al., 2001; Luettich et al., 1992; Westerink et al., 1994) to predict the local
wave, flow and sediment transport conditions (e.g., Roelvink et al., 2003; Lesser et al.,
2004). Using a local parameterization based on the wave height, wave period and water
depth, the wave skewness, asymmetry, and associated sediment transport are obtained
(e.g., Isobe & Horikawa, 1982; Doering & Bowen, 1995; Abreu et al., 2010; Ruessink et al.,
2012; Boechat Albernaz et al., 2019). However, as was shown by Rocha et al. (2013), Rocha
et al. (2017), and De Wit et al. (2019), predicting the wave shape using a local approach has
its limitations, related to the fact that the prior evolution of wave shape is not taken into
account. As a result, the wave shape can be different although the local wave height, pe-
riod, and water depth are exactly equal, if, for instance, the bed slope is different (Norheim
et al., 1998; Eldrup & Andersen, 2020), the conditions are rapidly changing (De Wit et al.,
2019), or the offshore wave steepness is different (Rocha et al., 2017). Thus, there is a need
for a better way to predict the wave shape that includes the history of the waves before
reaching a certain location.

The wave skewness and asymmetry can be computed with a bispectral analysis corre-
sponding to the sum of the real and imaginary parts of the bispectrum, respectively (e.g.,
Hasselmann et al., 1963; Elgar & Guza, 1985). The bispectrum is a reflection of the cou-
pling between the primary waves and the bound super and sub harmonics (Elgar & Guza,
1985; Eldeberky & Madsen, 1999). This implies that there is a close connection between
the nonlinear wave shape and the proportion of bound wave energy.

The bound portion of energy in the super harmonics within a directionally spread
sea-swell wave field can be predicted with the second order theory of Hasselmann (1962)
based on a local equilibrium over a horizontal bed. However, in the presence of a variable
bathymetry and thus spatially evolving sea-swell wave field this may lead to an erroneous
estimate as demonstrated by Herbers & Burton (1997). On the other hand, spectral wind-
wave models often include a source term to describe the transfer of wave energy from the
primary wind-waves to bound super harmonics through triad sum interactions over vari-
able bathymetry (Eldeberky & Madsen, 1999; Salmon et al., 2016; Becq-Girard et al., 1999).
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The modeled bound fraction of superharmonic wave energy is an integration of the source
term in the down-wave direction showing up as an additional spectral peak at twice the
primary frequencies (e.g., Madsen & Eldeberky, 1999; Eldeberky & Madsen, 1999). How-
ever, to speed up the computations to enable morphodynamic computations at realistic
time scales, the phase information is ignored and even though the spatially evolving frac-
tion of bound energy is implicitly predicted, the accompanying skewness and asymmetry
are not known.

Examining the three-dimensional (3D) wavenumber-frequency spectrum is a relatively
straightforward way to discriminate between the bound and free wave energy as these fol-
low different dispersion relations (e.g., Phillips, 1960). However, estimating the full 3D
wave spectrum requires high-resolution spatial information that is rarely available in the
field (see e.g., Leckler et al. (2015) for one of the exceptions). Alternatively, bispectra can
be used to characterize the portion of bound energy in a given frequency range. Most ef-
forts to quantify and analyze bound harmonic energy have focussed on the sub-harmonic
range (e.g., Henderson et al., 2006; Ruessink, 1998; Sheremet et al., 2002; Van Dongeren
et al., 2003; Roelvink et al., 2009; Guedes et al., 2013; De Bakker et al., 2015) following the
work of Herbers et al. (1994) who demonstrated that the bound fraction of subharmonic
(i.e., infragravity) energy could be obtained from the difference interactions in the bispec-
trum. Significantly less attention has been devoted to quantifying the bound energy in
the super harmonic range, with the most notable contributions being the work by Her-
bers & Guza (1992, 1994) and Herbers et al. (1992) who examined bound wave energy in
intermediate water depths.

The aforementioned studies (Herbers & Guza, 1992, 1994; Herbers et al., 1992)
showed that triad sum interactions between wave components with large difference an-
gle of propagation can contribute significantly to the bound near-bed pressure variance
at these depths. Interestingly, these are typically associated to negative interaction coeffi-
cients according to the theory of Hasselmann (1962), while the more classical sum inter-
actions between wave components with small difference in angle of propagation have a
positive contribution. Thus, for a given sum frequency in the superharmonic range, both
positive and negative contributions from primary wave pairs can occur such as the bis-
pectrum is expected to yield a lower limit of the bound super harmonic energy. Several
authors (Elgar & Guza, 1985; Young & Eldeberky, 1998; Sénéchal et al., 2002) additionally
mention, based on the work of McComas & Briscoe (1980), that estimating the bound su-
per harmonics from the bispectrum in a broad-banded spectrum is not straightforward.
This inhibits a direct comparison with the predictions of the wind-wave spectral models.
Notably, Herbers et al. (1992) did find a good match between predictions by the theory
of Hasselmann (1962) and observations in a case of narrow-banded energetic swell con-
ditions (their Figure 10d) in contrast to conditions with crossing sea states (their Figure
10a–c). This raises the question to what extent the bispectral estimate of the bound super
harmonic fraction can work for sea-swell conditions.

In the following, we therefore construct a method to first estimate the bound portion
of the energy in the super harmonics in a realistic directionally spread wave field and sec-
ondly to use this as a predictor of the nonlinear wave shape controlling wave skewness and
asymmetry. To that end, the velocity and pressure data obtained at nine locations on the
Ameland ebb-tidal delta from the CoastalGenesis2/SEAWAD field campaign in Septem-
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ber 2017 are examined using bispectral analysis. The bound superharmonic fraction is
expressed as an equivalent observed bound wave height that is compared with the pre-
dicted bound wave height obtained from the equilibrium theory of Hasselmann (1962) to
explore its spatial evolution. Next, the correspondence between the bound wave height
and nonlinear wave shape is examined to explore the potential of using a wave shape
parameterization based on the predicted bound wave height instead of a local parame-
terization. This is followed up with a discussion on the general applicability of such an
approach and the necessary steps in spectral wave modeling to enable these predictions.

3.2. BACKGROUND

3.2.1. THE SPECTRUM
The surface elevation is represented as a summation of discrete frequencies as

η(t ) =
N∑

m=−N

1

2
Cme−2πi fm t + 1

2
C∗

me2πi fm t (3.1)

in which Cm is the complex amplitude at discrete frequency fm = m∆ f with ∆ f being the
frequency resolution, C∗

m indicates the complex conjugate of Cm , i is the imaginary num-
ber, and t is time. The number of discrete spectral estimates is 2N +1, which are bound
by the Nyquist frequencies: ± fN = ± fs /2, in which fs is the discrete sampling frequency
of the surface elevation time series. The complex amplitudes are obtained by applying a
discrete fast Fourier transformation on the surface elevation. Subsequently, the (double-
sided) variance spectrum is defined as

E ′
m = E[CmC∗

m] for:−N ≤ m ≤ N (3.2)

in which E[...] denotes the expected value. For convenience, readability and computa-
tional efficiency the variance spectrum is instead presented as a single sided discrete vari-
ance spectrum:

Em = 2E ′
m for: 0 ≤ m ≤ N (3.3)

The corresponding variance density spectrum is:

E( fm) = Em

∆ f
for: 0 ≤ m ≤ N (3.4)

from this the sea-swell variance can be calculated as:

m0 =
imax∑

m=imi n

E( fm)∆ f (3.5)

in which imi n and imax are indices corresponding to the sea-swell frequency range. These
are defined in this study as fimi n = fpeak /2 in order to separate the sea-swell waves from
the infragravity waves (Roelvink et al., 2009) and fimax = fN . The sea-swell significant wave
height is obtained from the variance with:

H =4
p

m0 (3.6)
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If besides pressure, also collocated x- and y-velocities are present, the 2D frequency-
directional variance spectrum can be computed:

E( fm ,θr ) = E( fm)Θ( fm ,θr ) (3.7)

in which Θ( fm ,θr ) is the directional distribution at discrete frequency fm and discrete
direction θr .

3.2.2. THE BISPECTRUM
The bispectrum is a spectral representation of third-order statistics that can be used to an-
alyze the nonlinear interactions between a triad of frequencies fm , fn and fp that satisfies
fm + fn = fp . The discrete bispectrum is defined as

Bm,n = E[CmCnC∗
p ] for: p = m +n and −N ≤ m,n, p ≤ N (3.8)

Subsequently, the bispectral density is defined as:

B( fm , fn) = Bm,n

(∆ f )2 (3.9)

If the three components are statistically independent, there is no phase correlation
and B( fm , fn) = 0. In that case, the third component fp is not bound to fm and fn but
freely propagating. On the other hand, a non-zero bispectrum B( fm , fn) indicates that
(part of) the variance at fp is bound to the energies at fm and fn .

In contrast to the variance density spectrum, the bispectrum is complex. The normal-
ized magnitude and phase of the bispectrum are the bicoherence b2 and the biphase β,
given by

b2( fm , fn) = 8
|B( fm , fn)|2

E( fm)E( fn)E( fp )
(3.10)

β( fm , fn) = t an−1
(ℑ(B( fm , fn))

ℜ(B( fm , fn))

)
(3.11)

in which ℜ and ℑ denote the real and imaginary parts, respectively. The factor 8 in Equa-
tion (3.10) arises because the double-sided bispectral density is normalized by single-
sided variance densities. According to Kim & Powers (1979), the bicoherence character-
izes the relative degree of coupling between three waves at fm , fn , and fp , which can be
used to determine the bound variance at fp . Different equations to calculate the bicoher-
ence have been presented in literature, all slightly differing in the way the bispectrum is
normalized. Here, the equation of Haubrich (1965) is presented, as was later also applied
by Herbers et al. (1994). Furthermore, Elgar & Guza (1988) showed that the statistical re-
liability of the bicoherence is insensitive to the normalization method. The intensity of
the imaginary part of the bispectrum is indicative for the strength of the nonlinear energy
transfers, which result in temporal or spatial changes in the spectrum (e.g., Agnon et al.,
1993; Herbers & Burton, 1997). The real and imaginary parts of the bispectrum are also
closely related to the wave shape, as will be described in Section 3.2.3.

Every triad interaction appears in the bispectrum multiple times. Due to symmetry
in the bispectrum, it is redundant to calculate and analyze the full bispectrum, but all
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sum and difference interactions are present in the triangle in ( fm , fn)-space bounded by
( fm = 0, fn = 0), ( fm = fN /2, fn = fN /2), and ( fm = fN , fn = 0). For a detailed description of
the symmetry regions in the bispectrum the reader is referred to Kim & Powers (1979).

3.2.3. WAVE SHAPE
The nonlinear shape of a wave can be described by its skewness (asymmetry w.r.t. the
vertical axis) and asymmetry (asymmetry w.r.t. the horizontal axis). Skewness Skη and
asymmetry Asη are third-order statistics (Elgar & Guza, 1985), which are proportional to
the real and imaginary parts of the bispectrum, normalized by the variance. The sea-swell
Skη and Asη are computed as

Skη =
6
∑imax

m=imi n

∑imax
n=imi n

ℜ(B( fm , fn))(∆ f )2

m3/2
0

(3.12)

Asη =
6
∑imax

m=imi n

∑imax
n=imi n

ℑ(B( fm , fn))(∆ f )2

m3/2
0

(3.13)

The factors 6 arise from the fact that the triangle that includes all positive frequencies
of the bispectrum triangle covers 1/6 of the bispectral area. Skη and Asη can be combined
in the nonlinear wave shape parameter Sη (Ruessink et al., 2012):

Sη =
√

Sk2
η+ As2

η (3.14)

3.3. BOUND VARIANCE
This section outlines the method to obtain both the predicted as well as the observed
bound wave variances, and the equivalent bound wave heights, from measurements.

3.3.1. PREDICTED BOUND VARIANCE FOR EQUILIBRIUM CONDITIONS
Using second-order finite depth theory, the variance associated with the bound super har-
monics can be predicted (Hasselmann, 1962). Based on this theory, the bound variance at
a given frequency fp resulting from all sum interactions between primary sea-swell com-
ponents which contribute to the variance at fp is calculated as

Eb,pr ed ( fp ) = 1

2

Nθ∑
r=1

Nθ∑
s=1

p−imi n∑
m=imi n

E( fp−m ,θr )E( fm ,θs )D2( fp−m , fm ,θr ,θs ,d)∆ f (∆θ)2 (3.15)

in which r and s are discrete indices defining the directional bins such that θr = r∆θ and
θs = s∆θ. Nθ is the discrete number of directional bins resulting in the directional res-
olution ∆θ = 2π/Nθ. D is the nonlinear coupling coefficient for seafloor pressure given
by Herbers et al. (1994) and d is the mean water depth. The corresponding bound super
harmonic wave height is computed as

Hb,pr ed = 4

√√√√ ib,max∑
p=ib,mi n

Eb,pr ed ( fp )∆ f (3.16)
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in which ib,mi n and ib,max are indices corresponding to the bound superharmonic fre-
quency range. These are defined in this study as fib,mi n = fpeak and fib,max = fN .

3.3.2. OBSERVED BOUND VARIANCE FROM THE BISPECTRUM

As was mentioned in Section 3.2.2, Kim & Powers (1979) 1 pointed out that the proportion
of bound variance is related to the bicoherence. Integrating the bicoherence over all triad
sum interactions contributing to frequency fp gives the proportion of variance at fp which
is bound:

Eb,obs,K P79( fp )

E( fp )
=

p−imi n∑
m=imi n

b2( fm , fp−m)∆ f

= 8
p−imi n∑
m=imi n

|B( fm , fp−m)|2
E( fm)E( fp−m)E( fp )

∆ f (3.17)

The observed bound variance in the super harmonics can be written as

ib,max∑
p=ib,mi n

Eb,obs,K P79( fp )∆ f = 8
ib,max∑

p=ib,mi n

p−imi n∑
m=imi n

|B( fm , fp−m)|2
E( fm)E( fp−m)E( fp )

(∆ f )2 (3.18)

The observed bound wave height is subsequently computed as

Hb,obs,K P79 = 4

√√√√ ib,max∑
p=ib,mi n

Eb,obs,K P79( fp )∆ f (3.19)

Herbers et al. (1994) 2 proposed an expression for the observed bound proportion of
variance in the infragravity wave range due to difference interactions between primary
sea-swell waves using the bispectrum. In a similar way, we define the observed bound
proportion of variance at frequency fp associated with the sum interactions (i.e., bound
super harmonics) as ∑ib,max

p=ib,mi n
Eb,obs,HEG94( fp )∆ f∑ib,max

p=ib,mi n
E( fp )∆ f

=

α( fp )

∣∣∣∣∣∣∣∣∣
1
2

∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

B( fm , fp−m)(∆ f )2√
1
8

∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

E( fm)E( fp−m)(∆ f )2 ∑ib,max

p=ib,mi n
E( fp )∆ f

∣∣∣∣∣∣∣∣∣
2

(3.20)

in which α( fp ) is a weighting factor to account for differences in interaction strength be-
tween all triads contributing to frequency fp . As discussed by Herbers et al. (1994), how-
ever, this effect is small for sea-swell waves and α can be assumed to be 1. Subsequently,

1KP79 refers to the methods and equations from Kim & Powers (1979).
2HEG94 refers to the methods and equations from Herbers et al. (1994).
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the bound wave variance is expressed as

ib,max∑
p=ib,mi n

Eb,obs,HEG94( fp )∆ f = 4

∣∣∣∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

B( fm , fp−m)(∆ f )2
∣∣∣2

∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

E( fm)E( fp−m)(∆ f )2
(3.21)

Finally, the resulting bound wave height is computed as

Hb,obs,HEG94 = 4

√√√√ ib,max∑
p=ib,mi n

Eb,obs,HEG94( fp )∆ f (3.22)

Comparing Equations (3.18) and (3.21) illustrates the differences between the meth-
ods to compute the bound wave variance. While Kim & Powers (1979) first calculate all
individual bicoherences before summing them, Herbers et al. (1994) first sum over the
bispectrum and the cross products of the spectrum, subsequently square the absolute
value of the summed bispectrum, and finally calculate the ratio. In Appendix 3.A, the per-
formance of both methods is investigated as a function of the statistical reliability of the
expected values of the spectrum and bispectrum (Equations (3.4) and (3.9)). From this, it
is decided to use the HEG94 formulation to compute the observed bound wave height, be-
cause it provides the most reliable estimate for a low number of degrees of freedom. This is
of key importance in order to be applicable to field data in which the time series duration is
usually limited in order to satisfy stationary conditions. Essentially, by first summing the
bispectrum and spectral cross terms individually, additional averaging is applied which
results in a statistically more reliable spectrum for the same duration. It should be noted
that this additional way of averaging is only valid if the part of the bispectrum over which
is summed is dominated by positive sum interactions, because otherwise the contribu-
tions of the sum and difference interactions cancel each other out. Thus, in the following
Hb,obs refers to the observed bound wave height calculated following the HEG94 method
(Equations (3.21) and (3.22)).

3.4. DATA

3.4.1. COASTALGENESIS2/SEAWAD FIELD CAMPAIGN
The 6-week CoastalGenesis2/SEAWAD field campaign was conducted in September and
October 2017 by a consortium of universities and research institutes in order to improve
the understanding of physical processes at the Ameland inlet (van der Werf et al., 2019;
van Prooijen et al., 2020). The Ameland Inlet is a tidal inlet between the barrier islands
Terschelling and Ameland at the north of the Netherlands. The barrier islands are located
between the North Sea and the Wadden Sea. Seaward of the Ameland inlet, an ebb-tidal
shoal has formed due to the deceleration of the ebb-tidal flow. During storm conditions
with waves incoming from the north, it is on this shoal that the waves start feeling the
bottom, reshape, and eventually break.

This chapter focuses on pressure and velocity measurements obtained at nine loca-
tions clustered together on the seaward side of the ebb-tidal shoal (see also Chapter 2). At
two measurement frames (F4 and F5, see red dots in Figure 3.1), collocated pressure and
near-bed velocity measurements were obtained. This was done using high-resolution,
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downward looking, Acoustical Doppler Velocity Profilers (ADCP) that measured the veloc-
ity profile over the bottom 50 cm of the water column and concurrent pressure with a sam-
pling frequency of 4 Hz. At seven other locations surrounding the two frames, standalone
pressure sensors (P1–P8, black dots in Figure 3.1) were deployed measuring the pressure
continuously with a sampling frequency of 10 Hz. The two frames and three pressure
sensors were aligned along a main transect, while the four other pressure sensors were
deployed on side transects to investigate two-dimensional spatial variability. The mean
water depth and the sensor height above the bed is given for all locations in Table 3.1.

Figure 3.1: Left panel: Overview map of the Netherlands with the measurement location of the ebb-tidal shoal
indicated by a red dot (source: Wikipedia Commons). Right panel: Bathymetric map of Ameland ebb-tidal shoal
showing the location of the instrument frames (red circles) and pressure sensors (black circles). The dotted and
dashed lines represent the −5 m and −10 m contour lines, respectively.

Table 3.1: Overview of measurement locations, the mean depth and sensor height above the bed as deployed
in the field, and the quantities which were measured (p stands for pressure, and u and v are the horizontal
components of the velocity field).

Location Depth (m) Sensor Height (m) Measurement

P1 10.4 0.5 p
P8 9.5 0.5 p
F4 8.5 0.5 p,u, v
P3 8.2 0.5 p
P5 7.9 0.5 p
F5 6.6 0.5 p,u, v
P7 5.3 0.5 p
P2 4.3 0.5 p
P4 4.6 0.5 p

3.4.2. DATA PROCESSING
Measured pressure is expressed in meters of water column by dividing by ρg , in which ρ is
the density of sea water (=1025 kg/m3) and g the gravitational acceleration (=9.81 m/s2).
For two reasons it is chosen not to reconstruct the surface elevation accounting for wave-
induced pressure attenuation with depth. First, wave shape-induced sediment transport
is driven by the near-bed wave shape. Second, reconstructing the surface elevation from
the near-bed pressure requires the use of a transfer function that generally relies on linear
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wave theory. This introduces uncertainty, particularly in the high frequency range, where
the bound higher harmonics are found. As a result, wave heights referred to in this chapter
are actually near-bed pressure-head derived wave heights (denoted with superscript nb),
meaning that the actual wave height as would be observed at the surface is slightly larger.

Hourly time series are subdivided in 71 semi-overlapping blocks of 100 s. Subsequently,
the spectrum, bispectrum, and bicoherence are estimated with 142 degrees of freedom
(Eqs. (3.4), (3.9), and (3.10)). The wave height (Eq. (3.6)) and peak period Tpeak = 1/ fpeak

are computed from the spectrum in which fpeak is the frequency at which the variance
is maximum. The observed bound wave height is computed following the method of
HEG94 (Eqs. (3.21) and (3.22)). The focus is on the bound variance present in the su-
perharmonic frequency range that originates from sum interactions between frequencies
in the sea-swell range. Therefore, interactions involving components in the infragravity
range should be excluded. This is done by using a frequency cut-off separating sea-swell
and infragravity wave frequencies, here defined as fpeak /2 following Roelvink et al. (2009).
Hence, the index imi n is defined such that fimi n = fpeak /2.

At F4 and F5, where collocated measurements of pressure and velocity are present, the
2D frequency-directional spectrum is computed using the Maximum Entropy Method (Ly-
gre & Krogstad, 1986) with ∆θ = 5◦, from which the energy-weighted mean direction θw

and directional spreading σθw are computed. In this chapter, directions are presented in
a Cartesian convention, thus the direction in which the wave is propagating is measured
counterclockwise from the east. At the other locations, the normalized directional distri-
bution of the closest frame is used in order to construct the 2D spectrum from the mea-
sured pressure spectrum using Equation (3.7). Subsequently, at all locations the predicted
bound wave height is obtained using Equations (3.15) and (3.16). In order to make a fair
comparison between the predicted and observed bound wave heights, they need to be cal-
culated over the same frequency range, such that the same triad interactions are included
in both estimates. This is done by using the same index imi n as described in the previous
paragraph. The uncertainty introduced by using a nearby directional distribution Θ on
the calculation of H nb

b,pr ed is discussed in Section 3.6.1.

In a few rare occasions, some minimal variance (at most 10% of the total) is present
in directional bins opposing the peak incoming wave direction. These could not be ex-
plained by the concurrent wind conditions nor crossing sea states, and are most likely an
artifact of the method used to construct the frequency-directional spectra. As the nonlin-
ear interaction coefficient can be orders of magnitude stronger for opposing wave com-
ponents (Herbers & Guza, 1991), this minimal amount of variance can adversely affect
the bound wave height prediction. Furthermore, these opposing components do not con-
tribute to the sea-swell wave shape of interest because their bound wave length is much
longer than the primary waves. Therefore, contributions to the predicted bound wave
height for interactions with D < 0 are not taken into account.

The tidal current is a ubiquitous feature on an ebb-tidal delta. Its presence causes a
shift between the absolute frequency ω and relative frequency σ, the Doppler shift. For-
mally wave theories, as used by Hasselmann (1962), are valid in a moving frame of refer-
ence (Fenton, 1990; Hedges, 1995), thus using the relative frequency. This requires, how-
ever, that the current magnitude in direction of wave propagation is known, which is not
the case at the seven standalone pressure sensors. Estimating the current in the direc-
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tion of wave propagation Un at these locations would require a number of assumptions
on wave refraction and the evolution of the current over the complex bathymetry. There-
fore, it is decided to use ω at all sensors to compute k using the linear dispersion relation-
ship. Subsequently, ω and k are used to determine D . The mismatch in frequency and
wavenumber at the frames where velocities are measured is on average 3% and at most
10%. This mismatch is expected to be larger at the shallower sensors where k and Un are
both expected to increase. The uncertainty on H nb

b,pr ed introduced by this mismatch is

discussed in Section 3.6.1.
Wave shape parameters (Skp , Asp , and Sp ) are calculated from the near-bed pressure-

head bispectrum (using Equations (3.12–3.14)). In order to obtain the wave shape asso-
ciated with bound superharmonics and to be consistent with the bound wave height for-
mulations, only interactions in the bispectrum with f > fpeak /2 are included.

3.4.3. DATA SELECTION AND OVERVIEW
For this study, it is chosen to only present cases in which the wave height at P1 exceeds 0.5
m. Cases with a lower wave height showed a negligible amount of bound variance as well
as near-zero Skp and Asp , and are therefore disregarded in this chapter. After this data
selection, a total of 347 one-hour cases are included in this study. The majority of these
cases (287) occurred during two storm events that coincided with the field campaign. To
give an idea of the conditions, the wave height, period, direction, and mean water level
at F4 during these two storms are shown in Figure 3.2. Another 60 cases outside of these
storms are included, which occurred during four smaller events with 0.5 < H nb < 1 m.
When all 9 sensors are considered, this results in 3123 data points.

Figure 3.2: Overview of Hnb (a,b), Tp (c,d), θw (e,f), and the mean water level η̄ (g,h) at F4 during storm 1 (left
column) and storm 2 (right column).
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3.5. RESULTS

3.5.1. SPATIAL EVOLUTION OF THE SPECTRUM AND BISPECTRUM
This section discusses the spatial evolution of the spectrum, bispectrum, and associated
wave statistics. First, results are shown for a single burst on 4th October, 12:00 (Figure 3.3)
representing storm conditions with a H nb of 1.9 m, a Tp of 10 s, and a mean direction θw of
−72◦ around slack tide. Subsequently, all bursts are combined in order to analyze general
trends and the variability from these trends for all locations (Figure 3.4).

Figure 3.3 shows the wave spectra (panels (a–d)) as well as the real (panels (e–h)), and
imaginary (panels (i–l)) parts of the bispectra at four locations along the main transect
(see Figure 3.3p for the position of the selected sensors). As expected in these energetic
conditions, waves break when they reach the outer slope of the ebb-tidal shoal resulting in
significantly lower variance levels at the shallowest sensors P2 and P4 (Figure 3.3c,d) than
at F4 and F5 (Figure 3.3a,b). In addition to the primary sea-swell peak at fpeak = 0.1 Hz,
two secondary peaks can be clearly identified at the deepest selected locations, one in the
infragravity range ( f < fpeak /2), reaching maximum variance below 0.02 Hz, and another
one around 0.2 Hz, i.e., at 2 fpeak . The large (absolute) values of the real and imaginary
part of the bispectra around ( fm , fn) = (0.1 Hz,0.02 Hz) and (0.1 Hz,0.1 Hz) indicate that
variance at these secondary peaks is, at least partly, nonlinearly coupled to the sea-swell
primary peak. In the following, we focus on interactions between sea-swell frequencies as
they are responsible for the buildup of the bound super harmonic variance. This means
that interactions involving infragravity waves are excluded from further analysis. The im-
portance of properly separating infragravity and sea-well variance can be understood by
looking at the bispectrum at for instance F4. Including interactions containing one fre-
quency in the infragravity wave range and one in the sea-swell range (blue part in Fig-
ure 3.3e and red part in Figure 3.3i) would lead in this case to a lower (higher) integrated
value for ℜ{B} (ℑ{B}), modifying not only skewness and asymmetry but also the bound
wave height estimate (see Equations (8), (9), (24), and (25)).

The magnitude of the real and imaginary parts of the bispectrum varies significantly
along the transect (see changes in color scale in Figure 3.3e–l). At F4 and F5, the real part
of the bispectrum is positive over the entire sea-swell range and of considerably larger
magnitude than the imaginary part. This suggests that sea-swell waves are skewed, but
not asymmetric, which is common for waves in deeper water that are not close to the
breaking limit. At P2, the real and imaginary parts of the bispectrum are of the same order
of magnitude, with ℜ{B} positive over the full sea-swell frequency range and ℑ{B} mostly
negative. This means that waves are both skewed and asymmetric (saw-tooth shaped)
at this location. Moreover, the consistently negative value of ℑ{B} around ( fpeak , fpeak ) at
F4, F5, and P2 indicates that variance is being transferred from fpeak to the sum frequency
2 fpeak along most of the transect 3, including at P2 where waves are already breaking. This
nonlinear energy transfer contributes to the observed growth in variance of the first higher
harmonic (2 fpeak ) from F4 to P2, although other processes, such as (linear) shoaling and
the changes in wave-induced pressure attenuation with depth also play a role. Finally, at

3Different sign conventions can be found in the literature for the imaginary part of the bispectrum. In the present
chapter, we adopt the same representation as Norheim et al. (1998), in which a negative value of ℑ{B( f1, f2)}
is indicative of an energy transfer from f1 and f2 to f1 + f2. Note that the opposite convention is used in,
e.g., Herbers & Burton (1997) and De Bakker et al. (2015).
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P4, i.e., landward of the shallowest point of the ebb-tidal shoal, the magnitude of both
ℑ{B} and ℜ{B} has significantly decreased while the total variance stays close to the one
observed at P2. This suggests a weaker nonlinear coupling, and thus a decrease in bound
wave variance, as well as more linear wave shapes.

These trends are confirmed when looking at the evolution of the integrated wave statis-
tics for all nine sensors (Figure 3.3m–o). Initially, the total sea-swell wave height H nb

very gradually increases from P1 to F5 before significantly decreasing from F5 to P2 (Fig-
ure 3.3m). The bound superharmonic wave height, H nb

b,obs , increases at a much higher rate

than H nb as waves propagate over decreasing water depth (Figure 3.3n), which is consis-
tent with the variance increase observed at 2 fpeak in Figure 3.3a–c. Interestingly, H nb

b,obs

keeps increasing beyond F5, while the total sea-swell wave height H nb is already decreas-
ing due to breaking. H nb

b,obs finally decreases from P2 to P4 while H nb stays almost con-
stant. This suggests a release of bound higher harmonics over the shoal, as was observed
under laboratory conditions by Beji & Battjes (1993).

Finally, the evolution of the dimensionless wave shape parameters is visualized in Fig-
ure 3.3o. The skewness (Skp ) gradually increases while moving into shallower water to-
wards a maximum at P2 before it starts decreasing. In contrast, the asymmetry (Asp ) is
near-zero for most locations and is only of significance at P7 and P2, the two locations
where the wave height is significantly decreasing and where the portion of breaking waves
is expected to be the largest. As a consequence, the combined nonlinearity parameter
Sp is close to the Skp except for P7 and P2, where the contribution of the Asp makes Sp

slightly higher than Skp .
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Figure 3.3: Characterization of the wave field for a selected burst on 4 October 2017 at 12:00. Panels (a–l) show
the spectrum (a–d), real part of the bispectrum (e–h) and imaginary part of the bispectrum (i–l) at locations
F4, F5, P2, and P4. Panels (m–p) show the evolution of the sea-swell wave height Hnb (m); the observed and
predicted bound wave height in the super harmonics, Hnb

b,obs and Hnb
b,pr ed (n); and dimensionless sea-swell

wave shape parameters Skp , Asp , and Sp (o) at all locations (see panel (p) for information on the deployment
depths). The dashed lines in the spectra and bispectra indicate fpeak , the dotted lines fpeak /2 and 2 fpeak .
The thick black diagonal lines in the bispectra are the symmetry lines. Note that the limits of the color scales
for the bispectral plots are not all the same. The bathymetry of the main transects is shown in panel p, with ±
one standard deviation indicated by black dashed lines representing bathymetric variability for cases with non-
oblique incoming wave directions (−45◦ < θw < 45◦). Sensor locations are indicated by the red (if sensor is on
main transect) and white boxes (if sensor is not on main transect; sensor is placed such that the mean depth is
the same as the depth on the main transect).

The data analysis as presented above for the single case on 4th October is performed
for all cases and the wave statistics and their variability is shown in Figure 3.4. The data is
divided in two groups based on the significant wave height at the most offshore location
(P1). Group 1 (black lines in Figure 3.4) contains all cases with 1 ≤ H nb

P1 ≤ 2 m and Group

2 (red lines in Figure 3.4) contains all cases with H nb
P1 ≥ 2 m. As expected, larger offshore

waves (Figure 3.4a) lead to larger bound waves (Figure 3.4b) and more nonlinear wave
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shapes (Figure 3.4d). This figure also confirms the difference in the spatial evolution of
H nb and H nb

b,obs observed already for the single data burst presented above. It shows that

for the energetic cases (Group 2), the maximum value of H nb
b,obs is systematically found in

the area where H nb is already decaying due to breaking.

Figure 3.4: The spatial evolution of averaged wave statistics: Hnb (a), Hnb
b,obs (b), Hnb

b,pr ed (c), and Sp (d) along

the main transect (e) for Group 1 (black lines, 1 m ≤ HP1 ≤ 2 m) and Group 2 (red lines, Hnb
P1 ≥ 2 m). The error

bars indicate ± one standard deviation. For a description of the bathymetric transect (e) see the caption of Figure
3.3.

3.5.2. PREDICTED AND OBSERVED BOUND WAVE HEIGHT

The evolution of H nb
b,pr ed across the measurement transect is displayed in Figure 3.3n for

the earlier selected burst and in Figure 3.4c for the entire dataset. From these figures, it
can be seen that H nb

b,pr ed increases at a similar rate as H nb
b,obs up to sensor P7, where they

both reach their maximum values but that the mismatch between predicted and observed
bound wave heights increases when the depth decreases. After P7, the trends exhibited by
H nb

b,obs and H nb
b,pr ed differ more significantly, with in particular a much stronger decrease

in H nb
b,pr ed than in H nb

b,obs when waves propagate from P7 to P2.

Overall, these first comparisons suggest that the ability of the Hasselmann (1962) the-
ory to predict the bound wave height, as implemented in Section 3.3.1, varies spatially. To
examine this in more detail, the data is clustered in three regions: the shelf (P1, P8, F4, P3,
and P5), the seaward slope (F5 and P7), and the ebb-tidal shoal (P2 and P4). Figure 3.5
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shows the observed bound wave height as a function of the predicted bound wave height
for these different regions.

At the shelf (Figure 3.5a), the predicted bound wave height is very similar to the ob-
served bound wave height with a strong correlation coefficient (R2 = 0.94) and a linear re-
gression slope of 0.96 suggesting that the observed bound wave response is in equilibrium
with the local sea-swell forcing. At the steeper seaward slope (Figure 3.5b), the correlation
between the predicted and observed bound wave height is still high (R2 = 0.93), but the
slope of 1.11 reveals a slight overestimation of the predicted bound wave height. This over
prediction is consistent with non-equilibrium conditions where at the steeper part of the
slope waves experience rapid changes in depth inhibiting the higher harmonics to fully
develop.

On top of the shoal and right behind it (Figure 3.5c) the predicted bound wave height
deviates significantly from the observed bound wave height (lower correlation coefficient
R2 = 0.72 and a slope of 0.80). Although this linear regression slope indicates an underes-
timation of the predicted bound wave height on average, Figure 3.5c shows that the pre-
dicted bound wave height is both under- and overestimated, depending on the conditions.
At these relatively shallow locations the changes in sea-swell conditions are controlled by
wave breaking, rapid refraction and wave current interaction and as such the equilibrium
theory of Hasselmann (1962) is not expected to hold. The errors introduced by currents,
wave breaking, and directionality, and their effects on the predicted bound wave height
are further discussed in Section 3.6.1.

Figure 3.5: Predicted bound wave height as a function of the observed bound wave height at the shelf (panel a:
P1, P8, F4, P3, and P5), the seaward slope (panel b: F5 and P7), and the ebb-tidal shoal (panel c: P2 and P4). The
red dashed line has slope 1.

3.5.3. WAVE SHAPE AS A FUNCTION OF OBSERVED BOUND WAVE HEIGHT
The relationship between the wave shape and bound wave height is examined next. Fig-
ure 3.6 shows the dimensionless combined wave shape parameter Sp as a function of the
dimensionless predicted and observed bound wave height over sea-swell wave height ra-
tios H nb

b,obs /H nb and H nb
b,pr ed /H nb , respectively. There is a very strong correlation, R2 =

0.99, between the wave shape and the observed bound to total wave height ratio (Fig.
3.6a). This strong relation between Sp and H nb

b,obs /H nb was expected, as Sp and H nb
b,obs /H nb
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are both computed by summing over the bispectrum and subsequently normalizing by the
variance to some power. More specifically, Sp is obtained after dividing by the variance to
the power 3/2 (see Equations (3.12) and (3.13)), while the bound wave height ratio is ob-
tained after division by the significant wave height, i.e., the variance to the power 1/2. The
strong relation between Sp and H nb

b /H nb suggests a mathematical connection between
the two variables that still needs to be established. The small scatter around the best fit
line can be partly explained by the reliability of the estimated spectrum and bispectrum.
Additional tests (not shown) have indeed revealed that the scatter decreases for increasing
number of degrees of freedom (DOFs). Although this relationship between dimensionless
wave shape and bound wave height may seem trivial, to the authors knowledge, it has not
been presented before.

The correlation between wave shape and bound wave height deteriorates significantly
using the predicted bound wave height, H nb

b,pr ed (right panel of Figure 3.6) with R2 = 0.80.

The observed scatter is related to the mismatch in predicted bound wave height with re-
spect to the observed bound wave height (presented in Figure 3.5). Although scatter is
present, the predicted value is reasonable for cases with a low proportion of predicted
bound wave height H nb

b,pr ed /H nb < 0.15. For cases with a higher proportion of predicted

bound wave height, the scatter increases, and thus the predictive skill decreases accord-
ingly. It is for those cases where other commonly used wave shape parametrizations based
on equilibrium conditions (Isobe & Horikawa, 1982; Doering & Bowen, 1995; Ruessink
et al., 2012) also struggle to accurately predict the wave shape. Here, improvements in
wave shape predictions can be readily obtained with better model predictions of the bound
wave height ratio, as is evident from the comparison of the panels in Figure 3.6. Once the
error in the predicted bound wave ratio is understood, it opens up the avenue for future
modeling perspectives as discussed in the next section.

Figure 3.6: Dimensionless wave shape as a function of the dimensionless observed bound wave height (a) and
the dimensionless predicted bound wave height (b) for all locations combined.

3.6. DISCUSSION

3.6.1. ERRORS IN DETERMINING THE PREDICTED BOUND WAVE HEIGHT
Despite the fact that there is an acceptable agreement between the predicted and ob-
served bound wave height in deeper water, a significant mismatch between the two is
observed once it gets shallower (see Figure 3.5). In this latter part, the effects of direc-
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tional spreading, ambient currents, and wave breaking on the prediction of the bound
wave height are prevalent and discussed next.

DIRECTIONAL SPREADING

A source of uncertainty is introduced by the assumptions required to obtain the frequency
directional spectrum at the locations where velocities were not measured. A marginal spa-
tial difference in directional spreading is observed between F4 and F5 (root mean squared
difference is 4◦), from which it can safely be assumed that the directional distribution at
the other deeper located pressure sensors (P1, P8, P3, and P5) will not be too different. At
the shallower locations (P7, P2, and P4), however, significant changes in depth and cur-
rents could lead to both an increase or decrease of the directional spreading. Easy ways
to compute the refraction commonly rely on parallel depth contours are not applicable
in this study due to the complex bathymetry. Therefore, this section discusses the effect
a larger or smaller directional spreading has on the subsequent computation of H nb

b,pr ed
(Equation (3.16)).

A study by Herbers et al. (1999) observed a maximum difference in directional spread-
ing of 10◦ along a cross-shore transect in the nearshore zone. This study was conducted
in shallower and more nonlinear environment than our field campaign. Therefore, it is
assumed that a mismatch of 10◦ in directional spreading is an upper limit. The normal-
ized directional distribution Θ is adapted such that the observed directional spreading is
varied by plus or minus 10◦. This is achieved by taking the observed directional distribu-
tion to the power P and subsequently normalize it again to ensure that the sum ofΘ is one
for each frequency bin and hence the frequency distribution of the variance is not being
affected:

Θnew = ΘP∑
ΘP

. (3.23)

P > 1 gives more weight to the energetic directional bins, making the directional distri-
bution narrower and thus decreasing the directional spreading. Conversely, P < 1 results
in an increased directional spreading. For each burst, P is obtained using an optimiza-
tion routine to obtain the desired 10 degree increase or decrease in the observed direc-
tional spreading. Figure 3.7 shows that an increased or decreased directional spreading
of 10◦ leads to an underestimation of 8% and an overestimation of 9% of H nb

b,pr ed , respec-

tively. Because a difference in directional spreading of 10 degrees is expected to be an
upper limit in this location, the error introduced by using a wrong directional distribution
is less than 9%.
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Figure 3.7: Predicted bound wave height Hnb
b,pr ed ,σθw ±10◦ calculated for an increased (red: +10o ) and decreased

(blue: −10o ) directional spreading over the original bound wave height prediction Hnb
b,pr ed as a function of

Hnb
b,pr ed for all sensors.

CURRENT

Tidal inlets are characterized by strong ebb and flood currents. It is known that these
currents affect the wave dynamics due to wave current interaction and lead to a Doppler
shift. This Doppler shift describes the difference between the absolute frequency ω (as
observed at one fixed location) and the relative frequency σ (as observed in a frame of
reference moving with the current):

ω=σ+kUn (3.24)

in which Un is the current magnitude in direction of wave propagation. In absence of an
ambient current σ = ω, whereas in presence of following (Un > 0) and opposing (Un < 0)
currents σ < ω and σ > ω, respectively. A given observed absolute frequency thus results
in a smaller wavenumber k for following than for opposing currents.

The nonlinear interaction coefficient D , as used in Equation (3.16), is higher for longer
waves (lower σ and k) than for shorter waves. However, as no reliable estimates of the
current magnitude and direction were available at most measurement locations, ω and
the corresponding k were used to obtain H nb

b,pr ed without taking into account the tidal

current. This could lead to an over or underprediction of H nb
b,pr ed depending on the current

direction.
The influence of the current on the over and under prediction of H nb

b,pr ed is visualized

in Figure 3.8, where the color of the data points indicates following currents (red dots:
Un > 0.1 m/s), no currents (gray dots: −0.1 m/s < Un < 0.1 m/s), and opposing currents
(blue dots: Un <−0.1 m/s). The current direction, magnitude, and wave direction at F4 are
used to distinguish the different current conditions because the most reliable directional
estimates were obtained at that location.

At the deeper sensor F4, no clear correlation is seen between the over and under pre-
diction of H nb

b,pr ed and Un (Figure 3.8a). However, the shallower it gets, the more evident

the effect of the current on the over- and underprediction of H nb
b,pr ed is (Figure 3.8b–d).

The reason why the influence of the ambient current is more significant in shallower wa-
ter is related to the relative importance of the Doppler shift. This importance is described
by the ratio kUn/σ or as Un/c in which c is the wave celerity. In deeper water, the current
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magnitude is lower and the celerity is higher, resulting in a marginal influence of the cur-
rent. However, in shallower water, the current magnitude increases whereas the celerity
decreases, making the importance of including the current more and more important.

To separate the possible effect of wave breaking from current effects in shallower wa-
ter, sensor P4, located in a deshoaling zone and as such only marginally affected by wave
breaking, is examined in more detail. At P4 (Figure 3.8d), for cases with a following current,
on average the ratio of H nb

b,pr ed /H nb
b,obs is 0.78, whereas for cases with an opposing current

this ratio is 1.38. Therefore, a significant part of the scatter observed in Figure 3.5c is re-
lated to the under- and overestimation of H nb

b,pr ed for opposing and following conditions,

respectively. H nb
b,pr ed is under predicted in following current conditions, as the waves are

actually longer than measured at the fixed measurement location. These longer waves
should have a higher D and thus a higher predicted bound wave height. Vice versa, in
opposing current conditions, the waves are shorter than measured, so H nb

b,pr ed is overpre-

dicted.

Figure 3.8: Hnb
b,pr ed as a function of Hnb

b,obs at F4 (a), P7 (b), P2 (c), and P4 (d) where the color indicates the current

in direction of wave propagation Un (blue = opposing currents, red = following currents).

WAVE BREAKING

In the following, (near-)breaking conditions are defined as bursts for which Asp < −0.2.
Using this criterion most wave breaking is observed at P7 and P2. To eliminate the previ-
ously discussed effect of the current at these two locations, a subset of 175 bursts is con-
sidered where the current in direction of wave propagation is negligible (|Un | < 0.1m/s),
of which 53 and 50 meet the breaking criteria at P7 and P2, respectively. At P7, H nb

b,pr ed is

higher than H nb
b,obs for 43 out of 53 breaking cases with an average over estimation of 13%

(see Figure 3.9a). In contrast, at P2 H nb
b,pr ed is lower than H nb

b,obs for 47 out of 50 cases with

an average under estimation of 23% (see Figure 3.9b).
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Figure 3.9: Hnb
b,pr ed as a function of Hnb

b,obs at P7 (a) and P2 (b) for the subset of data with small currents

(|UN | < 0.1 m/s) with black markers for (near-)breaking conditions (As < −0.2) and gray markers for non-
breaking conditions.

A probable cause for the overestimation of the breaking waves at P7 was already dis-
cussed in Section 3.5.2, where it was explained that the wave shape can not instantly
change in the rapidly changing bathymetry. The underestimation at P2 also seems to be
related to the rapidly changing conditions. Due to wave breaking, significant energy loss is
seen in the primary wave components. As H nb

b,pr ed is proportional to the primary wave en-

ergy (Equation (3.16)), it decays at approximately the same rate as H nb . It is known, how-
ever, that breaking conditions coincide with negative asymmetry, thus a negative imagi-
nary part of the bispectrum, and as a result nonlinear energy transfers towards the bound
higher harmonics. Therefore, although H nb is decaying due to wave breaking, this posi-
tive energy transfer can lead to a growth of H nb

b,obs . Additional support for this explanation
can be found in Figure 3.4. Here, for the highly energetic cases (red lines) only a minor de-
crease in H nb

b,obs is observed from P7 towards P2, whereas the decay in H nb and H nb
b,pr ed is

much stronger. The fact that H nb
b,obs decreases does not conflict with the earlier mentioned

positive nonlinear energy transfer because the spatial change in variance is also affected
by wave breaking, shoaling, and depth attenuation of the pressure signal.

OVERALL VALIDITY OF EQUILIBRIUM BOUND WAVE HEIGHT THEORY

In the previous sections it is shown that a small amount of error in H nb
b,pr ed is introduced

by the unknown directional distribution at the shallow sensor but that more error is in-
troduced when strong currents are present or when conditions are (near-)breaking. How-
ever, even when excluding cases with a strong current or (near-)breaking conditions, still
a significant under or over estimation of H nb

b,pr ed is observed. This is related to the validity

region of the wave theory used by Hasselmann (1962).
Many different definitions can be found in literature for the applicability region of the

second order wave theory. Most of these describe the validity as a function of the Ursell
number (e.g., Stokes, 1880; Ursell, 1953; Longuet-Higgins, 1956), a dimensionless nonlin-
earity parameter. Here, we follow the definition as provided by Ruessink et al. (2012):

Ur = 3

8

H

k2d 3 (3.25)
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Le Méhauté (1976) showed that second order theory is only valid for Ur < 0.1. Both
Madsen (1971) and Guza & Thornton (1980) state a different value of Ur = 0.25, based
on the argument that second order theory performs well as long as the secondary ampli-
tude is at least 4 times smaller than the primary amplitude. According to Hedges (1995),
however, second-order Stokes theory can be used until Ur = 0.38. To investigate the con-
sistency between the second order wave theory validity regions and the findings from our
study, the RMSE between H nb

b,pr ed /H nb and H nb
b,obs /H nb is calculated for cases with low

nonlinearity (Ur < 0.25) and high nonlinearity (Ur > 0.25). The threshold of 0.25 is used
as it is an average of values found in literature. It is chosen to present the RMSE between
the dimensionless wave height as this is used as a predictor for the wave shape. Cases
with ambient currents and (near-)breaking conditions are excluded for the calculation of
the RMSE. The RMSE between H nb

b,pr ed /H nb and H nb
b,obs /H nb is only 0.012 for cases with

Ur < 0.25 whereas it is 0.050 for cases with Ur > 0.25, showing that the validity of second
order wave theory also restricts the predictive skills of the bound wave shape.

In conclusion, it can be said that the wave shape can be accurately predicted using sec-
ond order wave theory as long as waves are not breaking and nonlinearity is not too high.
Furthermore, a proper prediction of the bound wave height requires directional informa-
tion and, in presence of strong currents as in this study, information about the current
field to properly account for the effect of the Doppler shift on the wavenumber.

3.6.2. APPLICABILITY IN DIFFERENT AREAS
The disadvantage of many wave shape parametrizations is that they are site-specific, which
means that they are only applicable for certain locations or conditions. In order to test the
applicability of the findings of this chapter, two additional datasets are analyzed. Although
the SEAWAD dataset covers a wide range of conditions, it is limited in two ways: First, the
shallowest sensors were in a mean water depth of 4 m, which limits kd to a minimum
value of 0.4. Second, the wave periods observed during the campaign were rather short
due to the fetch-limited conditions which are typically found in the North Sea. The two
datasets that are used to validate the relationship between bound wave height and wave
shape are the COAST3D (Soulsby, 1999; Ruessink et al., 2001; Van Rijn et al., 2002) and
SandyDuck (Birkemeier et al., 1997; Reniers et al., 2004) campaigns.

The COAST3D data was collected during a 6-week field campaign that took place at the
beach of Egmond aan Zee in the Netherlands. It is thus mostly dominated, as SEAWAD,
by wind-sea waves (Tp = 6–12 s) but includes data in shallower depths. The SandyDuck
dataset includes on the other hand 5 weeks of measurement along the North Carolina
coast, and is therefore characterized by longer and more regular swell waves (Tp = 12–20
s).

For both datasets, all bursts corresponding to a mean water depth below 0.5 m are
discarded to exclude data that could be intermittently dry. For COAST3D, this selection
results in a total of 5015 one-hour long pressure timeseries collected at nine locations in
a mean depth ranging between 2.1 and 5.2 m. For SandyDuck, this means that a total of
1115-hour-long time series from seven pressure sensors are analyzed, covering a water
depth range from 0.7 to 4.0 m.

The relationship between the dimensionless observed bound wave height and the di-
mensionless wave shape is presented in Figure 3.10 for the three campaigns. Note that
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observations at multiple locations are combined per campaign. For all campaigns the cor-
relation coefficients are larger than 0.98, confirming the relationship between the bound
wave height and wave shape. Furthermore, the slope of the linear regression line is fairly
similar, between 2.7 and 2.8, indicating that the relationship between these two parame-
ters is not specific to a certain area or conditions. This shows that the wave shape is known
if it is possible to predict the bound wave height, independently of the area or conditions.
The best linear fits between Sp and H nb

b,obs (red lines in Figure 3.10) are presented for each
field campaign. It can be seen that slightly more scatter is present for data points from
the shallower field campaigns. The points that deviate the most from the relationship are
shallow cases, in which significant infragravity variance was present in the spectrum (not
shown).

Figure 3.10: Dimensionless wave shape as a function of the dimensionless observed bound wave height for the
SEAWAD (a), COAST3D (b), and SandyDuck (c) field campaigns. The red lines are the best linear fit through the
origin per campaign.

3.6.3. FUTURE MODELING PERSPECTIVE
This chapter shows that there is a direct relationship between the bound wave height
and the wave shape regardless of location or type of conditions (see Figure 3.6). There-
fore, with a properly predicted spatial and temporal evolution of the bound wave height
the wave shape is known, which would in turn be instrumental for accurate calculations
of the wave shape induced sediment transport (Roelvink & Stive, 1989; Hoefel & Elgar,
2003; Drake & Calantoni, 2001). Predictions of the equilibrium-bound wave height using
second-order finite depth wave theory (Hasselmann, 1962) proved to be accurate in rela-
tively linear conditions (Ur ≲ 0.25). In more nonlinear conditions, and where significant
changes in bathymetry and wave conditions are observed, there is a clear mismatch be-
tween the predicted and observed bound wave height. Although using higher order wave
theories to predict the bound wave height might stretch the applicability region, it will not
be able to capture non-local aspects that influence the bound wave height and associated
wave shape. This omission can be overcome by using an evolution equation for the bound
wave height taking into account bathymetric variability. In the following we discriminate
between large scale phase-averaged models and more detailed phase-resolving models.

The effects of waves in large-scale morphodynamic models are commonly accounted
for by phase-averaged spectral models (e.g., Benoit et al., 1997; Booij et al., 1999), which
calculate the evolution of the variance spectrum in time and space. The energy transfers
to the higher harmonics due to nonlinear triad interactions can be included using a source
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term function Snl3. This source term has been derived from the bispectral evolution equa-
tions and is a function of the variance spectrum and a parametrized form of the biphase
(e.g., Doering & Bowen, 1995; Eldeberky, 1996). The Snl3 source term is extensively studied
in recent years and has led to more and more reliable predictions of the nonlinear energy
transfers in spectral wave models (Becq-Girard et al., 1999; Salmon et al., 2016). There-
fore, essentially, the variance that is transferred to the higher harmonics (bound variance)
is known and the bound wave height can be estimated by integrating this energy transfer
in the down-wave direction. In this way, the evolution of the bound wave height is taken
into account with the expectation that this will lead to a significant improvement of wave
shape predictions in the shoaling zone, where the proportion of bound harmonics is con-
sistently growing. When the bound higher harmonics are released and/or their variance
decays due to wave breaking, this simple integrative approach is expected to yield less ac-
curate results. Further improvements in estimating the wave shape can be achieved by
modeling the effects of these processes on both the spectrum and bispectrum in order to
be able to more accurately predict the bound wave height in all areas and conditions.

Alternatively, the evolution of the bound wave height can be obtained from more de-
tailed phase-resolving models. These can be divided in time-domain and bispectral mod-
els. The former resolve the spatial evolution of the surface elevation, pressure, and veloci-
ties in time (e.g., Wei et al., 1995; Madsen et al., 1997; Bonneton et al., 2011; Zijlema et al.,
2011; Ma et al., 2012; Tissier et al., 2012). The latter resolve the spatial evolution of the
spectrum and bispectrum (e.g., Herbers & Burton, 1997; Norheim et al., 1998; Eldeberky &
Madsen, 1999). For these type of models, the computation of the bound wave height as a
wave shape predictor is unnecessary as the skewness and asymmetry can directly be ob-
tained from the time series or bispectra that are provided by these models. Unfortunately,
high computational times of such models prevent their usage to drive large-scale mor-
phodynamic models. However, these detailed models can be used to study in detail the
release of higher harmonics and (bi)spectral decay due to wave breaking and their effect
on the evolution of the bound wave height. Subsequently, these effects can be included in
the phase-averaged spectral models by modifying the Snl3 source term to improve bound
wave height and wave shape predictions in complex systems where equilibrium condi-
tions do not hold.

3.7. CONCLUSIONS
This chapter shows that bispectral analysis of time series can be used to calculate the ob-
served bound superharmonic wave height. In this study the method is applied to near-
bed pressure time series, but it is also applicable for surface elevation or velocity time
series. Despite several references in literature that such a methodology is not straightfor-
ward (McComas & Briscoe, 1980; Elgar & Guza, 1985; Young & Eldeberky, 1998; Sénéchal
et al., 2002), we found that summing over the bispectrum in a similar way as is done
by Herbers et al. (1994) for the bound subharmonic wave height, provides sufficient sta-
tistical reliability to obtain the bound superharmonic wave height from one hour time
series. This does require that the methodology is restricted to the sea-swell frequencies
and that this part of the bispectrum is dominated by positive sum interactions determin-
ing the bound wave height. In case difference interactions or negative sum interactions of
crossing sea states contribute significantly to the bispectrum, the methodology should be
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treated with more care because the positive and negative contributions to the bispectrum
might cancel each other out leading to an underestimation of the observed bound wave
variance.

By using measurements at nine locations in the vicinity of an ebb-tidal shoal, a clear
relationship (R2 = 0.99) is found between the normalized observed bound wave height

and the dimensionless sea-swell wave shape: Sp ≈ 2.75
H nb

b,obs

H nb . As the same relationship is
found for two other data sets that were collected along sandy beaches respectively domi-
nated by wind-sea and sea-swell wave conditions, we conclude that it is insensitive to the
environmental conditions. Thus, the wave shape is known at locations where we know
the bound wave height. Knowing the wave shape at any given location would significantly
increase morphological modeling capabilities because the wave shape induced sediment
transport is resolved more accurately. However, as time series are not available in com-
monly used phase-averaged models, the bound wave height can not directly be computed.
As an alternative, the bound wave height can be predicted using second-order wave the-
ory by assuming equilibrium conditions (Hasselmann, 1962). From the analysis of the
field data, it is concluded that the method of Hasselmann (1962) is accurate in deeper wa-
ter, but fails to accurately predict the bound wave height in (near-)breaking conditions or
when nonlinearity is so high that second order wave theory is invalid. The accuracy of
the predicted bound wave height is significantly improved if besides pressure also veloc-
ity measurements are known as the estimates are strongly dependent on the directional
spread of the incoming sea-swell wave field.

To improve future model capabilities, a next step is to add the evolution equation of the
bound wave variance to spectral wave models. By including this evolution equation the
bound wave height will be better predicted than using the method of Hasselmann (1962)
because it allows deviations from equilibrium conditions, which is key when considering
wave transformation over rapidly changing bathymetry. The triad source term Snl3, which
is already included in such models, can be used as a source term for the bound wave vari-
ance. One of the challenges ahead is how to take into account the decrease of bound wave
variance due to wave breaking and the release of bound superharmonics.
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APPENDICES

3.A. ACCURACY OF BOUND WAVE HEIGHT FORMULATIONS
Two formulations were presented in Section 3.3.2 to estimate the bound superharmonic
wave height from measured wave records, based on the work of Kim & Powers (1979)
(KP79, Equation (3.19)) and of Herbers et al. (1994) (HEG94, Equation (3.22)). In the fol-
lowing, we evaluate the accuracy of these methods using a synthetic dataset of known
bound variance content. The methodology followed to create the synthetic data is out-
lined in Appendix 3.A.1. As both formulations involve integrations over the spectrum and
bispectrum, the outcome is expected to depend on the reliability of the (bi-)spectral es-
timates and thus on the number of degrees of freedom (DOFs) in their calculations. The
accuracy of the bound wave height formulations is thus evaluated in Appendix 3.A.2 for
varying degrees of freedom.

3.A.1. SYNTHETIC TIMESERIES
Several realizations of a nonlinear sea-state, chosen to be representative of the conditions
typically measured at our field site, are generated using second-order wave theory. Each
of these realizations has a duration of 100 s and is written as:

η(t ) = ηpr i mar y (t )+ηsuper (t )

in which ηpr i mar y and ηsuper are the surface elevation time series corresponding to the
primary wave field and its first harmonics, respectively. The primary wave field is gener-
ated such that the variance E ′

m at each discrete frequency fm follows a JONSWAP shape
with H = 1 m, Tp = 6 s, and an enhancement factor γspec = 3.3. From the variance spec-

trum the complex amplitudes are constructed as Cm = Ame iφm with Am =
√

E ′
m and for

each realization the phase at each frequencyφm is randomly picked between −π andπ us-
ing a random-phase model. Eventually, the primary wave surface elevation is generated
as

ηpr i mar y (t ) =
N∑

m=−N

(
1

2
Cme−2πi fm t + 1

2
C∗

me2πi fm t
)

(3.26)

where fm = m∆ f with∆ f = 0.01 Hz and N = 500. The super harmonics are then generated
using the second-order theory of Hasselmann (1962):

ηsuper (t ) =
N∑

m=−N

N∑
n=−N

D( fm , fn ,0,0,d)

(
1

2
CmCne−2πi fm+n t + 1

2
C∗

mC∗
n e2πi fm+n t

)
(3.27)

where D is the interaction coefficient introduced in Equation (3.15), calculated for a depth
d = 5 m. The target bound wave height of the time series is computed as

H nb
b = 4

√√√√ N∑
m=−N

N∑
n=−N

D2E( fm)E( fn) (3.28)
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It should be noted that the bound wave height directly computed from the variance
of the constructed time series (Equation (3.27)) slightly deviates from the target bound
wave height, because it is only a single realization of finite duration. However, when av-
eraged over a sufficient amount of independently constructed time series, the ensemble-
averaged bound wave height from those time series is the same as the target bound wave
height.

3.A.2. FORMULATIONS AND DEGREES OF FREEDOM
When working with observations, the number of degrees of freedom is typically increased
by subdividing the measured timeseries in blocks before performing the spectral analysis
or applying frequency merging (Elgar & Guza, 1988; Elgar & Sebert, 1989). Here, the use
of synthetic data allows us to generate several realizations of our sea-state to estimate the
expected values in the spectrum and bispectrum. The number of degrees of freedom is
therefore increased by increasing the number of synthetic time series used in the calcu-
lations. The bound wave heights using Equations (3.19) and (3.22) for different DOFs are
compared to the a priori known bound wave height from the time series in Figure 3.11.

A common way to characterize the statistical reliability of the bispectrum and bico-
herence spectrum is to define the 95% bicoherence confidence interval, calculated as
b2

95% =√
6/d .o. f .. If b2( fm , fn) > b2

95%, B( fm , fn) and b2( fm , fn) are considered statistically
reliable (e.g., Sénéchal et al., 2002; Guedes et al., 2013; De Bakker et al., 2015; Mahmoudof
et al., 2016). To see what the effect of the bicoherence confidence interval is, Equations
(3.19) and (3.22) are additionally applied with and without discarding bispectral estimates
with b2 < b2

95% (solid vs dashed lines in Figure 3.11).

Figure 3.11: Calculated bound wave height using KP79 (Equation (3.19); blue line), HEG94 (Equation (3.22);
red line), KP79 with confidence interval (Equation (3.19); blue dashed-dotted line), and HEG94 with confidence
interval (Equation (3.22); red dotted line) as a function of the number of degrees of freedom. Note that the blue
dashed-dotted and red dotted line are on top of each other. The black dashed line represents the a priori bound
wave height.

It can be seen that the KP79 method (blue lines) needs many more DOFs to converge
to the correct solution than the HEG94 method (red lines). This is because by first sum-
ming the bispectrum and energies individually instead of summing the bicoherences, ad-
ditional averaging is applied, leading to more reliable estimates for less degrees of free-
dom. If the bicoherence 95%-confidence interval is used to discard values, both KP79 and
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HEG94 underestimate Hb . The underestimation is larger for few DOFs, because of the
large b2

95%-value that leads to the exclusion of many interactions where actual bound vari-
ance is present (all of them for the smallest values). Reasonable estimates of the bound
wave height are only obtained with these methods for extremely large DOF values (>104).

The opposite behavior is seen for KP97 without a confidence interval. In that case the
bound wave height is overestimated for all considered DOF values. This overestimation
originates from the fact that, in this formulation, all interactions are considered, even the
non-statistically significant ones, and that all of these interactions contribute positively to
the bound wave height estimate as it depends on b2 (Equation (3.17)).



4
WAVE SHAPE FROM A BOUND WAVE

EVOLUTION MODEL

In spectral wave models, the nonlinear triad source term accounts for the transfer of en-
ergy to the bound higher harmonics. This chapter presents an extension to commonly
used spectral models that resolves the evolution of the bound wave energy by keeping
track of the energy that has been bound by triad interactions. This extension is referred to
as the bound wave evolution (BWE) model. From this the spatial evolution of the bound
wave height is obtained, which serves as a proxy for the nonlinear wave shape. The ac-
curacy of these bound wave height and thus wave shape predictions is highly dependent
on the accuracy of the triad source term. Therefore, in this study the capability of the LTA
and SPB triad formulations to capture the growth of the bound wave height is evaluated.
For both these formulations it is found that slope dependent calibration parameters are
required. Overall, despite being computationally more expensive, the SPB method proves
to be significantly more accurate in predicting the bound wave evolution. In the shoaling
zone, where the bound wave energy is dominated by triads, the BWE model is well capable
of predicting the nonlinear waves shape. In the surf zone, however, where a combination
of triads and wave breaking control the spectral evolution, the BWE model over predicts
the bound wave height. This is a result of an inaccurate representation of the spectral
shape in shallower waters, affecting the proportionality factor between the bound wave
height and wave shape. Nevertheless, this chapter shows the promising capabilities of
spectral models to predict the nonlinear wave shape.
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4.1. INTRODUCTION
In deep oceanic waters, sea-swell surface waves can generally be described by Gaussian
statistics where all primary harmonics are linear and independent of each other, provided
the waves are not too steep. When the waves propagate towards the coast, nonlinear in-
teractions occur under the influence of decreasing water depth and variable ambient cur-
rents. This changes the initially harmonic wave shape into a nonlinear wave shape due to
the presence of bound waves accompanying the freely propagating primary waves. The
nonlinear wave shape ranges from skewed waves with steeper crests and flatter troughs
to asymmetric waves where the wave front has pitched forward creating a saw-tooth wave
shape at breaking. This deformation of the wave shape is also present in the near-bed ve-
locity signal resulting in a net-onshore transport due to both skewness (Bowen, 1980; Hen-
derson et al., 2004; Roelvink & Stive, 1989; Henriquez et al., 2010) and asymmetry (Drake &
Calantoni, 2001; Hoefel & Elgar, 2003). This wave-shape induced sediment transport can
be the dominant transport mechanism under certain conditions and is instrumental in
properly predicting the evolution of bars (Gallagher et al., 1998; Ruessink et al., 2007) and
tidal deltas (Chen et al., 2015; Reniers et al., 2019).

Morphodynamic process models are more and more applied to study the design of
harbours and their access channels, the maintenance strategy of beaches and the effect
of human interventions on the coastal system. In these models the wave-shape induced
sediment transport is generally parameterized for computational efficiency. For instance
in Delft3D initially the approach by Isobe & Horikawa (1982) was adopted, that estimates
the bound wave and associated non-linear wave shape using a combination of fifth order
Stokes and third order cnoidal wave theory. More recently, the wave shape parametriza-
tion of Ruessink et al. (2012), obtained from near-bed velocity data from various locations,
was incorporated in the model and led to a significant improvement, as was shown by
Boechat Albernaz et al. (2019). The latter parametrization predicts the wave shape as a
function of the Ursell number, which is a nonlinearity parameter based on the local wave
height, wave period and depth. Averaged over time and space, this parametrization gener-
ally provides a good estimate of the wave shape (De Wit et al., 2019). However, the effect of
beach slope (Norheim et al., 1998; Rocha et al., 2017), spectral shape (Rocha et al., 2017),
and non-equilibrium conditions (De Wit et al., 2019; de Wit et al., 2020) are not included,
which are all known to influence the development of higher harmonics and thus resulting
in an inaccurate prediction of the wave shape. A more accurate non-parametric alterna-
tive to estimate the wave shape is given by de Wit et al. (2020) provided that the bound
sea-swell wave height or energy is known.

The previously mentioned wave shape parametrizations rely on local estimates of the
significant wave height and period, which are commonly provided by spectral wave mod-
els. Various spectral wave models are available such as WAM (Monbaliu et al., 2000), Wave-
Watch (Tolman, 1991), TOMAWAC (Benoit et al., 1997) and SWAN (Booij et al., 1997, 1999;
Ris et al., 1999). These models are all based on the concept that the wave energy prop-
agates with the group velocity obtained from linear wave theory and that the effect of
nonlinear processes such as wind growth, breaking, friction and non-linear wave interac-
tions are accounted for by source and sink terms. This can include the transfer of energy
from the free primary waves to the bound secondary waves in the case of triad interactions
(Eldeberky, 1996; Becq-Girard et al., 1999; Salmon et al., 2016). However, the amount of
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energy that has been transferred is not stored in the present models and thus the propor-
tion of bound wave energy and therefore wave shape at a given instance in time and space
is unknown.

To overcome this problem, in this Chapter, a bound wave evolution (BWE) equation
is added to the existing wave model SWAN not only to resolve the evolution of the free
primary wave spectrum, but also the evolution of the bound super-harmonic secondary
wave spectrum. From this the bound wave height can be computed, which in turn can be
used as a proxy for the wave shape (as shown in Chapter 3), thereby removing the need for
a parameterization.

Section 4.2 introduces the spectrum, bispectrum and the wave parameters that are de-
rived from these spectra. The incorporation of the bound wave height evolution equation
is described in Section 4.3, including the underlying assumptions. The model set-up and
test simulations are explained in Section 4.4. In Section 4.5 the performance of two exist-
ing triad source term formulations is evaluated, as well as the eventual prediction of the
bound wave height and wave shape. Section 4.6 provides a discussion on the uncertainties
associated with the modelling and Section 4.7 gives the conclusions.

4.2. THE SPECTRUM, BISPECTRUM AND WAVE SHAPE
Spectral changes in variance, the triad source term and the wave shape are all related to
each other via the bispectrum. This section describes how the spectrum and bispectrum
are defined, and how the wave shape and bound wave height can be obtained from those.

The surface elevation is defined as a summation of harmonics with discrete frequen-
cies:

η(t ) =
N∑

m=−N

1

2
Cme−2πi fm t + 1

2
C∗

me2πi fm t (4.1)

in which Cm and C∗
m are the complex amplitude and its complex conjugate at the discrete

frequency fm = m∆ f with ∆ f being the frequency resolution, i is the imaginary number,
and t is time. The number of discrete spectral estimates is 2N +1, which are bound by the
Nyquist frequencies: ± fN = ± fs /2, in which fs is the discrete sampling frequency of the
surface elevation time series. The complex amplitudes are obtained by applying a discrete
fast Fourier transformation on the surface elevation.

4.2.1. THE SPECTRUM
The double sided discrete variance spectrum is obtained from the complex amplitudes as:

E ′
m = E[CmC∗

m ] for: −N ≤ m ≤ N (4.2)

in which E[...] denotes the expected value. For convenience, readability and computa-
tional efficiency the variance spectrum is instead presented as a single sided discrete vari-
ance spectrum:

Em = 2E ′
m for: 0 ≤ m ≤ N (4.3)
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The corresponding variance density spectrum is:

E( fm) = Em

∆ f
for: 0 ≤ m ≤ N (4.4)

from this the sea-swell spectral moments can be calculated as:

m j =
imax∑

m=imi n

f j
mE( fm)∆ f (4.5)

in which m j is the j -th order spectral moment and in which imi n and imax are indices
corresponding to the sea-swell frequency range. These are defined in this study as fimi n =
fpeak /2 in order to separate the sea-swell waves from the infragravity waves (Roelvink
et al., 2009) and fimax = fN . The spectral moments are used to obtain the significant wave
height and spectral period estimates:

H =4
p

m0 (4.6a)

Tm0,1 =
m0

m1
(4.6b)

Tm0,2 =
√

m0

m2
(4.6c)

4.2.2. THE BISPECTRUM
Analogous to the double sided variance spectrum, the discrete bispectrum is defined as:

Bm,n = E[CmCnC∗
p ] for: p = m +n and −N ≤ m,n, p ≤ N (4.7)

As a single sided form leads to awkward conventions (Hasselmann et al., 1963) the double
sided form is retained here. The bispectral density is defined as:

B( fm , fn) = Bm,n

(∆ f )2 (4.8)

From the bispectrum the biphase can be obtained as:

β( fm , fn) = ℑ(
B( fm , fn)

)
ℜ(

B( fm , fn)
) (4.9)

in which ℜ and ℑ denote the real and the imaginary parts.

4.2.3. WAVE SHAPE AND BOUND WAVE HEIGHT
From the spectrum and bispectrum, the normalized sea-swell wave shape, which repre-
sents the combination of skewness Skη and asymmetry Asη, can be obtained from:

Sη =
√

Sk2
η+ As2

η

m3/2
0

=
6
∣∣∣∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

B( fm , fp−m)(∆ f )2
∣∣∣

m3/2
0

(4.10)



4.3. SPECTRAL EVOLUTION EQUATIONS FOR TOTAL AND BOUND VARIANCE DENSITY

4

63

in which ib,mi n and ib,max are the indices referring to the lower and upper frequency
bound of the bound superharmonic frequencies.

Following Chapter 3, based on the work of Herbers et al. (1994), the total amount of
bound variance associated with super harmonics can be obtained using:

ib,max∑
p=ib,mi n

Eb( fp )∆ f = 4

∣∣∣∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

B( fm , fp−m)(∆ f )2
∣∣∣2

∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

E( fm)E( fp−m)(∆ f )2
(4.11)

in which the factor 4 originates from the single sided variance densities used in this equa-
tion instead of double sided variance densities. Analogous to the wave height, the bound
wave height can be obtained from the bound variance density:

Hb = 4

√√√√ ib,max∑
p=ib,mi n

Eb( fp )∆ f (4.12)

in which ib,mi n and ib,max are indices corresponding to the the lower and upper frequency
limits over which the bound wave height is computed.

4.3. SPECTRAL EVOLUTION EQUATIONS FOR TOTAL AND BOUND

VARIANCE DENSITY
This Section describes how information extracted from SWAN is used to solve the evolu-
tion equation for the bound wave variance density. As SWAN does not distinguish between
free and bound waves, it is referred to as the total wave evolution equation. The evolution
equation for the bound wave variance density is the novel part introduced in this chapter
that allows us to keep track of the evolution of the bound wave height and wave shape. For
reading purposes, the equations are presented here in a 1D form, consistent with unidi-
rectional normally incident waves propagating over an alongshore uniform profile.

4.3.1. TOTAL AND BOUND WAVE ENERGY BALANCE
The 1D evolution equation for the total variance density in stationary conditions, com-
puted by SWAN, is:

dE( f , x)cg ( f , x)

d x
= Snl3( f , x)+Sbr eak ( f , x) (4.13)

where E( f , x) represents the variance density as a function of frequency f and cross-shore
distance x, and in which cg is the group celerity, which is computed using the linear dis-
persion relationship. This implicitly assumes that, in such models, all energy is freely
propagating. Source terms are used to account for growth, dissipation and redistribu-
tion of energy due to nonlinear processes. Snl3 and Sbr eak are source terms accounting
for the effect of nonlinear triad wave interactions and wave breaking, respectively (dis-
cussed in more detail in Sections 4.3.2-4.3.3). Other commonly used source terms (wind,
quadruplet, whitecapping and friction) are ignored in this study to simplify the analysis.
Furthermore, their effects are expected to be negligible compared to Snl3 and Sbr eak in the
intermediate water depth and over the limited propagation distance investigated in this
study.
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In the following, the bound fraction is separated from the total energy balance. The
Snl3 source term accounts for nonlinear triad wave interactions, which are energy trans-
fers from two free harmonics towards a third bound harmonic. It is positive at frequencies
towards which (bound) energy is transferred and negative at the frequencies this energy
originates from. A detailed description of this source term is provided in Section 4.3.2. For
the bound energy equation, only the positive part of Snl3 is considered as a source term.
Furthermore a wave breaking source term Sb,br eak is added to account for the dissipation
of bound wave energy. Subsequently, the evolution equation for the propagation of bound
variance density in steady conditions reads:

dEb( f , x)cg ( f , x)

d x
= max(0,Snl3( f , x))+Sb,br eak ( f , x) (4.14)

in which Eb( f , x) is the bound variance density. For consistency with the evolution equa-
tion for the total variance (Eq. 4.13), it is also assumed here that the bound variance prop-
agates at the free wave group celerity cg .

The bound wave height can be obtained by integrating the bound variance density
(Eq. 4.12). Normalized by the significant wave height, as was recently shown in Chapter 3,
this can be used as a proxy for the normalized wave shape:

Sη =ΨHb

H
(4.15)

in whichΨ is a proportionality coefficient obtained by substitution of Equations (4.6a and
4.10-4.12) into Equation (4.15):

Ψ= 3

√∑ib,max

p=ib,mi n

∑p−imi n
m=imi n

E( fm)E( fp−m)(∆ f )2

m0
(4.16)

The fraction on the right hand side of Equation (4.16) equals 1 (and thus Ψ = 3) if the
sums are evaluated over the full frequency range. However, if only part of the integrals are
included, for instance in our case by only including sea-swell frequencies, this fraction is
smaller than 1. In shallow water, where relatively more energy is present in the infragravity
frequency band and in the high-frequency tail, this fraction decreases. The formulation
for Ψ in Equation (4.16) is consistent with the empirically-derived constant values (Ψ be-
tween 2.70 and 2.80) found by de Wit et al. (2020) (Chapter 3) using data collected from 3
different field sites.

4.3.2. NONLINEAR TRIAD ENERGY TRANSFERS Snl3
Triad wave-wave interactions are nonlinear interactions between three wave components
with frequencies fm , fn , and fp satisfying: fp = fm ± fn . Within these interactions, a dis-
tinction can be made between sum interactions ( fp = fm + fn) and difference interactions
( fp = fm− fn). When certain near-resonant conditions are met, a nonlinear energy transfer
from free components m and n towards bound component p takes place (Phillips, 1960;
Hasselmann, 1962). In fully resonant conditions the same relationship is found for the
wave numbers as for the frequencies: kp = km ±kn . However, this condition is only sat-
isfied in shallow water for non-dispersive waves. Nonlinear energy transfers also occur in
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near-resonant conditions (kp = km ±kn +∆k) in finite water depth (Armstrong et al., 1962;
Bretherton, 1964), with their strength being inversely proportional to the wave number
mismatch ∆k.

Different formulations are available for the Snl3 source term in spectral models (Elde-
berky, 1996; Becq-Girard et al., 1999; Salmon et al., 2016; Janssen et al., 2006), which are
all derived from the following equation relating energy transfers due to triad interactions
to the imaginary part of the bispectrum:

Snl3( fp ) = 2πcg ,p

[∫ fp

0
Wm,p−mℑ(B( fm , fp−m))d fm −2

∫ ∞

0
W−m,p+mℑ(B( fm , fp ))d fm

]
(4.17)

in which Wm,p−m is the nonlinear interaction coefficient for two interacting components
with indices m and n = p − m. The first term on the right hand side of Equation 4.17
account for the sum interactions whereas the second term accounts for the difference
interactions.

In this section we discuss two commonly used formulations that are both implemented
in SWAN, the LTA method (Eldeberky, 1996) and the SPB method (Becq et al., 1998; Becq-
Girard et al., 1999). Both methods use the same nonlinear interaction coefficient derived
by Madsen & Sørensen (1993), based on Boussinesq wave theory (Madsen & Sørensen,
1992):

Wm,p−m = (km +kp−m)2[ 1
2 + cmcp−m(g d)−1]

−2(kp d)2[ 2
15 + (kp d)−2 − 2

5 c2
p (g d)−1]

(4.18)

in which g is the gravitational acceleration, c and k are the wave celerity and wave number
according to linear wave theory, with the subscripts indicating the frequency for which
these are calculated, and d the local water depth.

These two formulations differ in the number of nonlinear interactions that are ac-
counted for and in the way the imaginary part of the bispectrum is estimated. More specif-
ically, the bispectral estimate needed in Eq. (4.17) is derived from the evolution equation
for the bispectrum, which itself depends on the trispectrum. Estimating the bispectrum
therefore requires a closure approximation in which the trispectrum is expressed in terms
of lower order spectra, hence the spectrum and bispectrum.

LTA METHOD

The Lumped Triad Approximation (LTA) is a computationally efficient method that as-
sumes that the energy transfer to a certain frequency as a result of many interactions can
be represented by the self-self interaction only. LTA further relies on the quasi-normal clo-
sure approximation (Benney & Saffman, 1966), in which the trispectrum is expressed in
terms of the variance spectrum only. Based on these two assumptions, an approximation
is found for the absolute value of the bispectrum, which is multiplied by a parametrized
form of the biphase to get an estimate for the imaginary part of the bispectrum(Eldeberky,
1996):

Snl3,LT A( fp ) =αLT Acg ,p cp
[
Wp/2,p/2Q̃( fp/2, fp/2)−2Wp,pQ̃( fp , fp )

]
si n(βÛr ) (4.19)

in which αLT A is a calibration coefficient, Q̃ consists of variance cross-products:

Q̃( fp/2, fp/2) =Wp/2,p/2
[
E( fp/2)2 −2E( fp )E( fp/2)

]
. (4.20)
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βÛr is a parametrized form of the biphase based on the spectral Ursell number:

βÛr =
π

2
t anh

(
Urcr i t

Ûr

)
− π

2
(4.21)

with

Ûr = g H

8
p

2

(
Tm0,1

πd

)2

. (4.22)

This parametrization ensures a smooth transition from βÛr = 0 (no energy transfer) for

low Ûr to a maximum value of βÛr = −π/2 for high Ûr -numbers. Urcr i t is a calibration
coefficient that controls how fast βÛr evolves, for which a wide variety of values is found
in literature e.g., 0.20 by Eldeberky & Battjes (1994), 0.63 by Doering & Bowen (1995). Sim-
ilarly, many variations for αLT A are found in literature, (e.g., 0.05 (Van der Westhuysen,
2007), 0.1 (Holthuijsen, 1999), 0.25 (Booij et al., 1999), 0.5 (Ris, 1997) 1.0 (Eldeberky, 1996),
and most recently 0.87 (Salmon et al., 2016)). Presently, in the most recent version of
SWAN (version 41.31), the default values are Urcr i t = 0.2 and αLT A = 0.87.

SPB METHOD

An alternative approach is the SPB method (Stochastic Parametrized Boussinesq). In con-
trast to the LTA method, the SPB method takes all co-linear sum and difference interac-
tions into account and relies on Holloway (1980)’s closure approximation that assumes
that the trispectrum is expressed in terms of the variance spectrum and the bispectrum.
The resulting expression is:

Snl3,SPB ( fp ) = 4αSPB cg ,p K

[∫ fp

0

Wm,p−mQ( fm , fp−m)

∆k2
m,p−m +K 2

d fm

−2
∫ ∞

0

W−m,p+mQ( fm , fp )

∆k2
m,p +K 2

d fm

]
, (4.23)

with

Q( fm , fp−m) =Wm,p−mE( fm)E( fp−m)−Wp,−mE( fp )E( fm)−Wp,m−p E( fp )E( fp−m). (4.24)

αSPB is a proportionality factor which is 1 for unidirectional waves and lower then 1 for
directional waves to compensate for not all interactions being co-linear. ∆km,p−m = kp −
km −kp−m is the wave number mismatch in which the individual wave numbers are com-
puted with the linear dispersion relationship as being freely propagating components and
K is a calibration factor, with dimension 1/m.

The connection between Equations (4.17) and (4.23) relies on the fact that for the SPB
method the imaginary part of the bispectrum is expressed as :

ℑ(BSPB ( fm , fp−m)) = 2Q( fm , fp−m)
K

∆k2
m,p−m +K 2

. (4.25)

In the SPB formulation, K is commonly taken as a linear function of the spectral peak
wave number kpeak :

K = a ∗kpeak +b (4.26)
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where a and b are calibration constants. Becq-Girard et al. (1999) presented a form in
which K = 0.95kpeak,o f f shor e −0.75 based on a single laboratory calibration study (Becq,
1998). Because it is hard to define the offshore peak wave number kpeak,o f f shor e for field
cases and to prevent negative values of K , Salmon et al. (2016) proposed to use a different
expression: K = 0.95kpeak,l ocal in which kpeak,local is the local peak wave number. This is
presently the default setting in SWAN.

ENERGY CONSERVATION CORRECTION FOR THE SPB METHOD

The presented expression for SPB (Eq. (4.23)) is exactly as described by Becq-Girard et al.
(1999) and as implemented in the default SWAN version (Salmon et al., 2016). As was
mentioned by Eldeberky (1996), a triad source term function based on the Holloway (1980)
closure approximation is not by definition energy (and energy flux) conservative, and can
thus lead to an artificial decay or gain of energy. Although the difference between the
frequency integrated positive and negative fluxes is expected to be small, over a longer
distance it can lead to significant changes in energy flux. Therefore, a correction factor, as
was suggested by Eldeberky (1996), is applied in this study. This factor reduces the positive
S+

nl3,SPB contributions if
∫

S+
nl3,SPB d f >−∫

S−
nl3,SPB d f , and reduces the negative S−

nl3,SPB
contributions (in an absolute sense) if −∫

S−
nl3,SPB d f > ∫

S+
nl3,SPB d f . In the following,

results of the SPB method include this correction factor, even when referring to default
SPB settings. The importance of including the energy conservation correction is shown in
Appendix 4.A.

4.3.3. WAVE BREAKING Sbr eak
Several source term formulations for the dissipation due to wave breaking are available.
Here, the well-known Battjes & Janssen (1978) model is applied in which a constant breaker
index γ defines the ratio of the maximum wave height over depth:

Sbr eak ( f , x) =−αB J Qb(x)γ2d(x)2

8π

m1(x)

m0(x)2 E( f , x) (4.27)

in which αB J is a calibration constant taken equal to 1 in the following. Qb is the fraction
of breaking waves.

The amount of wave breaking for the bound wave height is assumed to be directly
related to the total wave breaking source term:

Sb,br eak ( f , x) =αbr eak ( f , x)Sbr eak ( f , x) (4.28)

in whichαbr eak defines how much of the breaking source term affects the bound harmon-
ics, and thus indirectly also how much it affects the free harmonics. Here, it is assumed
that:

αbr eak ( f , x) = Eb( f , x)/E( f , x) (4.29)

such that there is no preference and the bound harmonics dissipate at the same rate as
the free harmonics.

4.3.4. NUMERICAL IMPLEMENTATION
In this study, the spectral wave model SWAN is used to solve the energy evolution equation
(Eq. (4.13)) and the source terms. Subsequently an offline post-processing routine is used
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to compute the bound energy evolution equation (Eq. (4.14)). Therefore, there is only
one way feedback, the SWAN model does influence the bound energy evolution equation,
but not the other way around. The bound evolution equation for a given f is numerically
resolved using a first order upwind numerical scheme:

Eb(x +∆x) = cg (x)

cg (x +∆x)
Eb(x)+ ∆x

cg (x +∆x)

(
Snl3(x +∆x)+ Eb(x)

E(x)
Sbr eak (x +∆x)

)
(4.30)

with ∆x as the constant grid spacing used in the SWAN computations. This post process-
ing routine is referred to as the bound wave evolution (BWE) model.

4.4. TEST SIMULATIONS AND MODEL SET-UP
The performance of the BWE model is quantified by comparing to the SWASH model, a
phase-resolving wave model (Zijlema et al., 2011). The governing equations for SWASH are
the nonlinear shallow water equations including the non-hydrostatic pressure. It is proven
to accurately capture short wave propagation and dispersion (Zijlema et al., 2011), wave-
breaking (Smit et al., 2013), nonlinear wave dynamics (Smit et al., 2014), wave-induced
currents (Rijnsdorp et al., 2017; de Wit et al., 2017; Rijnsdorp et al., 2021) and infragravity
wave dynamics (Rijnsdorp et al., 2014, 2015; De Bakker et al., 2016).

The comparisons comprise computations of the spatial evolution of waves and bound
waves over a 1D transect with a constantly sloping beach. For these simulations, JON-
SWAP wave spectra are imposed at the offshore boundary with an incoming significant
wave height of 1 m and a varying peak period. As the bound wave height evolution is
known to be affected by the incoming wave period and the bed slope, the model’s per-
formance is evaluated for four different peak wave periods (6, 8, 10, and 12 s) and four
different bed slopes (1/20, 1/50, 1/100, and 1/200).

The performance of the SWAN simulations is quantified with the root mean squared
errors (RMSE)1 of the significant wave height H , bound wave height Hb and spectral wave
period Tm02. For the evaluation of the Snl3 source term performance, the RMSEs are com-
puted for the region between the offshore boundary and the mean breakpoint location,
defined as the point where the wave height reaches its maximum, to exclude the region
where Sbr eak,b significantly affects the bound wave height prediction. This region is in the
remainder of this Chapter referred to as the shoaling zone, whereas the region beyond the
mean breakpoint is referred to as the surf zone.

4.4.1. SWASH MODEL
A horizontal computational grid resolution∆x of 1 m is used to ensure enough grid points
per wave length. 3 vertical sigma layers are used to ensure the accuracy of the models
dispersive properties. The offshore boundary is located deep enough to ensure linear-
ity at the wave maker boundary. The bound super-harmonics are presently not included

1

RMSEχ =
√
〈(χSW ASH −χSW AN )2〉 (4.31)

in which χ is the parameter for which the RMSE is computed, 〈...〉 denotes averaging over the relevant grid
points.
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at the offshore boundary in SWASH. Nevertheless, Fiedler et al. (2019) recently showed
that ignoring the bound super-harmonics at the wave maker boundary, provided that it is
deep enough, does not significantly influence the nearshore sea-swell third order statis-
tics, such as bound wave energy, skewness and asymmetry. Eventually this results in a
boundary depth of 20 m for the cases with T is 8, 10, and 12 s and 10 m for cases with T
is 6 s. The latter is done to prevent high kd-numbers at the boundary, for which SWASH
is known to be less accurate with a low number of layers (Zijlema et al., 2011). The sim-
ulations are performed with the Hydrostatic Front Approximation breaking routine in or-
der to improve the wave breaking dissipation in case of a coarse vertical discretization
(Smit et al., 2013). Simulations are performed for 75 min including 15 min of spin-up time
in order to have 60 min of surface elevation output with a sampling frequency of 4 Hz
that is used to generate statistically reliable estimates for the spectrum and bispectrum.
The output timeseries are divided in 71 semi-overlapping blocks of each 100 s to gener-
ate ensemble averaged spectra and bispectra with a frequency resolution of 0.01 Hz and
142 degrees of freedom. These spectra and bispectra are subsequently used to obtain the
bound superharmonic wave height using Equations (4.12-4.11) with fib,mi n = 1.5 fpeak and
fib,max = 2.5 fpeak .

4.4.2. SWAN MODEL
A horizontal grid resolution ∆x is used of 1 m for 1/20 slope, 2.5 m for 1/50 slope, 5 m for
1/100 slope, and 10 m for 1/200 slope, such that the depth difference between subsequent
grid cells is similar for all simulations. The spectrum is discretized using 71 frequencies
between 0.01 and 0.5 Hz that are logarithmically distributed. Because SWAN solves for
the frequency directional spectra, 45 directional bins of width ∆θ = 4◦, varying between
-90◦ and 90◦, are used. Quasi unidirectionality is achieved by applying a cosM directional
distribution with M = 300 to the input spectrum. In order to compare simulations with
exactly the same offshore spectrum, the SWASH spectrum at x = xbound ar y is imposed
at the boundary for the SWAN simulations. Breaker parameter γ is optimized per simu-
lation such that the decay of H from the SWAN simulations closely resembles the decay
of H in SWASH. This results in γ ranging between 0.52 and 0.81 in which γ varies with
the bed slope and wave period. Surface elevation spectra and Snl3 source term output
are generated at all computational points and used to compute the bound wave energy
spectrum and wave height using Equations (4.12) and (4.14) with fimi n = 1.5 fpeak and
fimax = 2.5 fpeak .

Although Snl3 calibration studies have been performed before, their performance was
commonly evaluated using error metrics for bulk wave parameters like significant wave
height H and spectral wave period Tm02, instead of directly evaluating the bound wave
height Hb as will be done in the following. Furthermore, the SPB-method has only been
calibrated for laboratory scale experiments (Becq, 1998; Salmon et al., 2016), limiting the
validity of the calibration for the dimensional parameter K . As there is no physical rea-
son to add a dimensional number b in the parameterization of K (Eq. (4.26)), it is here
chosen to follow the approach proposed by Salmon et al. (2016) to only vary a, such that
K is a function of the local peak wave number only. The variations of the Snl3 calibration
parameters considered in this study (αLT A and Urcr i t for LTA and a and b to compute K
for SPB) are given in Table 4.1. The range of values used is such that values presented in
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previous calibration studies are covered resulting in a total of 182 SWAN simulations using
the LTA source term and 46 using the SPB source term (see Table 4.1).

Table 4.1: Variations in conditions and calibration values applied for the SWAN calibration simulations for the
Snl3 source term formulations using the LTA and SPB methods. Here default refers to the default parameter
values in SWAN version 41.31.

slope 1/20, 1/50, 1/100, 1/200
Tpeak 6, 8, 10, 12 s
αLT A 0.1-1.0 (default = 0.87)
Urcr i t 0.0-1.0 (default = 0.2)
a 0.01-4.0 (default = 0.95)
b 0 (default = 0.0)

4.5. RESULTS
The evolution of the significant sea-swell wave height is accurately predicted both using
default LTA and SPB triads (see Figure 4.1). Up to the break point, the RMSEH is at max-
imum 0.03 m for all SWAN simulations regardless whether LTA or SPB triads are used.
Because of this accurate evolution of H , mismatches in the evolution of Hb in the fol-
lowing are assumed to be associated with the used triad formulations rather than with a
mismatch of the evolution of the primary energy.

4.5.1. BOUND WAVE HEIGHT EVOLUTION

DEFAULT Snl3 SETTINGS

The evolution of Hb , predicted by SWASH and SWAN using both LTA and SPB triads with
default calibration coefficients, is visualized in Figure 4.2 for the entire set of conditions
(see overview in Table 4.1). Note that depth is represented on the horizontal axis in order to
show simulations with a different slope in the same figure. The evolution of Hb using SPB
triads (red lines in Fig. 4.2) closely resembles that of reference model SWASH (black lines),
resulting in an average RMSEHb of 0.041 m. With LTA triads (blue lines in Fig. 4.2), on the
other hand, Hb is initially under predicted in deeper water, after which it overshoots and
subsequently leads to a substantial over prediction. This is confirmed by a substantially
higher RMSEHb of 0.11 m.

A remarkable difference between the SWAN simulations and the SWASH reference
simulations is the slope dependence of the predicted bound wave height evolution. For
SWASH, no clear distinction is observed between the simulations with a different slope
(black lines in Fig. 4.2 overlap). For the SWAN simulations with both LTA as well as SPB
triads, a faster growth of Hb is observed for mild slopes (thick lines) than for the steeper
slopes (thin lines), indicating that the effect of bottom slope is not properly included in
the triad source terms.
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Figure 4.1: Evolution of H using SWASH (black lines), SWAN with default LTA (blue lines) and SWAN with default
SPB (red lines) where different bed slopes are shown with different line widths. Different panels show the evolu-
tion of H for Tpeak = 6s (a), Tpeak = 8s (b), Tpeak = 10s (c), Tpeak = 12s (d).
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Figure 4.2: Evolution of Hb using SWASH (black lines), SWAN with default LTA (blue lines) and SWAN with de-
fault SPB (red lines) where different bed slopes are shown with different line widths. Different panels show the
evolution of H for Tpeak = 6s (a), Tpeak = 8s (b), Tpeak = 10s (c), Tpeak = 12s (d).
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Figure 4.3: Evolution of Hb using SWASH (black lines), SWAN with optimized LTA (blue lines) and SWAN with
optimized SPB (red lines) where different bed slopes are shown with different line widths. Different panels show
the evolution of H for Tpeak = 6s (a), Tpeak = 8s (b), Tpeak = 10s (c), Tpeak = 12s (d).
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OPTIMIZED LTA TRIADS

The LTA calibration parameters αLT A and Urcr i t are first determined for each reference
simulation (i.e. combination of peak period and bed slope) as the parameter values that
minimize the shoaling zone RMSEHb for this specific simulation (Fig. 4.4a). Notably, the
optimal Urcr i t is low for all conditions, and even zero for 9 out of 16 conditions (see Fig.
4.4b). This means that the parametrized biphase leading to the best results is indepen-
dent of the local Ursell number and equals −π/2 (Eq. (4.21)), corresponding to a fully
imaginary bispectrum. Since the nonlinear energy transfer is proportional to the imagi-
nary part of the bispectrum (see also si n(βÛr )-dependence in Eq. (4.19)), this maximizes
the energy transfers. This in turn explains the low values of the proportionality coeffi-
cient αLT A (Fig. 4.4c) needed to compensate for the overestimation of the imaginary part
of the bispectrum. In essence, this means that the uncertainty of Ursell-based biphase
parametrization in the form presented in Equation (4.21) is so high that it is better to use a
spatially constant value. As the optimal values are more sensitive to changes in slope than
in period, only the slope-dependent optimized values for αLT A and Urcr i t are retained
(see Table 4.2). This leads to an improved match with the SWASH results compared to us-
ing the default values (compare blue lines in Figs 4.2 and 4.3). This improvement reduces
the average RMSEHb from 0.109 m to 0.031 m (see Table 4.3) .

Figure 4.4: Overview of the errors and tuning parameters for SWAN LTA simulations with optimized settings for
the different slopes and conditions. Panel a shows RMSEHb

for the simulation with the lowest RMSE, panels b
and c show the corresponding optimal values for Urcr i t and αLT A .

OPTIMIZED SPB TRIADS

To optimize the SPB triads, the shoaling zone RMSEHb is calculated for all simulations with
varying a-values (see Eq. (4.26)). As was found for the LTA optimization the error curves
are similar for simulations with the same slope but different period (see Fig. 4.5). There-
fore the slope-dependent optimal a-values are obtained from the wave period-averaged
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error curves (black dashed lines in Fig. 4.5). Whereas for the simulations with a slope of
1/20 a clear single minimum is observed at a = 0.45, for the other slopes two local min-
ima are observed in the error curves that move further apart for increasingly milder slopes
(see Figure 4.5 and Table 4.2). As the global minimum in RMSEHb is obtained for the larger
a-values these will be used in the following. The significance of the secondary minimum
will be discussed in Section 4.6.1. By applying the slope-dependant, optimized a-values,
the prediction of Hb in the shoaling zone is improved (compare Figs. 4.2 and 4.3) with a
reduction of average RMSEHb from 0.041 m to 0.024 m compared with the default values.

Figure 4.5: RMSEHb
for simulations over a constant bed slope of 1/20 (panel a), 1/50 (panel b), 1/100 (panel

c), 1/200 (panel d) as a function of SPB tuning parameter a. Different colors indicate simulations with different
incoming peak wave periods, the black dashed line indicates the average over the four simulations with different
period.

Table 4.2: Slope-dependant calibration parameters for LTA and SPB triads (optimized based on RMSEHb
-values

in the shoaling zone). Note that for the SPB method the a-values corresponding to both local minima in RMSEHb
are presented for the slopes ≤ 1/50. For these cases, the a-values corresponding to the global minima are indi-
cated by an asterisk.

LTA triads SPB triads
slope = 1/20 αLT A = 0.10, Urcr i t = 0.0 a = 0.45
slope = 1/50 αLT A = 0.05, Urcr i t = 0.0 a = 0.12 and a = 0.90∗
slope = 1/100 αLT A = 0.05, Urcr i t = 0.05 a = 0.05 and a = 1.7∗
slope = 1/200 αLT A = 0.05, Urcr i t = 0.15 a = 0.03 and a = 3.4∗
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Table 4.3: RMSEH , RMSEHb
and RMSETm02 in the shoaling zone for LTA and SPB with default and optimized

calibration parameters per slope (see Table 4.2 for their values).

RMSEH (m) RMSEHb (m) RMSETm02 (s)
LTA default 0.025 0.109 0.30
LTA optimized 0.016 0.031 0.32
SPB default 0.016 0.041 0.25
SPB optimized 0.016 0.024 0.22

4.5.2. WAVE SHAPE PREDICTION
The wave shape is directly obtained from SWASH with Equation (4.10) and estimated from
the SWAN simulations with Equation (4.15) in two ways. One with Ψ according to Equa-
tion (4.16) and one with Ψ = 2.75, following the empirical relationship of de Wit et al.
(2020). As an example the evolution of Sη is presented for the case with Tpeak = 8 s and a
slope of 1/50 as this is the case with the best prediction of Hb for both LTA and SPB (see Fig.
4.6a). Using a constantΨ of 2.75 the development of Sη is accurately predicted by simula-
tions with both triad formulations in the shoaling zone (see dashed lines in Fig. 4.6b). In
contrast, within the surf zone (d < 3 m) Sη is clearly over predicted by both LTA and SPB
formulations, even though using SPB triads results in a close match with H (not shown
here) and Hb from SWASH in the surf zone (Fig. 4.6a). Accounting for the spectral shape
through Eq. (4.16) results in an improved match with the SWASH results (compare dashed
and solid lines in Fig. 4.6b). Remaining errors are related to differences in the spectral
shapes between the SWAN and SWASH predictions discussed in Section 4.6.2 and to the
over prediction of Hb in case of LTA triads (Fig.4.6a).

Next the SWAN-predicted wave shape Sη using the optimized slope dependent param-
eters (see Table 4.2) and the spectral shape dependent value ofΨ (Eq. 4.16) are compared
with the SWASH benchmark for all slopes and wave periods. Using LTA, the wave shape in
the shoaling zone is under predicted for low Sη but over predicted for high Sη (Fig. 4.7a).
This results in a RMSESη of 0.08 and a R2 of 0.91. Improved results are obtained when

SPB triads are used (Fig. 4.7b) with a reduction in RMSESη to 0.05 and a R2 of 0.94. In the
surf zone, both LTA and SPB triads over predict Sη (Fig. 4.7c-d) with a concurrent increase
in RMSESη to 0.46 and 0.21 for LTA and SPB, respectively. This over prediction is partly
caused by the aforementioned spectral differences between SWAN and SWASH and their
impact on Ψ. The larger mismatch for the LTA results are related to the persistent over
prediction of Hb within the surfzone (see Fig.4.3).
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Figure 4.6: Spatial evolution of the bound wave height (panel a) and normalized wave shape (panel b) using
reference model SWASH (black lines), SWAN with LTA triads with optimized settings (blue lines) and SWAN with
SPB triads with optimized settings (red lines)

Figure 4.7: SWAN predicted normalized wave shape using LTA (a) and SPB (b) triads in the shoaling zone and
LTA (c) and SPB (d) triads in the surf zone as a function of normalized wave shape from reference model SWASH.



4

78 4. WAVE SHAPE FROM A BOUND WAVE EVOLUTION MODEL

4.6. DISCUSSION

4.6.1. UNCERTAINTIES ASSOCIATED WITH THE Snl3 TRIAD FORMULATIONS

PARAMETRIZATION OF β IN LTA
In Section 4.5.1, it is shown that by using the optimal calibration settings for SWAN simula-
tions with LTA triads (see Table 4.2) the biphase estimates (Eq. (4.21)), are almost indepen-
dent on Ursell, given the very low values of Urcr i t . For SWAN simulations with a steeper
slope Urcr i t is in fact zero (see Table 4.2) corresponding to an Ursell-independent biphase
of −π

2 . To further investigate this dependence, the behaviour of the biphase is examined
using the SWASH simulations. A reliable estimate of the biphase at ( fpeak , fpeak ) is ob-
tained from the SWASH bispectra by applying an energy-weighted average of all biphases
(Eq. (4.9)) that satisfy 0.5 fpeak < fm , fn < 1.5 fpeak . The biphase for all SWASH simulations
is visualized in Figure 4.8. The large scatter in biphase for Ur < 0.05 is explained by the
fact that for linear waves the biphase is expected to be randomly distributed between −π
and π (because the real and imaginary part of the bispectrum are both very close to 0). In
contrast to the SWAN simulations, for higher Ur -numbers, the SWASH derived biphase
estimates do show a clear dependence on the Ursell number.

Furthermore, consistent with previous research (Norheim et al., 1998; Dong et al.,
2014; Rocha et al., 2017; Chen et al., 2018), a clear bed slope dependence is observed for
the biphase from the SWASH simulations, with an increase in absolute biphase values for
simulations with steeper slopes (Fig. 4.8). The Ursell-based biphase parameterizations
of Eldeberky & Battjes (1994) and Doering & Bowen (1995) are independent of the bed
slope, which partly explains the wide range of values for Urcr i t found in literature. Note
also that the period dependence of the biphase is not accurately represented by the local
Ursell number (see the vertical spread in lines of the same color in Fig. 4.8) consistent with
the findings in Section 2.3.3, thereby adding to the scatter.

Figure 4.8: Estimated biphase β( fpeak , fpeak ) from SWASH simulations (each color indicate the results for all
peak wave periods on a given bed slope) and parametrized biphase using Equation 4.21 with Urcr i t = 0.68 (solid
black line) and Urcr i t = 0.20 (dashed black line) as a function of the Ursell number.
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Figure 4.9: Evolution of ℑ(B( fpeak , fpeak )) and Q( fpeak , fpeak ) for the SWASH simulation with Tpeak = 8s and
varying bed slopes.

PARAMETRIZATION OF K IN SPB
K is the only tunable parameter in the SPB method controlling the strength of the non-
linear triad interactions (Eq. (4.23)) and is related to a through Equation (4.26). Using
default SPB parameter settings erroneous slope dependent results for the evolution of Hb

are obtained (see Fig. 4.2). Consequently the optimized a-values display a strong slope
dependence to minimize the errors (see Table 4.2).

To further analyse this slope dependence, the behavior of the SWASH-derived ℑ(B)
(which is reflective of Snl3) is examined for varying beach slopes. To get a more reliable
estimate of the bispectrum, the ensemble-averaged bispectrum is obtained from 50 sim-
ilar SWASH simulations with different random phases imposed at the offshore boundary.
These results show that the spatial evolution of ℑ(B( fpeak , fpeak )) for simulations with a
peak period of 8 s is much stronger for steeper than for milder slopes (see Figure 4.9a).

In the SPB formulation ℑ(B( fpeak , fpeak )) is proportional to Q( fpeak , fpeak ) with a pro-
portionality factor that depends on K and∆kpeak,peak (Eq. (4.25)) only. Given the fact that
the peak wave period is the same in these four SWASH simulations, the ∆kpeak,peak for a
given depth does not change and hence only the dependence on K remains.

It is then evident from the depth-dependent distribution of Q( fpeak , fpeak ) (shown
in Fig. 4.9b) that a slope-independent proportionality factor K cannot properly predict
the corresponding ℑ(B( fpeak , fpeak )) (shown in Fig. 4.9a) as this factor should be much
smaller for milder slopes than for steeper slopes. This implies that K cannot be propor-
tional to the local peak wave number only, as expressed in Equation (4.26).

Other methods to parameterize K were explored in this study (not shown), but did
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not improve the predictive skill of the SPB method. Amongst those methods are param-
eterizing K as a small constant value (suggested by Eldeberky, 1996), as a function of the
offshore peak wave number (suggested by Becq et al., 1998; Becq-Girard et al., 1999) or as
a function of the minimum of the three interacting wave numbers (suggested by Janssen
et al., 2006). In none of these parameterizations the slope effect is accounted for and hence
they are not expected to remove this dependency.

Furthermore, two slope dependent local minima are observed for the milder slopes
(see Fig. 4.5). Taking the simulation with Tpeak = 8 s and slope = 1/200 as an example,
Figure 4.10a shows the prediction of Hb for both local minima. It shows that depending
on the choice of a, Hb is either overestimated between d = 10 m and d = 4 m and under-
estimated between d = 4 to d = 3 m or the other way around. This suggests that even for
a given slope a spatially varying value of a and thus K should be used that is not linearly
proportional to the local kpeak .

Figure 4.10: Spatial evolution of the bound wave height for Tpeak = 8 s and a slope of 1/200 (panel a) and a slope
of 1/50 (panel b) for reference model SWASH (black line) and SWAN with SPB triads for the a-values correspond-
ing to the two local error minima listed in Table 4.2 (coloured lines)

4.6.2. BOUND WAVE PREDICTION IN THE SURF ZONE
Whereas Sη is accurately predicted in the shoaling zone using SPB triads, an over pre-
diction is found in the surf zone, even for the cases where the evolution of H and Hb is
accurately predicted in the surf zone (see for example Fig. 4.6 with T = 8 s and a slope of
1/50). This indicates that the over prediction is caused by an over prediction of Ψ, which
itself depends on the prediction of the spectral shape. This is confirmed by calculating
Ψ for the SWASH and the SWAN spectra for this case, showing that between d = 4 and d
= 1 m, Ψ from SWAN is on average 23% higher with a maximum over estimation of 44%.
The same simulation with LTA triads also considerably overestimatesΨ (average 17% and
maximum 24%).
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The mismatch in Ψ using the SPB triads is examined next by looking in more detail
at the spectra in the surf zone for this case (see Fig. 4.11). It is seen that before breaking
(d = 4 m), there is a good agreement between the SWASH and SWAN spectral shape as the
secondary super harmonics and the high frequency tail are properly resolved (compare
magenta and black lines). When the water depth decreases the SWAN spectra maintain
their initial shape while the total energy reduces as a result of dissipation due to breaking.
In contrast, the SWASH spectrum gradually transforms into a saturated spectrum towards
shallower water. So even though the bulk energy transfer and decay due to triads and
breaking is properly captured by SPB (see Fig. 4.10b), the distribution over the frequencies
is not. As Ψ is based on the spectral shape (see Eq. (4.16)), this leads to errors in the
estimated wave shape (Figs. 4.6 and 4.7).

Figure 4.11: Variance density spectra for the simulation with Tpeak = 8 s and slope is 1/50 at depths of 4, 3, 2,
1 m. Black lines represent the SWASH simulations, whereas the blue and red lines represent SWAN using SPB
triads with a-values of 0.12 and 0.90, respectively.

Interestingly, the spectra predicted by SWAN using the a-value corresponding to the
secondary local minimum in RMSEHb (see Table 4.3), do become more saturated with de-
creasing depth (compare blue and black lines in Fig. 4.11). From Equation (4.13) it can be
seen that in absence of breaking the spatial flux gradient and the triad source term should
be equal. Both the SWASH and SWAN simulations indicate that the influence of break-
ing is negligible at the surfzone edge at 4 m water depth. Therefore, the differences in the
spectral evolution for the two a-values can be understood by comparing the SWAN triad
source terms with the SWASH-inferred spatial gradient in flux dEcg /d x (see Fig. 4.12). In
case of the larger a-value the source term is relatively narrow with two distinct peaks mov-
ing energy from the primary spectral peak to a well defined secondary peak at twice the
primary frequency. As Snl3 is relatively weak and dissipation by breaking in the current
formulation is linearly proportional to the energy density the spectral shape is conserved
throughout the surfzone. For the smaller a-value the non-linear transfer to the secondary
super-harmonic spectrum is wider and significantly stronger. This results in a broadening
and subsequent saturation of the high frequency part of the spectrum ( f > fp ), more con-
sistent with the SWASH results (Fig. 4.11). However, this is accompanied by a significant
transfer of energy to the lower frequencies ( f < fp ), erroneously adding energy at half the
peak frequency (compare blue and black lines at f = 0.063H z in Fig. 4.12). This effect
is exacerbated for milder slopes (not shown). Again it is likely that the mismatch within
the surfzone between the SPB-SWAN and SWASH spectra can be reduced using a locally
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optimized a value confirming the need for a spatially varying K value.

Figure 4.12: SWAN Snl3 source term and SWASH flux gradient (dEcg /d x) for the simulation with Tpeak = 8 s
and slope is 1/50 at a depth of 4 m. Cyan and magenta lines represent SWAN simulations using SPB triads with
a-values of 0.12 and 0.90, respectively.

4.6.3. OUTLOOK
Since K is the only tunable parameter in the SPB method in this study, mismatches in Hb

and thus Sη are mainly associated with the choice for K . Currently K is optimized for the
shoaling zone as this is the area where the wave shape plays a dominant role in the sedi-
ment transport (Henriquez et al., 2014; Henderson et al., 2004; Hoefel & Elgar, 2003). This
approach leads to sub-optimal results for the surf zone (see Fig. 4.10). Ideally, a generic
paramaterization of K performs well in both. It should be kept in mind, however, that
the assumptions on the nonlinear interaction coefficients (Eq. (4.18)) and bispectral es-
timates also contribute to this mismatch. A way forward addressing all of these aspects
is by creating ensemble averages using multiple SWASH simulations with different ran-
dom phases, from which accurate stochastic estimates can be retrieved for the variance
spectrum, bispectrum and even trispectrum. From these (higher order) spectra, the as-
sumptions on the closure approximation can be validated per triad and location. These
findings can subsequently be used to obtain improved expressions for K , the nonlinear
interaction coefficients, and the imaginary part of the bispectrum and thereby extending
the domain for which reliable predictions for the bound harmonics and the wave shape
can be obtained.

4.7. CONCLUSION
In this chapter, a new method is presented that allows phase-averaged spectral wave mod-
els to predict the nonlinear wave shape. The spatial evolution of bound variance density
spectra is resolved using source term functions extracted from spectral wave model SWAN
that account for the influence of nonlinear energy transfers and wave breaking. By inte-
grating the bound variance density spectra, the bound wave height is obtained. Using the
proportionality factor, derived in Equations (4.15-4.16), this bound wave height can serve
as a proxy for the nonlinear wave shape. As the BWE model skill to predict the bound wave
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height and wave shape is predominantly determined by the accuracy of the triad source
term, the performance of the LTA and SPB triad formulations is evaluated. This is done by
comparing bound wave height predictions from the integrated bound evolution equation
to those obtained from a detailed phase-resolving wave model (SWASH) using bispectral
analysis. Although computationally more expensive, the SPB method proved to be sig-
nificantly more accurate in predicting the bound wave height for all test simulations that
cover a range of bed slopes and peak periods. The performance of the SPB source term can
be further improved by optimizing tuning parameter K . This study already shows that dif-
ferent optimal K -values are found for different bed slopes, but more research is required
to find a generally applicable formulation for K . Nevertheless, using the SPB method, the
predicted wave shape agrees very well with the wave shape directly obtained from the
reference model SWASH in the shoaling zone (R2 = 0.96 and RMSES = 0.07). In the surf
zone, however, an over prediction of the wave shape is observed. This arises when the
proportionality factor is computed in shallow water and because there is no source term
accounting for the release of bound harmonics. Overall, this chapter shows the promising
capability of a wave-averaged spectral wave model to predict the nonlinear wave shape.
Due to the limited additional computational effort used by the added evolution equation,
this can be used in large-scale morphological models to improve the wave-shape induced
sediment transport formulations.
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APPENDICES

4.A. ENERGY CONSERVATION SPB
The importance of applying the energy conservation correction while using SPB triads
(described in Section 4.3.2) is outlined in this appendix. By applying this correction, the
evolution of H is in good agreement with reference model SWASH (compare green and
black lines in Fig. 4.13). Not accounting for it, however, can lead to a significant under
(or over) estimation of H in the shoaling zone where Snl3,SPB starts to play a prominent
role (red line in Fig. 4.13). The RMSEH for default SPB settings (averaged over the 16
conditions) is decreased from 0.08 to 0.02 m by applying the correction. Furthermore, the
average absolute mismatch of H at the location of maximum H is decreased from 17% to
3%.

Figure 4.13: Spatial evolution of wave height for an input spectrum with incoming significant wave height of 1
m and Tpeak = 8 s over a constantly sloping bathymetry with a slope of 1/50. Different lines indicate the out-
come of the phase-resolving model SWASH (black dashed), and spectral model SWAN with default SPB settings
without energy conservation correction (red), and spectral model SWAN with default SPB settings with energy
conservation correction (green).



5
FIELD SCALE APPLICATION OF THE

WAVE SHAPE MODEL

In this Chapter, the performance of the BWE model, presented in Chapter 4, to predict
the wave shape is investigated for a field scale application. The measured wave shape is
obtained from near-bed pressure measurements from nine locations in the vicinity of an
ebb-tidal shoal seaward from the Ameland Inlet (Chapters 2-3). The modeled wave shape
is compared to the field measurements and to two wave shape parameterizations. On the
seaward slope of the ebb-tidal delta and on the shoal, the BWE model provides an accurate
estimate of the wave shape. However, beyond this region, where depth is increasing after
the shoal, further research is required to accurately predict the wave shape. This further
research involves a better representation of the source terms for triads, breaking and the
release of higher harmonics over a flat bathymetry.
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5.1. INTRODUCTION
Chapter 4 showed the potential of predicting the nonlinear wave shape with the spectral
wave model SWAN for synthetic cases with unidirectional waves normally approaching
a constantly sloping beach. Here the potential of this modeling approach is assessed
for more realistic conditions in terms of bathymetry and incoming wave field. This is
done by comparing the modelled wave shape with the measurements obtained during
the KG2/SEAWAD campaign at the Ameland Inlet (van Prooijen et al., 2020), that were de-
scribed and analyzed in Chapters 2-3. As Chapter 4 showed that the model performance
is highly dependent on the choice of the Snl3 source term, here again the LTA and SPB
method are applied, to study the implications of the choice for a certain Snl3 source term
on the skill to predict the wave shape. To put it in perspective, the modelled quantities are
also compared to estimates obtained from two parameterizations for the nonlinear wave
shape.

The main data processing steps are repeated in Section 5.2.1 for ease of reference. The
SWAN model set-up and the post-processing steps applied to the numerical outputs to
allow comparison with the field data are discussed in Section 5.2.2. The method to ob-
tain the parameterized wave shape from the model output is provided in Section 5.2.3.
Subsequently, the comparison between measured, modelled and parameterized wave pa-
rameters is presented in Section 5.3 after which current model limitations and future im-
provements are discussed in Section 5.4. This Chapter ends with conclusions in Section
5.5.

5.2. METHODS

5.2.1. DATA
In this chapter the numerical model will be compared to the data obtained at and around
the main measurement transect in the vicinity of the Ameland ebb-tidal inlet (see an
overview of the 9 measurement locations in Figure 2.1). Measurement locations that were
not situated on the main transect are included in the analysis similarly as in Chapters 2
and 3 (see also transect representation in Figure 2.2). Hourly near-bed pressure time se-
ries are converted to near-bed pressure head time series by dividing by ρg , in which ρ is
the sea-water density such that the dimension is in meters of water column. These time
series are then divided in 71 semi-overlapping blocks of 100 s, which are detrended and
used to compute the spectrum and bispectrum using Equations (4.4) and (4.8) with 142
degrees of freedom. Subsequently the near bed pressure derived significant wave height
H nb

obs (Eq. (4.6a)), bound wave height H nb
b,obs (Eq. (4.12)), and wave shape Sp,obs (Eq. (4.10))

are computed. Note that for this part of the study all these wave heights are near-bed
pressure head heights, indicated with the superscript nb.

Three selection criteria are defined to determine which cases will be run and analysed
in the following. Firstly, wave conditions need to be such that there is some evolution
of bound wave height, hence H nb

b,obs > 0.1 m for at least one of the sensors. Secondly,
only cases are considered where the depth averaged current magnitude at F5 was lower
than 0.25 m/s. The methodology presented in this chapter should also be applicable in
presence of currents, with the only difference that not the energy balances but the action
balances need to be resolved (Bretherton & Garrett, 1968). However, the uncertainty in
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the current magnitude and direction over the ebb tidal shoal is so large that accounting
for it introduces significant errors in the wave number estimate and hence the related
wave statistics (see Figure 2.5 and Appendix 2.A). Therefore, only cases with mild current
conditions are considered. Thirdly, only the cases where the difference angle between the
main transect orientation and the mean incoming wave angle is smaller than 30 degrees
are considered. This is done to minimize 3D effects as SWAN will be applied to the main
bathymetric transect only (see Figure 2.2). Based on these three criteria, a total of 91 cases
are considered for further analysis corresponding to varying conditions (see overview in
Figure 5.1).

Figure 5.1: Histograms of measured near bed pressure wave height, peak period, direction and depth at the
deepest available locations (P1 for wave height, period and depth, F4 for wave direction, see Figure 3.1) for the
91 cases selected for modelling.

5.2.2. MODEL SET-UP AND POST-PROCESSING OF THE OUTPUTS

NUMERICAL SET-UP

The SWAN model is used to simulate wave propagation over the main transect starting at
P1 (Fig. 2.2). The numerical model setup is thus 1D, with a domain length of 1500 m and
a grid resolution ∆x of 5 m. A standard logarithmic frequency axis is used to discretize the
spectrum with 71 frequency bins between 0.01 and 0.5 Hz. 45 directional bins, varying be-
tween -90◦ and 90◦, are used (∆θ = 4◦). For every case, the actual water level is accounted
for by setting the water level at the boundary to the measured water level at P1.

Model simulations are performed with three different Snl3 settings obtained from the
slope-dependant calibration procedure performed in Chapter 4 (see Table 4.2), using the
average bed slope along the main transect (1/200). These parameters are αLT A = 0.05 and
Urcr i t = 0.15 for the LTA method and with a = 0.03 and a = 3.4 for the SPB method. Two
calibration parameters are considered for the SPB method because they led to comparable
error metrics in Chapter 4 (see the two local minima in Fig. 4.5d) but seemed to perform
better in different parts of the domain (e.g., Fig. 4.10).

For the breaking source term Sbr eak , the Battjes & Janssen (1978)’s model is applied
(Eq. (4.27)) with γ = 0.55 based on a brief calibration procedure that showed a similar
decay rate of the modelled and observed wave height in the breaking zone.

BOUNDARY CONDITIONS

SWAN predicts the evolution of the surface elevation variance and therefore needs to be
forced with a surface elevation variance density spectrum. This spectrum needs to be
estimated from the measured near-bed pressure signal at the most offshore sensor P1,
located in a depth between 9 and 12 m depending on the tide and surge level (see Fig.
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5.1).
Reconstructing the surface elevation spectrum from the pressure spectrum in such

depths likely results in large inaccuracies (Guza & Thornton, 1980; Bishop & Donelan,
1987; Bonneton & Lannes, 2017), particularly in the high frequency part of the spectrum.
As Snl3 and thus the evolution of Hb are sensitive to the initial spectral shape, an alterna-
tive approach is adopted to define the wave spectrum at the boundary. The input spec-
trum for SWAN, Emod ,P1, is defined as the summation of a free and a bound component:

Emod ,P1( f ,θ) = Emod ,P1, f r ee ( f )Θobs,F 4( f ,θ)+Emod ,P1,bound ( f ,θ), (5.1)

where Emod ,P1, f r ee ( f ), instead of being directly reconstructed from the measured near-
bed pressure spectrum at P1, is assumed to follow a standard JONSWAP shape (enhance-
ment factor of 3.3) with a peak frequency fpeak (P1) and significant wave height H(P1)
estimated from the data at P1. fpeak (P1) is directly obtained from the near-bed pressure
spectrum and H(P1) is obtained after integration over the sea-swell frequency range of
the reconstructed spectrum:

EP1( f ) = E nb
P1 ( f )

/
K 2

at t ( f ) (5.2)

in which Kat t ( f ) follows linear wave theory for frequencies smaller than fc = 0.2 Hz, i.e.
Kat t ( f ) = cosh(k(d+z))/cosh(kd), with for this study d+z = 0.5 m the sensor height from
the bed, and is kept constant for larger frequencies, i.e. Kat t ( f > fc ) = Kat t ( fc ). This way
of accounting for the attenuation factor above the cut-off frequency was recently shown to
lead to the smallest error when considering bulk parameters such as the significant wave
height (Mouragues et al., 2019).

As discussed in Section 3.6.1, the 1D spectrum Emod ,P1, f r ee ( f ) is then multiplied by the
normalized directional distribution Θobs,F 4( f ,θ) estimated from the measurements at F4
which was the most offshore frame where velocity data was available (about 350 m away
from P1, see Fig. 2.1).

The resulting 2D spectrum is finally used to calculate Emod ,P1,bound ( f ,θ) according to
equilibrium second order wave theory (Hasselmann, 1962, see Eq. 3.15) which is known to
be accurate in these conditions (Dean, 1970; Le Méhauté, 1976; Fenton, 1990). This esti-
mate of the bound energy spectrum is then used as a boundary condition for the evolution
equation of the bound variance density.

POST-PROCESSING OF THE MODEL OUTPUTS

The near bed pressure head spectra for total and bound variance density are obtained
from the model outputs by attenuating the surface elevation spectra towards the bed using
frequency-dependant attenuation factors:

E nb
f r ee ( f ) = (E( f )−Eb( f ))K 2

at t ( f ) (5.3)

E nb
b ( f ) = Eb( f )K 2

at t ,b( f ) (5.4)

The expression for the attenuation factor of the bound harmonics Kat t ,b( f ) is less straight-
forward than for the free components. As detailed in Appendix 5.A, the bound wave har-
monics consist of three terms, that all attenuate at a different rate (Smit et al., 2017). Often



5.3. RESULTS

5

89

the bound wave energy is assumed to attenuate with Kat t ( f ) but with the bound wave
number instead of the free wave number. In surf zone conditions and for longer waves
(low kd-numbers) this assumption appears to be valid (see Appendix 5.A.2, Fig. 5.4). For
conditions with higher kd-numbers, however, other terms with a different attenuation
factor start to play a role. In these conditions, the error associated with the incorrect at-
tenuation factor can be up to 100%. An overview of the different terms, their attenuation
and the eventual bound attenuation factor is given in Appendix 5.A. For each case the
following wave parameters are computed from the reconstructed near-bed pressure head
spectra E nb

f r ee and E nb
b : the modelled total significant wave height H nb

mod (Eq. (4.6a)), bound

wave height H nb
b,mod (Eq. (4.12)), and wave shape Sp,mod (Eq. (4.15)).

5.2.3. PARAMETRIZATIONS
As mentioned at the beginning of this Chapter, the measured and modelled bound wave
heights and wave shapes are also compared to two local parametrizations. These are cal-
culated using the default SWAN modelled variance density spectrum (so without interfer-
ence by the BWE model) and presented below.

WAVE SHAPE: RUESSINK ET AL. (2012)
The modelled wave shape is first compared to the parametrization derived by Ruessink
et al. (2012) from a large number of near-bed velocity measurements:

Su,r ue = 0.857

1+e
−0.471−l og10(Ur )

0.297

(5.5)

in which e ... is the natural exponent, log10(...) is the logarithm and Ur is defined as:

Ur = 3

8

H

k2
−1,0d 3

(5.6)

in which k−1,0 is the wave number based on spectral wave period Tm−1,0.

EQUILIBRIUM WAVE SHAPE: HASSELMANN (1962)
Additionally, based on the second-order finite depth equilibrium wave theory (Hassel-
mann, 1962), the parameterized equilibrium dimensionless wave shape is defined as:

Sp,hass =Ψ
H nb

b,hass

H nb
(5.7)

in which Hb,hass is the equilibrium bound wave height following Equation (3.16) and Ψ

is computed according to Equation (4.16). It should be noted that the computational ef-
fort to obtain the parametrized bound wave height is approximately ten times larger than
running the BWE model due to the fourfold summation in Equations (3.15-3.16).

5.3. RESULTS
The evolution of the observed, modelled and parametrized wave heights and wave shapes
is first visualized for a single case on 14 September 2017 at 21:00 in Figure 5.2. For this
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case, the evolution of the total wave height H nb
mod is captured fairly well by the BWE model

regardless of the triad settings (Fig. 5.2a). The evolution of the bound wave height H nb
b,mod ,

however, is more sensitive to the triad formulation (Fig. 5.2b). Using LTA (blue line) leads
to a systematic over prediction of the bound wave height. For SPB we initially see a slight
under prediction using a = 0.03 and an over prediction using a = 3.4 (see red and yellow
lines until x = 950m). The contrary is observed beyond this point where a = 0.03 leads to
a higher bound wave height than a = 3.4. Independently from the triad formulations, the
3 simulations significantly overestimate the bound wave height at P4. Potential causes for
this over prediction are discussed in Section 5.4.

The modelled wave shape Sp (Fig. 5.2c) depends on H nb
mod and H nb

b,mod through Equa-
tion (4.15). Therefore, until x = 950 m, the wave shape is reasonably well predicted using
both SPB settings while an over estimation is seen for LTA. Beyond this point, the over
prediction of H nb

b,mod is also reflected in an over prediction of Sp .
The observed wave shape is further compared to the parametrizations by Ruessink

et al. (2012) and Hasselmann (1962) in Figures 5.2d and 5.2e, respectively. Different triad
settings lead to different spectral evolution (see also Section 4.6.2), and thus to slightly
different evolution of the parametrized wave shapes. Nonetheless, the parameterizations
by Ruessink et al. (2012) and Hasselmann (1962) both capture very accurately the initial
growth of the nonlinear wave shape (x ≤ 950m). These local parameterizations, however,
fail to predict the wave shape at P2 where the highest nonlinearity is observed. Remark-
ably, the over prediction at P4 is much less when using these local parameterizations.

These trends are confirmed in Figure 5.3, which shows the modelled and parametrized
wave shapes as a function of the observations for all 91 cases. Here the overestimation at
P4 is also clearly visible (shown by the grey dots) and reflected by high RMSES -values
(see Table 5.1). When considering all other locations (colored dots), a systematic over-
estimation of the modelled wave shape is seen using LTA (Fig. 5.3a), which is reflected
in a RMSES of 0.17. If a = 0.03 is applied for SPB, the observed and modelled wave
shape match well (RMSES = 0.09) although the prediction contains significant scatter
(Fig. 5.3b). On the other hand when using a = 3.4, the model over predicts the wave
shape for Sp,obs < 0.5 whereas it under predicts for Sp,obs > 0.5 (Fig. 5.3c) resulting in a
slightly higher error (RMSES = 0.12). Using the parameterization based on Hasselmann
(1962), the wave shape is reasonably well predicted, although for high values of the wave
shape parameter significant scatter is observed (Fig. 5.3d-f). Ruessink et al. (2012)’s pa-
rameterization under predicts the wave shape nonlinearities for cases with Sp,obs > 0.5
(Fig. 5.3g-i). Both parameterizations have a reasonably low error (RMSES between 0.09
and 0.11), which can also be achieved with the BWE model, provided that the correct tri-
ads are applied. The predictive skill of the parameterizations is much better than the BWE
model at P4 (RMSES between 0.10 and 0.14).
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Figure 5.2: Spatial evolution of the wave height (a), bound wave height (b) and wave shape (c) from the model,
the parameterized wave shape by Ruessink et al. (2012) (d) and Hasselmann (1962) (e). LTA (blue), SPB with
a = 0.03 (red) and SPB with a = 3.4 (yellow) model settings are used to compute the modelled and parameterized
wave parameters, black dots show the observed data points. Panel f shows the bathymetric transect (blue line),
the mean water level (black dashed lines) and the position of the instruments (red dots). Black sensor names
indicate pressure sensors located on the main transect, red sensor names indicate frames on the main transect
and grey sensor names indicate pressure sensors located on the side transects.
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Figure 5.3: Modelled and parametrized wave shape predictions as a function of observations for the 91 cases and
9 locations. Grey dots are data points at P4, colored dots are all other locations (colors correspond to lines in Fig.
5.2). For the black lines the predictions equal the observations.

Table 5.1: RMSE of the modelled and parametrized wave shape for all 91 cases for all locations excluding P4, and
for only location P4.

All locations except P4 P4
LTA 0.17 0.79

Sp,mod SPB a = 0.03 0.09 0.47
SPB a = 3.4 0.12 0.28
LTA 0.11 0.12

Sp,hass SPB a = 0.03 0.11 0.12
SPB a = 3.4 0.10 0.13
LTA 0.11 0.10

Su,r ue SPB a = 0.03 0.09 0.14
SPB a = 3.4 0.10 0.11
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5.4. OVERESTIMATION OF THE BOUND WAVE HEIGHT OVER FLAT

BATHYMETRY
A clear overestimation of the modelled bound wave height is observed at location P4,
which consequentially results in an overestimation of the wave shape (see Figs. 5.2 and
5.3). Whereas the wave evolution is dominated by triads on the foreshore of the ebb-shoal
(x < 925m) and later on by wave breaking for a confined area (925 < x < 1050m), identify-
ing the dominant process between P2 and P4 is not straightforward. As discussed below,
it is likely that, in this area, the bound wave height evolution is governed by a number of
physical processes with similar orders of magnitude, which complicates defining the ex-
act cause for the over prediction of the bound wave height at P4. In the following it is dis-
cussed what these processes are, how they are accounted for by the present BWE model,
and how this could explain the over prediction of the bound wave height.

First of all, some depth-induced wave breaking is expected to occur between P2 and
the shallowest point of the bathymetric transect (at x = 1200m, see Fig. 4.6f), provided
that conditions are such that waves break on the foreshore of the ebb-tidal shoal. Short-
comings in the parametrization of the breaking-induced dissipation could thus contribute
to the relatively poor prediction of the bound wave height at P4. Through Equation (4.28)
it is assumed that the free and bound harmonics dissipate at the same rate, which proved
to give reasonable dissipation rates of the bound harmonics in Chapter 4 for a constantly
sloping beach. It might be that in nature, during the wave breaking process there is a pref-
erential dissipation of the bound harmonics. If such a preferential dissipation would be
applied in the BWE model, it would result in a decrease of the bound wave height at P4. Al-
ternatively, the over prediction might be associated with the chosen breaking formulation
(Battjes & Janssen, 1978), in which the dissipation is proportional to the energy distribu-
tion and is frequency independent. It has been suggested by others, however, that higher
frequencies should dissipate at a faster rate, for instance using a frequency or kd depen-
dent dissipation rate (Mase & Kirby, 1992; Kaihatu & Kirby, 1995; Chen et al., 1997; Smit
et al., 2014; Salmon & Holthuijsen, 2015; Salmon et al., 2015, e.g.,). This would also lead to
an increase of the breaking-induced dissipation for the bound super harmonics. In that
way, even without the above mentioned preferential dissipation of the bound harmonics
this would result in a stronger decrease of Hb than H . However, Figures 3.3, 3.4 and 4.6
all show a faster decay rate for the total wave height than for the bound wave height in
the area where most wave breaking occurs (between P7 and P2). Hence applying a prefer-
ential dissipation of the bound harmonics or a frequency-dependent formulation for the
breaking-induced dissipation could increase the agreement at P4, but would result in an
under estimation of the bound wave height at P2.

The near constant depth between P2 and P4 suggests that the release of higher har-
monics might also play a role in this area. Experimental (Beji & Battjes, 1993; Luth et al.,
1994) and numerical studies (Beji & Battjes, 1994; Ohyama & Nadaoka, 1994) show that
over a bar, bound higher harmonics are released from their primary harmonics, regard-
less whether breaking is occurring or not. Over the past decades there has been significant
debate whether the released bound energy is further propagating as free secondary har-
monics (Ohyama & Nadaoka, 1994; Masselink, 1998) or that it is transferred back to the
primary harmonics by nonlinear triad interactions. The latter is in literature commonly
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referred to as recurrence (Elgar et al., 1990; Chen et al., 1999; Kaihatu, 2009). Recently,
a numerical study by Eldrup & Andersen (2020) showed that over flat bathymetries and
mildly decreasing slopes, bound energy is transferred back towards the primary harmon-
ics, whereas for more sudden changes in bathymetry they are released. For bound sub
harmonics, this energy transfer back to the primary harmonics was found to also occurs
in breaking conditions (Henderson et al., 2006; Baldock, 2012). Here the wave breaking
of the primary wave energy led to a non-equilibrium condition between the primary har-
monics and sub-harmonics, resulting in the energy transfer back. As the release of higher
harmonics is not yet accounted for by the BWE model, this might cause the over estima-
tion of the bound harmonics. Furthermore, as the triad models applied in this study are
only validated for constantly sloping bathymetries and since only positive energy trans-
fers towards the higher harmonics are accounted for, the recurrence process is also not
included. Before being able to include the above two processes in the BWE model, further
research is required to investigate which of these processes occurs, to determine the lo-
cation and rate at which the bound harmonics are released and to study what parameters
influence this rate.

Overall, it should be concluded that it is hard to pinpoint which (combination) of the
above mentioned physical processes causes in the over prediction of the bound wave en-
ergy. Based on these two distinct locations it is impossible to identify whether it is the
wave breaking source term, the triad source term, the lack of release, or a combination
thereof. Therefore further research is required to increase understanding of the processes
that affect the proportion of free and bound energy in the vicinity of wave breaking and
at constant or increasing depth. This research can be done using phase-resolving mod-
els such as the non-hydrostatic model SWASH (as applied in Chapter 4) or the even more
detailed VOF (Torres-Freyermuth et al., 2010) and CFD models (Jacobsen et al., 2012). Sub-
sequently at every grid cell, the proportion of total, free an bound wave height can be eval-
uated (using the methods presented in Section 3.3.2), in order to improve understanding
of the physics in this area. This can further guide the development of the BWE model.

5.5. CONCLUSIONS
This chapter demonstrates the potential of predicting the sea-swell wave shape with the
spectral wave model SWAN on a field scale. By including the bound wave evolution equa-
tion the models predictive capabilities are increased such that not only second order statis-
tics (wave height and wave period) but also third order statistics (bound wave height and
wave shape) are predicted. The added value of this method over using a local parametriza-
tion for the wave shape is that the history of the waves before reaching a certain location
is accounted for, making it more applicable in non-equilibrium conditions. It should still
be noted that the accuracy of this model is highly dependent on the accuracy of the source
terms used, in particular the one used to account for triad interactions.

Overall, the wave shape predictions from deep towards breaking conditions obtained
from the BWE model are comparably accurate as the parameterizations, provided that a
correct triad source term is applied. This is an important finding as this is the area where
the wave-shape induced sediment transport plays the most prominent role. In the region
beyond wave breaking, where the wave nonlinearity decreases again, the BWE model sys-
tematically over predicts the wave shape. In order to further increase the model accuracy
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in this region, the effect of triads, breaking and the release of higher harmonics over a flat
bathymetry should be better represented by the source terms. With these improvements it
is anticipated that the wave shape can be accurately predicted by a phase-averaged spec-
tral wave model. The more accurate prediction of the wave shape will contribute to im-
proving morphological modelling exercises where wave shape induced sediment trans-
port plays a role.
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APPENDICES

5.A. NONLINEAR INTERACTION COEFFICIENTS AND ATTENUA-
TION WITH DEPTH OF BOUND COMPONENTS

In this appendix, we first present a general formulation for the nonlinear interaction co-
efficient that links bound pressure head variance at an elevation z to the free surface el-
evation variance and highlight that it consists of three main terms that all attenuate at a
different rate with depth (section 5.A.1). This information is then used in Section 5.A.2 to
derive an expression for an attenuation factor for the bound variance. The attenuation
factor is applied in Section 5.2.2 to translate the bound (surface elevation) variance pre-
dicted by the BWE model into a nearbed variance that can be compared with the nearbed
measurements.

5.A.1. FORMULATIONS FOR THE NONLINEAR INTERACTION COEFFICIENT
In literature, a number of slightly different formulations for the nonlinear interaction co-
efficients are available, depending on whether they are used to calculate the bound spec-
trum for the surface elevation (Hasselmann, 1962; Herbers & Burton, 1997), the pressure
head at the bed (Herbers et al., 1994) or at an arbitrary depth (Smit et al., 2017), and
whether it relates the free variance density at the surface or bed to the bound variance
density at the surface or the bed. Here a generalized formula is presented, which is a slight
adaptation of Smit et al. (2017), that links all different theories. In the following, we ex-
press the bound pressure-head variance density Eb(z, f ) at elevation z as a function of the
free surface elevation variance density E :

Eb(z, fp ) = 1

2

Nθ∑
r=1

Nθ∑
s=1

p−imi n∑
m=imi n

D2(z, fm , fn ,θr ,θs )E( fm ,θr )E( fp−m ,θs )∆ f (∆θ)2 (5.8)

so if instead of the free surface elevation variance density, the near-bed pressure-head
variance densities are known, these should first be de-attenuated using
E( fm) = E nb( fm)/K 2

at t ( fm). The full expression of the nonlinear interaction coefficient
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reads:

D(z, fm , fn ,θr ,θs ) =
σ2

p

σ2
b,p −σ2

p

(
σ2

m +σ2
n +σmσn

2g
− g kmkncos(∆θ)

σmσn
− g

k2
mσn +k2

nσm

2σmσnσp

)
︸ ︷︷ ︸

D1

cosh(kb,p (d + z))

cosh(kb,p d)︸ ︷︷ ︸
Kat t ,b,1

− g kmkncos(∆θ)

2σmσn︸ ︷︷ ︸
D2

cosh(km(d + z))

cosh(kmd)

cosh(kn(d + z))

cosh(knd)︸ ︷︷ ︸
Kat t ,b,2

+ σ2
m +σ2

n +σmσn

2g︸ ︷︷ ︸
D3

si nh(km(d + z))

si nh(kmd)

si nh(kn(d + z))

si nh(knd)︸ ︷︷ ︸
Kat t ,b,3

(5.9)

in which σ is the intrinsic radial frequency, cos(∆θ) = |θr − θs |,
kb,p =

√
k2

m +k2
n +2kmkncos(∆θ), and σb,p =

√
g kb,p t anh(kb,p d).

This expression can be split in three main terms, each of them attenuating at a dif-
ferent rate with z (Kat t ,b,1, Kat t ,b,2 and Kat t ,b,3 in Equation (5.9). At the surface (z = 0),
Kat t ,b,1 = Kat t ,b,2 = Kat t ,b,3 = 1, resulting in the expression that is equivalent to Hassel-
mann (1962) and Herbers & Burton (1997):

D(z = 0, fm , fn ,θr ,θs ) =
σ2

p

σ2
b,p −σ2

p

(
σ2

m +σ2
n +σmσn

2g
− g kmkncos(∆θ)

σmσn
− g

k2
mσn +k2

nσm

2σmσnσp

)
︸ ︷︷ ︸

D1

− g kmkncos(∆θ)

2σmσn︸ ︷︷ ︸
D2

+ σ2
m +σ2

n +σmσn

2g︸ ︷︷ ︸
D3

(5.10)

At the bed (z = −d), the numerator of the attenuation factors of the first two terms
becomes 1 (cosh(0) = 1), whereas it becomes 0 for the third term (si nh(0) = 0). This results
in the interaction coefficient at the bed, equal to the one presented by Herbers et al. (1994):

D(z =−d , fm , fn ,θr ,θs ) =
σ2

p

σ2
b,p −σ2

p

(
σ2

m +σ2
n +σmσn

2g
− g kmkncos(∆θ)

σmσn
− g

k2
mσn +k2

nσm

2σmσnσp

)
︸ ︷︷ ︸

D1

1

cosh(kb,p d)︸ ︷︷ ︸
Kat t ,b,1 at z=-d

− g kmkncos(∆θ)

2σmσn︸ ︷︷ ︸
D2

1

cosh(kmd)

1

cosh(knd)︸ ︷︷ ︸
Kat t ,b,2 at z=-d

(5.11)
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5.A.2. ATTENUATION OF THE BOUND WAVE AMPLITUDES AND VARIANCE DEN-
SITY

The bound variance density obtained by the BWE model needs to be transformed into a
near-bed (pressure head) bound variance density to allow for comparison with the data.
Therefore, an attenuation factor needs to be defined for the bound variance. As a first step,
we define this attenuation for the bound complex amplitude Cb .

Using the interaction coefficient introduced in Equation (5.9), and assuming unidi-
rectional waves for the sake of simplicity, Cb(z, f ) can be expressed as a function of the
complex amplitude of the primary component C (z, f ) as:

Cb(z, fp ) = ∑
m

D(z, fm , fp−m)C (z, fm)C∗(z, fp−m). (5.12)

We have seen that the interaction coefficient D at elevation z consisted of three con-
tributions with their own attenuation factors. Using the variables introduced in Equation
(5.9), the interaction coefficient can be re-written as:

D(z, fm , fn) = D1( fm , fn)Kat t ,b,1(z, fm , fn)+D2( fm , fn)Kat t ,b,2(z, fm , fn)

+D3( fm , fn)Kat t ,b,3(z, fm , fn)

Factorizing by D(0, fm , fn), interaction coefficient at the surface, and introducing the vari-
ables χi ( fm , fn) = Di ( fm , fn)/D(0, fm , fn) (with i =1:3) which represent the relative contri-
bution of each of the three terms to the total interaction coefficient, D can be re-written
as:

D(z, fm , fn) = (χ1( fm , fn)Kat t ,b,1(z, fm , fn)+χ2( fm , fn)Kat t ,b,2(z, fm , fn)

+χ3( fm , fn)Kat t ,b,3(z, fm , fn)) D(0, fm , fn)

and thus
D(z, fm , fn) = Kat t ,b(z, fm , fn)D(0, fm , fn), (5.13)

with
Kat t ,b =χ1Kat t ,b,1 +χ2Kat t ,b,2 +χ3Kat t ,b,3. (5.14)

Kat t ,b can be seen as an attenuation factor applied to obtain D at elevation z from its value
at the surface (z = 0). Using this definition, Equation (5.12) is now rewritten as:

Cb(z, fp ) = ∑
m

Kat t ,b(z, fm , fp−m)D(0, fm , fp−m)C (0, fm)C∗(0, fp−m). (5.15)

Assuming Kat t ,b(z, fm , fp−m) ≈ Kat t ,b(z, fp/2, fp/2), i.e. that the bound energy at frequency
fp attenuates with depth at the same rate as the bound energy resulting from the self-
interaction at fp/2, Equation (5.15) becomes:

Cb(z, fp ) ≈ Kat t ,b(z, fp/2, fp/2)
∑
m

D(0, fm , fp−m)C (0, fm)C∗(0, fp−m)

≈ Kat t ,b(z, fp/2, fp/2)Cb(0, fp ), (5.16)

or, in terms of bound variance:

Eb(z, fp ) ≈ K 2
at t ,b(z, fp/2, fp/2)Eb(0, fp ). (5.17)
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Figure 5.4: Computed (colored dots; Equation (5.10)) and estimated (black lines; Equations (5.18)-(5.20))
χ1( fp/2, fp/2), χ2( fp/2, fp/2) and χ3( fp/2, fp/2) as a function of kb,p d

The (pressure-head) bound variance at elevation z can thus be estimated from bound
variance at the surface if the attenuation factor Kat t ,b(z, fp/2, fp/2) is known. This attenu-
ation factor is a function of the relative contributions of the three terms in the interaction
coefficient χ1( fp/2, fp/2), χ2( fp/2, fp/2) and χ3( fp/2, fp/2). These χ−terms could be directly
calculated using Equation (5.10). However, this would be at the cost of significant compu-
tational effort. Instead it is shown in Figure 5.4 that χ1, χ2 and χ3 can be expressed as a
function of kb,p d . For this visualization, the χ-terms were calculated for 0.08 ≤ fp/2 ≤ 0.25
Hz and depths between 1 and 10 m. The shape of χ2 and χ3 as a function of kb,p d suggests
a fit with the form of a Boltzman sigmoid. After an optimization routine, the following
expressions are found and used to calculate Kat t ,b :

χ1 = 1−χ2 −χ3 (5.18)

χ2 =− 0.5

1+exp
(

0.303−log (kb,p d)
0.152

) (5.19)

χ3 = 1.5

1+exp
(

0.416−log (kb,p d)
0.117

) (5.20)





6
CONCLUSION

From a long term modelling perspective, there is a need to better capture the wave shape
induced sediment transport. Therefore, this thesis aims to improve the accuracy of the
nonlinear wave shape predictions in complex coastal systems. To achieve this aim, a com-
bination of field measurements and numerical modelling is applied. Field measurements,
obtained at the ebb-tidal delta seaward of the Ameland Inlet, are analyzed using timeseries
analysis in Chapter 3 and bispectral analysis in Chapter 4. A new numerical modelling
approach is presented in Chapter 5, which is validated with synthetic cases with unidi-
rectional waves approaching a beach over a constant slope. Subsequently, in Chapter 6,
the model is applied on field scale and compared to the aforementioned field measure-
ments. This chapter provides an overview of the main conclusions of this thesis as well as
a discussion on future developments.

6.1. CONCLUSIONS
Commonly, the wave shape is predicted based on the Ursell number, a dimensionless
function of the local wave height, period and water depth. In this thesis the measured and
modelled wave shape are compared to the wave shape from the Ursell based parameter-
ization of Ruessink et al. (2012). Averaged over the 10 measurement locations (4 < d < 11
m) and all conditions (0.5 < H < 6 m and 5 < Tpeak < 12 s), the measured and parameter-
ized wave shape are in good agreement. However, when considering a specific location
or moment in time, significant over- or underestimations of the wave shape are observed.
These mismatches can be ascribed to a number of reasons. Firstly, rapid changes in depth
and currents have an immediate and significant effect on the Ursell number, whereas the
response of the wave shape is less significant and slower. Secondly, even though longer
waves are known to have a more pronounced nonlinear wave shape, lower longer waves
with the same Ursell number as higher shorter waves (in a certain depth) have the same
parameterized wave shape. Together this limits the predictive skill of Ursell based wave
shape parameterizations and suggests on the one hand to adopt a non-local approach to
predict the wave shape and on the other hand to better incorporate the effect of the wave
length on nonlinear development.
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By applying bispectral analysis to the field measurements, a clear relationship is found
between the superharmonic bound wave height and the sea-swell wave shape. This im-
plies that this relationship can be used to predict the wave shape if the spatial variation
of the bound wave height is known. In phase-averaged models, the bound wave height
can not be obtained using bispectral analysis. Alternatively, the bound wave height can
be predicted using equilibrium second order wave theory. In deep water a near perfect
match is found between the predicted and observed bound wave height. In presence of
wave breaking, strong currents or strong nonlinearity, however, the second order theory
fails to accurately predict the bound wave height, making it less suitable as a proxy for the
wave shape.

The fact that triad source term formulations account for the energy transfer to the
bound super (and sub) harmonics led to the idea that this source term can also be used
to track the evolution of the bound wave energy (BWE). Source terms, extracted from the
spectral wave model SWAN, are used to resolve an evolution equation for the bound vari-
ance density spectrum. Integration of this spectrum provides the modelled bound wave
height, which can be used as a proxy for the wave shape. The model is validated for
unidirectional, irregular waves propagating to the coast over a planar slope for varying
peak wave periods and bed slopes. Comparing to results from the detailed wave-resolving
model SWASH shows that the newly presented model is capable of resolving the evolu-
tion of the bound wave height and wave shape. The accuracy with which this is done,
however, depends on the accuracy of the source terms and in particular that of the triad
source term. Overall, the model’s accuracy in predicting the bound wave height and the
wave shape is higher in the shoaling zone (for which the model is optimized) than in the
surf zone. To further increase the models performance in the surf zone, both the triad as
well as the breaking source terms need to be further improved in these conditions.

The performance of the LTA (Eldeberky, 1996) and the SPB (Becq-Girard et al., 1999)
triad source term formulations are tested for the above mentioned validation cases. SPB
proves to be superior over LTA in predicting the amount of energy transferred to the higher
harmonics, both using default calibration parameters as well as after optimization of these
parameters. The optimal calibration settings for both formulations appear to be highly
sensitive to the bed slope. LTA relies in particular on a parametrization of the biphase
which does not account for the strong slope dependence. Also for SPB, a strong slope-
dependence is found for the optimal calibration parameter K to estimate the imaginary
part of the bispectrum. Furthermore, there is a strong suspicion that K should vary per in-
teraction, but also that its spatial variability can be better represented than in the present
SPB model. A further optimization of the dependence of K per interaction and in space
is expected to improve both the magnitude and frequency-distribution of the nonlinear
energy transfer, resulting in more accurate evolution of the spectral shape into the surf
zone.

Finally, the model is applied on a field scale to verify to what extent it is capable of
replicating the field measurements at the Ameland ebb-tidal delta. In contrast to the val-
idation study, the simulations are performed with directionally spread waves coming in
under an arbitrary angle instead of unidirectional waves perpendicularly approaching the
coast. Furthermore, instead of using a planar slope, now the bathymetry measured along
the main transect of the ebb-tidal delta is used. To compare near-bed measurements with
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(free and bound) surface elevation variance density spectra obtained from the model, the
modelled spectra are attenuated towards the bed. There is good agreement between the
modelled and measured bound wave height and wave shape. In the shoaling and surf
zone, the BWE model achieves the same accuracy as commonly used parameterizations.
On top of the ebb-tidal shoal, where depth is constant or increasing again, the BWE model
over predicts the bound wave height and wave shape. This is likely related to an erro-
neous estimate of the triad source term in this area as well as the absence of a source term
accounting for the release of higher harmonics.

In conclusion, the BWE model presented in this thesis still needs further development
before it is operationally applicable in morphodynamic models. Nevertheless, it is shown
that resolving the bound energy evolution equation is a promising way to predict the spa-
tial evolution of the nonlinear wave shape. This framework can be extended to 2D, cur-
rents can be added and other physical processes can be included through source term
functions. This allows for the prediction of the wave shape in ebb tidal deltas.

6.2. OUTLOOK

6.2.1. SEPARATED SET OF MODEL EQUATIONS
Bound superharmonic waves are secondary (or higher) harmonics that are bound to their
primary harmonics. This entails that their energy propagates with the group speed of the
primary harmonics. Using the bound cg for the bound evolution equation (Eq. (4.14))
would be formally more correct, but would be inconsistent with the governing equation
of SWAN that assumes that the total energy (bound and free) propagates with the free cg .
Because the aim is to predict the bound proportion of the SWAN variance density, it was
chosen to be consistent with SWAN and use the free cg . Fortunately, before a substan-
tial amount of the variance is bound it is relatively shallow water, where the difference
between the free and bound cg is less significant as waves become less dispersive.

In the future, we propose using two fully separated equations for the free and the
bound energy evolution, in which energy propagates at their correct free or bound cg ,
respectively. The triad source term would then remove energy from the free energy evo-
lution equation and add it to the bound energy evolution equation (except in the case of
recurrence where this would be the other way around). Furthermore, a source term can
be added accounting for the release of higher harmonics and thus acting as a sink for the
bound energy equation and as a source for the free energy equation.

Ideally, this two equation model is further extended to a three equation model where
also the evolution of the bound subharmonics (bound infragravity waves) is resolved (fol-
lowing the method by Reniers & Zijlema (2022)). Similarly as for the super harmonics, the
triad source term will act as a source for this evolution equation, provided that the SPB
method or an alternative formulation is used that includes difference interactions. Even-
tually, additional source terms can be added accounting for the generation, release and
breaking of infragravity waves.

Such sets of separated model equations are comparably fast as present spectral mod-
els, because the simulation time for solving an evolution equation is negligible in com-
parison to the calculation time of the source terms. The models capabilities are however
much larger because it can predict the bound wave height, wave shape, and potentially
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the infragravity wave height. A final advantage of this separated set of equations model,
discussed in this Section, is that ongoing research on the source terms, in particular for
the triads, will keep improving the accuracy of the model outcome.

6.2.2. IMPLICATIONS FOR SEDIMENT TRANSPORT MODELING
Although the evolution of waves into sharp crested and pitched forward shapes is a fas-
cinating hydrodynamic process, the primary interest in the nonlinear wave shape is from
a sediment transport perspective. From this perspective the main question is to link the
quantity of transported sediment to the nonlinear wave shape. Whereas the scope of this
Thesis is restricted to a better prediction of the nonlinear wave shape, this final Section
discusses the implications of these findings on sediment transport and how to incorpo-
rate these findings in sediment transport modelling in the future.

One of the findings of this Thesis is that the wave shape does not instantly adapt to new
conditions but needs time to adapt. This can be accounted for by using a delayed Ursell
number (Chapter 2) or by applying an evolution equation for the wave shape (Chapters
4 and 5). This means that for an increase in Ur (e.g., for decreasing depth), the increase
in Sk, As and concurrent sediment transport is more gradual. Vice versa, in case of a
decrease in Ur (e.g., due to increasing depth or wave breaking), Sk and As do not in-
stantly decrease but take a number of wave lengths to respond, resulting in a larger sed-
iment transport compared to the instantaneous response. As morphological changes are
a function of spatial gradients in sediment transport, the morphological changes are also
expected to be smoother. Furthermore, the down-wave spatial delay in wave shape and
associated sediment transport with respect to bed features like sand bars is expected to
affect both the propagation speed and growth rate of these features (Hoefel & Elgar, 2003;
Roelvink & Reniers, 2011).

In Chapter 2, it was shown that for a certain depth lower longer waves have the same
Ur as higher shorter waves. This is in conflict with the theory of Hasselmann (1962), which
shows that longer waves have stronger nonlinear interactions. Therefore, by using an Ur -
based parameterization, the wave shape is underestimated for lower longer waves and
overestimated for higher shorter waves (see Fig. 2.10b). This implies that also the associ-
ated sediment transport is erroneously predicted in the same way.

The above examples show qualitative differences in sediment transport predictions
based on the findings in this thesis. In order to quantitatively predict wave-shape trans-
port it is recommended to incorporate the BWE equation in a morphodynamic model that
uses sediment transport formulas taking into account the combined effect of currents and
nonlinear waves through the near-bed wave shape (e.g., Van Rijn, 2007; Dubarbier et al.,
2015; Fernández-Mora et al., 2015). This requires one additional step, which is the transla-
tion of the wave shape at the sea-surface, as provided by BWE equation, to the shape of the
near-bed velocity signal, which is eventually the driver of wave-shape transport. There are
multiple ways this can be done. The first is using linear wave theory to translate pressure
(or elevation) to near-bed velocity (as applied in Chapter 2). It is, however, incorrect to
translate a nonlinear signal with linear theory. Alternatively, given that the amount of free
and bound energy is known, a nonlinear translation method based on second order Stokes
theory (e.g., Smit et al., 2017) can be applied (similar as presented in Appendix 5.A). Since
all higher order Stokes wave theories are equilibrium theories, they only predict skewed
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waves with zero asymmetry. To make the distinction between skewness and asymmetry,
a biphase parameterization can be used. This final step allows for the BWE model to be
applicable in combined morphodynamic wave-flow modelling.
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LIST OF SYMBOLS

Abbreviations and acronyms
DOF s degrees of freedom N/A
RMSE Root Mean Squared Error N/A

Greek
α( f ) weighting factor [-]
αB J breaking scaling factor [-]
αbr eak bound wave breaking ratio [-]
αLT A proportionality coefficient for LTA [-]
αSPB proportionality coefficient for SPB [-]
β( f , f ) biphase [r ad ]
βUr parameterized biphase [r ad ]
∆θ directional resolution [◦]
∆d depth difference [m]
∆ f frequency resolution [H z]
∆k wave number mismatch [m−1]
∆x spatial resolution [m]
η surface elevation [m]
γ breaker index [-]
γspec spectral peak-enhancement factor [-]
ω absolute angular frequency [H z]
φ wave phase [r ad ]
Ψ proportionality factor [-]
ρ density [kg m−3]
σ intrinsic angular frequency [H z]
σθw wave directional spreading [◦]
Θ normalized directional distribution [-]
θU mean current direction [◦]
θw mean wave direction [◦]
Θnew adapted normalized directional distribution [-]

Mathematical operators
ℑ imaginary part N/A
〈...〉 burst averaging N/A
|...| absolute value operator N/A
H {...} imaginary part of Hilbert transform N/A
ℜ real part N/A
E[...] expected value operator N/A
∗ complex conjugate operator N/A
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Roman
Q̃ second order contribution to bispectrum for LTA [m2H z−2]
Ûr spectral Ursell number [-]
Ãsq dimensional asymmetry [di m(q)3]
S̃q dimensional combined wave shape [di m(q)3]

S̃kq dimensional skewness [di m(q)3]
A wave amplitude [m]
a calibration parameter for SPB [-]
A⋆ delayed wave amplitude [m]
As dimensionless asymmetry [-]
b calibration parameter for SPB [-]
B( f , f ) bispectral density [m3H z−2]
b( f , f ) bicoherence [-]
Bm,n discrete bispectrum [m3]
C complex amplitude [m]
c wave celerity [ms−1]
cg wave group celerity [ms−1]
D nonlinear interaction coefficient [m−1]
d local water depth [m]
d⋆ delayed local water depth [m]
Dz nonlinear interaction coefficient at depth z [m−1]
E single sided discrete variance spectrum [m2]
E ′ double sided discrete variance spectrum [m2]
E ′( f ,θ) double sided frequency-directional variance density spectrum [m2H z−1r ad−1]
E( f ) single sided variance density spectrum [m2H z−1]
E( f ,θ) single sided frequency-directional variance density spectrum [m2H z−1r ad−1]
Eb( f ) single sided bound variance density spectrum [m2H z−1]
f frequency [H z]
fc cut-off frequency [H z]
fN Nyquist frequency [H z]
fs discrete sampling frequency [H z]
fib,max upper bound for the bound super harmonic frequency range [H z]
fib,mi n lower bound for the bound super harmonic frequency range [H z]
fimax upper bound for the sea-swell frequency range [H z]
fimi n lower bound for the sea-swell frequency range [H z]
fpeak peak frequency [H z]
G breaking parameter [-]
g gravitational acceleration [ms−2]
H significant wave height [m]
Hb,hass parameterized bound wave height (Hasselmann, 1962) [m]
Hbr wave height at location of wave breaking [m]
Hb bound superharmonic wave height [m]
i imaginary number [-]
j order of the spectral moment [-]
K calibration parameter for SPB [m−1]
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k wave number [m−1]
k⋆ delayed wave number [m−1]
k−1,0 minus first order moment wave number [m−1]
Kat t ,b( fm) bound attenuation factor [-]
Kat t ( fm) attenuation factor [-]
kpeak,local local peak wave number [m−1]
kpeak,o f f shor e offshore peak wave number [m−1]
kpeak peak wave number [m−1]
L wave length [m]
M directional width power [-]
m,n, p frequency indices [-]
m0 zero-th order moment [m2]
m1 first order moment [m2H z]
m2 second order moment [m2H z2]
m j j -th order moment [m2H z j ]
m−1 minus first order moment [m2H z−1]
mmi n index of first discrete frequency in sea-swell range (Ch. 4) [-]
N number of discrete frequencies [-]
Nθ number of discrete wave directions [-]
P power of directional distribution [-]
p water pressure [kg m−1s−2]
pai r air pressure [kg m−1s−2]
ptot al total pressure [kg m−1s−2]
Q second order contribution to bispectrum for SPB [m2H z−2]
Qb fraction of breaking waves [-]
r, s direction indices (Ch. 4) [-]
R2 correlation coefficient [-]
S dimensionless combined wave shape [-]
Sb,br eak bound breaking source term [m2]
Sbr eak breaking source term [m2]
Snl3,LT A LTA nonlinear triad source term [m2]
Snl3,SPB SPB nonlinear triad source term [m2]
Snl3 nonlinear triad source term [m2]
S+

nl3 positive contributions of SPB nonlinear triad source term [m2]

S−
nl3 negative contributions of SPB nonlinear triad source term [m2]

Sp,hass estimate of the parameterized wave shape based on [-]
Sr ue parameterized dimensionless velocity wave shape (Ruessink et al., 2012) [-]
Sk dimensionless skewness [-]
t time [s]
Tm−1,0 minus first-order moment wave period [s]
Tm0,1 first-order moment wave period [s]
Tm0,2 second-order moment wave period [s]
Tpeak peak period [s]
U mean current magnitude [ms−1]
u (orbital) velocity in x direction [ms−1]
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UN mean current in direction of wave propagation [ms−1]
Ueast eastward mean current [ms−1]
Unor th northward mean current [ms−1]
up2u pressure derived orbital velocity [ms−1]
Ur Ursell number [-]
Ur⋆ delayed Ursell number [-]
Urcr i t critical Ursell number [-]
v (orbital) velocity in y direction [ms−1]
Wm,n nonlinear interaction coefficient [m−2]
x, y horizontal spatial coordinates [m]
z vertical spatial coordinate [m]
zp sensor height above the bed [m]

Sub- and superscripts
η subscript indicating shape of surface elevation signal [N/A]
b referring to the bound part of the spectrum or wave height [N/A]
bound referring to the bound part of the spectrum or wave height [N/A]
F 1,etc referring to a specific frame location [N/A]
f r ee referring to the free part of the spectrum [N/A]
mod subscript referring to a modelled parameter [N/A]
nb superscript referring to a parameter near the bottom [N/A]
nc subscript indicating no currents [N/A]
obs subscript referring to a measured or observed parameter [N/A]
p subscript indicating shape of the pressure signal [N/A]
P1,etc referring to a specific pressure sensor location [N/A]
p2u subscript indicating shape of the near-bed velocity signal estimated from the pres-

sure [N/A]
pr ed subscript referring to a predicted parameter [N/A]
q subscript indicating shape of quantity q N/A
r ue referring to parameterization by Hasselmann (1962) [N/A]
r ue referring to parameterization by Ruessink et al. (2012) [N/A]
u subscript indicating shape of the near-bed velocity signal [N/A]
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