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STELLINGEN behorende bij
Numerical Simulation of 3-D Flow
through and around Hydraulic Structures
J. Versteegh

De methode van kunstmatige samendrukbaarheid geeft de
mogelijkheid om de numerieke technieken, die ontwikkeld zijn
voor de oplossing van de ondiepvatervergelijkingen, toe te
passen op de 3-D Navier-Stokes vergelijkingen voor een
onsamendrukbaar medium.

II

Het redelijk isotrope gedrag van het oorspronkelijke
Leendertse schema kan verklaard worden uit het feit dat de
expliciete tijdsintegratie van de convectie termen een
anisotrople veroorzaakt die tegengesteld is aan de
anisotropie ten gevolge van de ruimtelijke discretisatie.

Abbott, M. B.,Computational Hydraulics,
Pitman, 1979, pag. 207

III

Een stromingsprogramma gebaseerd op de volledige 3-D
vergelijkingen kan theoretisch uit minder programma
statements bestaan dan een quasi 3-D programma. Dit maakt
toepassing van het eerstgenoemde programma aanvaardbaar ook
in gevallen waarin de versnellingen in een van de coordi-

naatrichtingen verwaarloosd mogen worden.
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Door Brian is in 1961 een ADI methode gepubliceerd voor de
oplossing van 3-D diffusie problemen. Ten onrechte noemt Noye
deze methode instabiel en slechts 1%orde nauvkeurig. Bewezen
kan worden dat Brian’s methode die berust op de combinatie
van de ideeen van Douglas-Rachford (3-D stabiliteit) en
Peaceman-Rachford (2e orde nauvkeurig), volledig
gelijkvaardig is aan de later gepubliceerde methode van
Douglas-Gunn met een implicietheidsfactor p=!/,. Derhalve is
Brian‘’s methode onvoorwaardelijk stabiel en 2° orde
nauvkeurig.

B.J. Noye, Num. Sim. of Fluid Flow, North Holland Publ.
Co.,1978

P.L.T. Brian, A Fin.Diff.Method of High Order Accuracy
for the Sol. of 3-D Transient Heat Conduction
Problems, A.I.Chem.Engg.J.,Vol.7,no 3,1961

Behalve door verticale integratie van de 3-D Navier-Stokes
vergelijkingen voor een incompressibele vlceistof, kunnen de
ondiepvater vergelijkingen ook direkt afgeleid worden van de
2-D vergelijkingen voor een compressibel medium. De fysisch
meest logische substitutie is hierbij :

p = po(hihy) P ='/2 pogh?

met p = 2-D dichtheid  [kg/m®]
Po= 3-D dichtheid [kg/m*)
h,hy= waterstand,diepte [m}
P = 2-D druk [R/m)

C.B. Vreugdenhil, Computational Hydraulics,
An Introduction, Springer Verlag, 1989



VI

De ondiepwatervergelijkingen (zonder horizontale diffusie
termen) kunnen worden opgevat als de Euler vergelijkingen
waaraan bodemwrijvingstermen zijn toegevoegd. Voor het
backstep probleem is het theoretisch mogelijk het
bijbehorende stromingspatroon te bepalen op grond van het

feit dat de druk in het "schaduwgebied" constant is.

VII

De plannen om langs de vaarwvegen een natuurlijke
oeververdediging, b.v. in de vorm van rietbegroeing, toe te
passen, dienen doorgezet te worden, ook wanneer dit
beperkingen op de vaarsnelheid van de binnenvaart met zich

mee zou brengen.

VIII

Gezien het gerechtvaardigde verlangen van de
wvereldbevolking tot gelijkberechtiging op dit punt, moet in
Nederland de autodichtheid in relatie tot het inwonertal met

minstens de helft worden teruggebracht.



IX

Een wiskunde methode voor HAVO/VWO die wat betreft het
differentieren en integreren gebaseerd is op eindige
differenties levert didaktische voordelen op, die ruimschoots
opwegen tegen het nadeel dat de formuleringen "benaderend”

zijn.

De ervaring leert dat de geestelijke prestatie veel minder
dan evenredig afneemt met het aantal uren in een werkweek. In
een aantal gevallen geldt dit ook voor de materiele
prestatie. Vanwege de eruit voortvloeiende verbetering in de
verdeling van de werkgelegenheid verdient daarom de part-time

werkvorm meer dan alleen verbale stimulatie.

X1

Aangezien ongelukken gewoonlijk het gevolg zijn van
onvoorziene omstandigheden, dienen veiligheidsanalyses
gebaseerd op simulatie met modellen met enige argwaan bekeken

te vorden.
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1. INTRODUCTION

1.1 Numerical Models in Hydraulic Engineering in

the Netherlands

In the practice of civil engineering numerical models are
accepted as a means of predicting waterflow. While for the
final design of important projects physical scale models
still are being built, the preliminary designs are more and
more tested solely by numerical methods. The obvious reason
for this is the fact that the numerical model is cheaper and
easier to adapt to different design options.

Because of the high costs involved in the construction
and maintenance of a large physical model, generally only
the large technological institutes are able to use these
models. At the other hand, the costs of the computing power
needed to employ large mathematical models decreases. In the
last few years is has become feasible, even for small or
medium sized organizations like engineering consultants and
design offices of construction firms, to utilize large
numerical models. By means of such a model designs can be
tested without the (often expensive) help of the large in-
stitutes.

This change in amount of attention given to physical
models on the one hand and numerical models on the other has
been going on for some time with respect to 2-D models. As
an illustration we can consider the model research in con-
nection to the Delta works, a large project involving the
closure of the sea inlets in the SW of the Netherlands.
Here, the emphasis has been on the prediction of the tidal
movement in coastal waters. To this purpose many physical

and mathematical models were constructed. For the
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Oosterschelde project a large physical model was built rep-
resenting an area of about 4000 km?. For the same area one-
and two-dimensional models (IMPLIC, WAQUA) were set up. The
shift of interest between physical models and numerical
models may appear from counting the number of references to
these models in the projects Newsletter "Deltawerken". In
the last four years physical models were referenced 2 times

against 18 references to numerical models (Deltawerken,

1989).

The kind of modelling discussed so far concerns mainly
the numerical simulation of water flow in estuaries and
coastal seas. As indicated by the dimensions of the
Oosterschelde model, the horizontal scale of such models is
two or three orders of magnitude larger than the vertical
dimension, i.e. the water depth. Consequently the vertical
accelerations are hardly important and in most cases a two
dimensional horizontal computation is sufficient to predict
the flow pattern. To accomodate stratification and other
strong variations in the vertical dimension the model can be
organized in layers. A formulation of the mass and momentum
exchange between the layers must be included in such a quasi
3-D model, but vertical accelerations are neglected. An ex-
ample of such a model is desqribed by Leendertse (1989).

Two-dimensional horizontal models of free surface flows
are based on the so-called shallow water equations (SWE),
which are derived by vertical integration of the Navier-
Stokes equations for incompressible fluids. Many programs
based on the SWE are in use in the Netherlands (e.g. WAQUA,
FINEL, TWOFLOW, DUCHESS). Because of the free surface the
SWE can also be regarded as a special form of the 2-D com-

pressible Navier-Stokes equations.
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If the three-dimensionality of the flow field is impor-
tant, physical models are still often employed. But because
of the dramatic decrease in computing costs in the last
decade, especially for computations performed on mini com-
puters and PC’'s, it has become possible to study 3-D flow
fields by means of numerical models, even on small computer

installations.

This thesis is concerned with the application of numeri-
cal models in those cases where the horizontal and vertical
dimensions are of the same order of magnitude. There is then
no justification for treating one space direction in another
manner than the remaining two and the full three dimensional
Navier-Stokes equations must be solved. Examples of such
applications are the prediction of the local flow pattern
around or through hydraulic structures like dam heads,
bridge piers, lock gates, etc.

As the vertical dimension is governed by the water depth,
the horizontal dimensions in this kind of applications will
be in the range of say from ten to a hundred meters, i.e. a
relatively small area compared to the tidal models mentioned
above. This does not mean, however, that the extent of the
numerical problem would be less. To describe the velocity
variations properly the grid size should be chosen in the
order of one meter, leading to a total number of grid points
over the three dimensions that often exceeds the number of
points in the above mentioned 2-D problems.

Nevertheless, because of the ever increasing computa-
tional power available, it has become feasible to use three-
dimensional numerical models for local problems, either as a
stand-alone model or as a part of a larger 2-D model.

Due to the relatively small horizontal dimensions it is

often sufficient to calculate the stationary flow, as the



time scale in which the flow pattern develops is small as

compared to tidal periods, for instance.

In the past many flow situations that are in reality three
dimensional in nature have been simulated using 2-D numeri-
cal models. This may lead to erroneous results especially
when the transport of sediment is considered.

As an example consider the back-flow behind a damhead

protruding into a current carrying channel (fig.1.1).

2-D flow around dam head

fig. 1.1

In a stationary 2-D depth averaged calculated flow there
will be no mass exchange between the main current and the
back-flow region, because of the single dividing flow line
between the two regions. For the same reason, in such a
model no sediment or other dissolved matter will enter the
back-flow region other than by diffusion. In practice, this
diffusive transport is very small compared to the total
transport, which is mainly convective.

The flow calculation itself is affected because there
will be no convective exchange of momentum across the divid-

ing line between the two regions. The backflow is driven
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through viscous interaction only. In a 3-D calculation,
however, mass flow and thus momentum may enter the region of
secondary flow, say near the bottom and leave at the sur-
face. Consequently the backflow will be driven by viscous
and convective momentum exchange. In chapter 9 of this
thesis we give an example of a flow situation where the
results of a 3-D computation differ considerably from those

of a 2-D computation.

1.2 Existing Programs

With modern computer facilities the 3-D computation of
fluid flow has come within reach of practical engineering
applications. Some general purpose-programs are commercially
available (Phoenics,Fluent). They are based on numerical
schemes that are very stable as robustness is a paramount
attribute of this kind of programs. Unfortunately, in many
cases this robustness comes at the expense of extraneous
numerical diffusivity. Numerical diffusivity or viscosity is
caused by the so-called upwind treatment of the convection
terms in the Navier-Stokes equations. This upwind technique
automatically stabilizes the computational process by adding
viscosity as a function of the local convecting velocity.
So, although the resulting flow may seem acceptable, there
will be added viscosity at critical places in the flow pat-
tern.

It is possible to use higher order upwind schemes. Those
schemes are formally free from numerical viscosity, but the
connectivity of the computational points increases. This
means that for the calculation of a variable in a specific
gridpoint more neighbouring points are used, as compared to

more simple schemes. This circumstance may lead to problems



near the walls. Also these schemes are often sensitive to
direction in respect to the computational grid.

The general-purpose character of commercial programs
causes, in many cases, the use of an unnecessary amount of
memory for specific applications. This is undesirable if one
aims at the possibility of running the program on minicom-
puters or even PC’s. For engineering purposes it is often
still too expensive to run extensive programs on mainframe
computers where cpu time has to be rented.

In the Netherlands a project has been started (ISNAS) by
the three big technological institutes to design a general-
purpose program for the Navier-Stokes solution of flow
problems. This project proposes to use mainframe and vector

machines to solve the equations in a sophisticated way.

In this situation there seems room for a simple and
straightforward 3-D method especially designed for use on
company owned minicomputers. Such a method is the subject of
this thesis. To avoid the problem of numerical viscosity,
while maintaining computational simplicity, the method is
based on difference approximations that are central in
space. The set up of the computation has a close relation to
a well tested scheme that is extensively used in the
Netherlands for the calculation of 2-D open water flow (the
above mentioned SWE programsj and uses a minimum of computer
memory.

In this respect it is noteworthy that our method needs
only one set of flow variables to be stored during the com-
putation. The method allows updating to be done by

successive substitution.
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1.3 Basic Principles

1.3.1 The Artificial Compressibility Method

The method we present in this thesis is based on the
principle of artificial compressibility. Much work in this
area was done by Chorin, who first proposed the scheme
(Chorin,1967), and more recently by a group of research
workers in the USA (Chang and Kwak,1985, Hartwich,1987). The
work of the latter group is based on an artificial compres-
sibility scheme of Steger and Kutler,1977, using the
Approximate-Factorization (=ADI) scheme of Beam and Warming
(1976). In Europe the method is used by, among others, E.
Dick (Dick and Desplanques, 1983).

The method of artificial compressibility (AC) circumvents
the basic difficulty of the incompressible Navier-Stokes
equations. This difficulty is the mathematical form of the

continuity equation :

<

<
]

o

with V = velocity

which acts as a constraint
on the equation of motion. The AC method adds an
(artificial) pressure derivative 3p/dt to the continuity
equation, which changes, during the transient part of the
calculation, the system of equations into a more easily
solvable variant of the compressible Navier-Stokes equa-
tions. If the solution converges to a stationary situation
the extraneous pressure derivative will automatically become
zero and the original incompressible continuity relation is

satisfied again.
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dh/dt = - 3(hu)/3x

~a: free surface flow (SWE)

dp/dt = - 3(pu)/dx
b: real compressible flow
fig. 1.2

Our approach is from a slightly different angle. The
numerical technique that is used for the solution of the
Shallow Water Equations (SWE), mentioned section 1.1, is in
fact a solution method for the compressible Navier-Stokes
equations. This can be understood from fig. 1.2. Because of

the free surface the continuity equation of the SWE :
V.(hv) = -3h/at

with h = depth
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takes the mathematical form of the compressible continuity

equation
V(pV) = 8p/8t
with p = density

The SWE contain a gravity-wave part, convective and
bottom-resistance terms. Later, lateral diffusivity terms
were added (Kuipers and Vreugdenhil 1973). The solution
technique uses a second order accurate Peaceman-Rachford ADI
scheme for the wave part. Because the remaining terms cannot
easily be fitted into the ADI scheme, they are treated more
or less explicitly.

We have tried to use the same approach for the case of
the 3-D incompressible flow using the AC principle. As
stated above this principle transforms the incompressible
Navier-Stokes equations into a variant of the equations for
compressible flow, having a time derivative of the pressure
in the continuity equation. For stationary flow the numeri-
cal solution will approach the incompressible flow solution.

According to this idea the (compressible) SWE technique
is in principle applicable to incompressible stationary
flow.

By using the AC principle we are able to use more or less
the same numerical scheme for the incompressible Navier-
Stokes equations as were used for the SWE modelling. Of
course the 2-D equations must be extended to three dimen-

sions.
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1.3.2 Alternating Direction Implicit (ADI) Method

Because of its efficiency in multi-dimensional problems,
the numerical technique most often used for the solution of
the SWE is the alternating direction implicit or ADI time
integration method (Peaceman and Rachford, 1955, Douglas,
1955). In the well known SWE scheme of Leendertse (1967),
which is the basis of many subsequent computational
programs, this method is used in connection with a finite
difference approximation on a staggered grid. (Other, less
efficient, but potentionally more versatile procedures use a
finite element approximation, which prevents the application
of ADI (Praagman,1979)).

In order to use the numerical scheme for the full three
dimensional computations the ADI method had to be extended
to 3-D. This is not possible with the Peaceman-Rachford ADI
scheme. Being marginally stable in 2-D, it is unstable in 3-
D. The extemsion of the ADI technique to three dimensions is
well known (Douglas-Gunn,1964) for diffusive problems, but
proved to have some consequences on the stability of the
numerical calculation for problems of a hyperbolical charac-
ter like the convection dominated Navier-Stokes equations.
An important part of the theoretical work in this thesis
consists of the discussion of this aspect of the ADI method
in three dimensions.

We propose to use the Douglas-Rachford version of ADI,
which has better stability properties but is only first or-
der accurate in time. But as we are already confined to
stationary flows by the AC-method, this is not a great dis-
advantage.

As with the SWE the convective and diffusive terms cannot

easily be incorporated in the ADI scheme. We decided to use
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simple explicit formulas for the time advancing of these

terms.

1.4 Turbulence

As most flows in engineering practice are turbulent, at-
tention must be given to the way turbulence is treated in a
numerical model. A common approach is the use of a turbulent
viscosity coefficient. Following Boussinesq (1877), in this
approach the momentum exchange due to the turbulent motion
is modelled as a viscous effect, which is added to the
molecular viscosity. The viscosity coefficient thus becomes
dependent on the flow conditions. In the more advanced flow
models it is calculated for every point of the computational
grid (x-e¢ model).

We use a more simple approach of a constant turbulent
viscosity coefficient in combination with a stream-
controlled slip condition at fixed walls, using a
logarithmic law-of-the-wall approach in the grid cells ad-

jacent to the wall.

1.5 Summary of the Remaining Chapters

In chapter 2 the Navier-Stokes equations are given. A
number of commonly used simplifications of these equations
is reviewed. As some confusion seems to exsist in literature
about the part played by the different terms of these equa-
tions in the generation of secondary flows, the effect of
the different simplifications on the solution of the equa-

tions is studied for a back-step configuration.
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While we seek a solution method for incompressible flow,
the proposed method is based on the compressible Navier-
Stokes equations. The difference between the incompressible,
the compressible and the artificial compressible equations

is illustrated.

In chapter 3 solution methods for incompressible flow are
reviewed. It is shown that there is no basic difference be-
tween the pressure correction (PC) method and the method of
artificial compressibility (AC). The relative merits of the
finite difference (FD) and the finite element (FE) methods
are compared. The main advantage of the FD method is the
possibility to use an efficient time integration method like

ADT.

Chapter 4 deals with the actual solution method as
proposed in this thesis. First the spatial approximation is
treated in terms of Fourier components. For the time in-
tegration we use ADI. Because many variations of this method
are in use, the relation of the different schemes to the
general Douglas-Gunn formula is expounded. The convection
terms are integrated explicitly, separately from the ADI
scheme. The explicit steps can be incorporated in different
ways in the total computational scheme. Finally the in-
fluence of the amount of artificial compressibility on the

solution is discussed.

Chapter 5 describes the results of the theoretical study
on the stability properties of ADI in three dimensions. To
explain the effects of the extension from 2-D to 3-D a
graphical method is designed. In this way the destabilizing
influence of the extra terms, introduced by the factoriza-

tion which is inherent in the ADI formulation, is shown in a
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clear manner. The main conclusion of this study is that the
Douglas-Gunn ADI formula is unconditionally unstable for the
inviscid convection equation and only conditionally stable

for the convection-diffusion equation.

In chapter 6 we apply the theory developed in chapter 5
to the 3-D Navier-Stokes equations. While is very difficult
to derive exact stability limits for the numerical scheme
that is adopted, direct calculation of the eigenvalues of
the associated Fourier matrix suggests that the same
principles are valid. By ordering the explicit and implicit
operations in a certain way, the stability of the total

scheme can be improved.

A short review of the theory on the relation between the
Reynolds stresses and the turbulent or eddy viscosity is
given in chapter 7. Some formulas for the eddy viscosity

based on the mixing length theory of von Karman are given.

Chapter 8 deals with the boundary treatment. An important
disadvantage of the finite difference grid is its inability
to represent curved and oblique boundaries. By the use of
the porosity method, which can be regarded as a variant of
the finite volume technique, this disadvantage can be over-
come to. some extent. A partial slip is prescribed on solid
wall boundaries, which is related to the logarithmic law of
the wall. This results in a formulation that generates the
correct wall shear stress, independent of the eddy viscosity
coefficient used in the fluid body. Thus, the possible ill
effect of the simple turbulence modelling near the wall is

compensated,
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In chapter 9 three examples of flow computations with the
present mathematical model are presented. In a fictitious
situation, representing a harbor in a river bend, the pos-
sible large difference between a depth-averaged 2-D and a
full 3-D model is demonstrated. The remaining two applica-

tions of the numerical method are based on real projects.

Finally, conclusions are given in chapter 10.
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2. THE GOVERNING EQUATIONS OF FLUID FLOW
2.1 Introduction

In this chapter we shall discuss the equations that
describe the flow of fluids. The most general description is
given by the Navier-Stokes equation, which is a combination
of
Euler’s equation of motion (1755) and Stokes’ friction
resistance terms (1845). Theoretical solutions of the full
equations are difficult to obtain. In many cases a more use-
ful approach is to neglect those terms in the general
equation that are considered less important in the applica-
tion to a specific class of problems. Since the advent of
automatic computers the numerical solution of the full equa-
tions has become possible, but for the understanding of the
effect of the various terms it is useful to review some of
the theoretical solutions of the different simplified forms
of the full equation that are in use.

In the next sections we present first the full Navier-
Stokes equation and then the different approximations. As an
illustration we give the solution for the 2-D flow over a
backstep for each approximation.

The second part of the chapter deals with the Navier-
Stokes equations for a compressible medium. While we are
interested in the flow of water, which can be taken as in-
compressible in our application, the compressibility plays
an important role in the solution technique we will use.

Because our discussion of the stability of the numerical
process is based on Fourier analysis, a short description of
the Fourier transform of the flow field is given at the end

of this chapter.
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2.2 The Navier-Stokes Equations

The Navier-Stokes equations are the mathematical form of
the law of conservation of momentum. They state that the
change in momentum in a infinitesimal volume must balance
the pressure gradient and the net convective and diffusive
transport of momentum through the surface of this volume-
element. We will present the Navier-Stokes equations for the
case of an incompressible fluid. They may be written as a

single vector equation :

av/dt + 1/p grad p + (V.grad) V - v div(grad V) = 0 (2.1)

This vector equation relates the local acceleration 3V/dt
to the pressure gradient grad p ,to the convective accelera-
tion (V.grad) V, and to the viscous momentum transfer v
div(grad V). For homogeneous incompressible fluids, the den-
sity p is a constant.

Together with the equation of continuity :

divv=20 (2.2)

equation (2.1) constitutes the basis for the flow-

calculations in this thesis.

Remark :

Due to the homogeneity of the fluid gravitational effects
are completely balanced by the buoyancy. Thus, the hydros-
tatic part of the vertical pressure distribution can be

ignored.
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Although we confine ourselves to stationary flow it is
advantageous to keep the time derivative in (2.1). In the
artificial compressibility (AC) method that we propose to
use, we will even add a time derivative to (2.2). In many
cases it is easier to treat stationary flow as the equi-
librium solution for steady boundary conditions of the
dynamic equations than to solve the stationary equations
proper.

The last term on the left side of (2.1) has the form
given here only if the fluid is incompressible and/or the
coefficient of viscosity v is a constant. This last restric-
tion is not important as long as v is regarded as the
molecular viscosity coefficient because for water it is
nearly constant under ordinary conditions. But whereas we
will use the coefficient of viscosity to model turbulence
according to the Boussinesq approximation the assumption
that v is constant is too restricted. This aspect is treated

in chapter 7.

As given above the Navier-Stokes equations are expressed
in the so-called "primitive variables" : u, v, w and p.
Another possibility, for incompressible flow, is the use of
the vorticity w and the streamfunction F. These vector vari-

ables are related to the "primitive" velocity vector by
w=VxV (2.3a)
VxF =V (2.3b)

Because of its definition (2.3) the streamfunction F

automatically satisfies the equation of continuity (2.2)

while the use of the vorticity w in the equation of motion

eliminates the pressure term.
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The formulation is especially useful in 2-D because then
only the z-components of F and w appear in the equations.

Consequently, Fz and w, can be treated as scalars
w, = du/dy - 3v/8x
u = an/ay v = -an/ax

By cross differentiation the 2-D N.-S. equations then can

be stated as

Bw/at + u 6(4}/3}{ + v aw/ay - y(azw/axz + aZw/ay2) =0
(2.4)
32F/3x2 + 32F/3y2 = w

The first equation of (2.4) is a transport equation for the

vorticity, while the second is a Poisson equation for the

stream function. The pressure does not explicitly appear.

2.3 Approximations of the N.-S. Equations

In order to give an impression of the importance of the
different terms of (2.1) we will discuss the influence they
have on the flow pattern in the well known configuration of

the backstep (figs. 2.1-5).

2.3.1 Potential Flow

The simplest useful approximation of incompressible fluid
flow is given by the potential flow representation. In

potential flow, viscosity and wall friction are neglected.
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It is further assumed that no vorticity enters the computa-
tional domain through the boundaries. Consequently the flow
will be irrotational, which means that from the convective

term :
(V.grad)v = '/, grad V2 - V x rot V

the last term on the righthand
side equals zero. With these modifications the equation of

motion for potential flow reads:
av/at + grad(p/p) + 1/, grad |V|2 =0 (2.5)

or in the case of stationary

flow:
grad (p/p + */,|V|?) = 0 (2.6)

The name potential flow is derived from the fact that
because rot V = 0 , according to Helmholtz’ rule, V can be

written as

V = grad P
with P a scalar potential.

With div V = 0 we get the equation of Laplace:
div (grad P) = 0
The flow pattern for the potential flow approximation for
a backstep configuration is given in fig. 2.1b, while in

fig. 2.la the corresonding streamfunction is depicted.

Because in the case of potential flow :
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VxV=w=20

the streamfunction also satisfies the equation of Laplace,
according to (2.4). Fig. 2.la is the graphical result of the
numerical solution of this equation, while the corresponding
velocity field (fig. 2.1b) is obtained by taking the

gradient of the streamfunction.

2.3.2 Euler Equations

If the restriction, that the flow is irrotational, is
removed we get the Euler equations for the flow of an ideal
fluid viz. a flow with no viscosity and no wall friction

The equations then incorporate the full convective term:

av/at + grad(p/p) + (V.grad)V = 0 (2.7)

Because of the now possible vorticity the streamfunction
and the velocity field for the backstep configuration change
drastically. In this special case the streamfunction and the
corresponding velocity field can be constructed easily. The
Euler streamfunction and flow field are given in fig. 2.2.

It is still possible to define a velocity potential but
now this potential is a combination of a scalar and a vector
potential (Helmholz’ rule). Thus, the resulting flow field
may be regarded as a potential flow field to which a rota-
tional flow field is added. In our 2-D example the
vectorpotential degenerates into a single component, so the
rotational component of the flow can be obtained by a simple
subtraction of the potential flow field from the Euler flow
field. The result of this subtraction, both for the stream-

function and the velocity field, is given in fig. 2.3.
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a: Potential Flow

: Stream function
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: Velocity field

b: Potential Flow

fig. 2.1
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a: Euler equation : Stream function

b: Euler equation : Velocity field

fig. 2.2

2.8



: Stream function

Euler minus Potential Flow

a:

NN

: Velocity field

b: Euler minus Potential Flow

fig. 2.3
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Stream Function

a: Stokes equation :
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b: Stokes equation

fig. 2.3
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2.3.3 Stokes Equation

While not of great interest for the simulation of water
flow which generally can be regarded as low viscosity fluid,
we mention, for sake of completeness, the Stokes equation.
This is an approximation of the N.-S. equations where the
convection terms are omitted, which is allowable when the
viscous forces are predominant, for instance in the case of
creeping flows. In 2-D the Stokes equation can be put in a
very simple form if we use the vorticity-streamfunction rep-

resentation :
dw/8t = v(32%w/8%? + dw/3y?) (2.8a)

= 32F/8x? + 02%F/dy?) (2.8b)

€
I

For stationary flow (2.8a) and (2.8b) can be combined in the

biharmonic equation:
34F/dx* + 2 3?F/3x? 3?F/3y? + 3*F/3y* =0 (2.9)

Remark :

This equation also describes the (small) deflections of a
thin plate hinged or clamped at the boundaries but otherwise
without transverse loading (Thom and Apelt,1961). Such a
plate thus is a direct analogue to the streamfunction for
the case of creeping flow. A clamped boundary corresponds to
a no-slip condition, a hinged boundary to a free slip condi-
tion.

In case of free slip boundary conditions we get, for the
backstep problem, the same solution as for potential flow.
With no-slip boundaries, however, the solution is as

depicted in‘fig. 2.4 (Thom and Apelt,1961). This solution

2.11



again can be split according to Helmholz’ rule in a poten-

tial component and a rotational component. The rotational

component is given in fig. 2.5.

Stokes minus Potential Flow : Stream function
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b: Stokes minus Potential Flow : Velocity Field

fig. 2.5
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Stream Function

a: Navier-Stokes equation :
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b: Navier-Stokes equation

fig. 2.6
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For comparison we give in fig. 2.6 the streamfunction (a)
and the velocity (b) for the full Navier-Stokes equations.
In this example a Courant number of 0.5 (based on the
inflow) and a diffusion number of 0.025 was used (see sec-

tion 5.3). In fig. 2.7 the difference with the potential

flow field is given.

minus Potential Flow :

a: Navier-Stokes
Stream Function

b: Navier-Stokes minus Potential Flow :

Velocity Field

fig. 2.7
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2.3.4 Burgers Equation

Burgers equation is obtained by neglecting the pressure
gradient in (2.1). The result is a non-linear transport
equation. Because in this thesis we are considered with sta-
tionary flow the non-linearity of the equations poses no
great problems. So we mention this approximation of the

Navier-Stokes equation without further discussion.

2.4 Compressiblé Medium

2.4.1 Shallow Water Equations

Because we propose a solution method based on the concept
of artificial compressibility, we now extend our discussion
to compressible flows. For a compressible fluid the equation
of motion (2.1) is the same as for the incompressible case
(except for the viscosity term, which in this case is more

complicated). The equation of continuity changes into:
dp/dt + div (pV) =0 (2.10)

For a complete description of the flow, a relation between
the now variable density p and the pressure p is needed. In
the general compressible case this relation is found in fur-
ther thermodynamic equations.

A special case of the compressible equations are the so-
called shallow water equations (SWE). These equations
describe the 2-D movement of a fluid with a free surface.
Due to this free surface the 2-dimensional divergence may
differ from zero, giving the equation of continuity the same

mathematical form as (2.10)
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dh/3t + div (h.V) =0 (2.11)

Instead of a variable density p, we now have a variable
depth h and a constant density p,. The relation between

water depth h and pressure p follows from :
grad p = pog grad h (2.12)
with g = acceleration of gravity

With (2.12) the pressure p can be eliminated from the
equation of motion, so no further relations are necessary.
In (2.11) and (2.12) a horizontal bottom is assumed. For a
variable bottom topography, in (2.12) the surface elevation

should be used instead of the depth h.

2.4.2 Artificial Compressibility

In the method of artificial compressibility that we will
use in this thesis the time derivative of the pressure is
used as an error term without real physical meaning. As long
as this term differs from zero the equation of motion (2.1)
will cause the flow pattern to change towards more
divergence-free flow. For the artificial compressibility

method the equation of continuity reads
apap/at + podiv(V) =0 (2.13)

with ap a compressibility factor

having a dimension of [sec?/m?]
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The density p is again considered a constant (=p,). Note
that, in contrast to (2.11), (2.13) is a linear equation.
Thus, the AC equation of continuity is less complicated than

in the "true" compressible case.

Both the SWE and the AC forms of the continuity equation
give the system the mathematical character of the true com-
pressible equations. The main difference between
incompressible and compressible equations is the possibility
of compression waves in the latter case. In a compressible
medium this compression wave is propagated with the speed of
sound (for water about 1000 m/sec). In the case of the SWE
this propagation speed follows from c = J(gh), where h is
the water depth. For the AC method the propagation speed of

the compression wave amounts to:

c = /(l/ap) (2.14)

The propagation speed as given by (2.14) is valid only if
the influence of the convection is neglected. The true
propagation speed of the AC method is given in section 4.5.
The value given by formula (2.14) can be regarded as the
still-water propagation. In the next chapter a graphical
illustration (fig. 3.1) is given of the different forms of

the continuity equation.

2.5 Fourier Transformation

A general stationary flow field can be considered as
being built up from spatial Fourier modes. Formally, this

decomposition is possible if the flow satisfies the
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linearized Navier-Stokes equations and periodic boundary

conditions. We can discern pressure modes of the form:

p - P exp (i k.r) (2.15)
with P = complex amplitude of p
i=J1
k = wave number vector
r = position vector

and flow modes:

V="Vexp (i k.1) (2.16)
with ¥V = complex amplitude of V

Note: We use the symbol i for the imaginary unit as well as
for the grid numbering in the combination i,j,k for the
three directions. The intended use will be clear from the

context.

Flow modes can be divided in longitudinal modes where the
velocity amplitude vector ¥ is parallel to the wave number
vector k, and transverse modes where V¥ is perpendicular to
k. Insertion of (2.16) into (2.2) shows that in an incom-
pressible medium only transverse modes can exist. They move
through the field with the speed of the convecting velocity
Vc which consist of the summation over all modes of V it-
self.

In a compressible medium longitudinal flow modes together
with the pressure modes travel with a finite propagation
speed as compression waves.

This means that in the artificial compressibility method,

during the transient part of the computation, we have to
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deal with two different transfer velocities, viz. the speed
of the artificial compression wave c=./1/ap and the convec-
ting velocity which is the velocity of the flow itself.

As will be explained in section 4.5 the true propagation
speed of the pressure wave will always be higher than the
convecting velocity. This means that the (artificial) Mach
number of the flow stays below unity. The flow is subsonic

for every value of the compressibility factor ap.
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3. SOLUTION METHODS FOR INCOMPRESSIBLE FLOW

3.1 Introduction

As mentioned before, the condition div V = 0 poses a dif-
ficulty for the numerical solution of the incompressible
flow equations. The reason for this difficulty can be made
clear in the following way.

Numerical solution of the system (2.1),(2.2) involves
(after linearization) the solution of a system of linear

equations which, for the 2-D case, can be written as:

(3.1)

[
N
-
I
N
N
I
N
w
<
I
o

where the matrix elements are
submatrices over the grid and u, v and p grid-vectors for
the velocity components and the pressure.

The incompressible continuity equation (2.2) causes the
submatrix ag; to be identically zero, because the pressure
does not appear in the continuity equation. In any numerical
solution technique it is awkward to have a zero on a

diagonal of the linear system to be solved.

3.2 Vorticity-Streamfunction Representation

A well known technique to avoid the above mentioned
problem is the use of the vorticity-streamfunction repre-
sentation (see section 2.1). The streamfunction by
definition satisfies the continuity equation, while the ex-

pression of vorticity allows a combination of the equations



of motion from which the pressure is eliminated. In 2-D this
results in a single equation for the transport of vorticity
and a Poisson equation for the streamfunction.

In 3-D, unfortunately, there is no reduction in the num-
ber of equations to be solved, because both the vorticity
and the streamfunction have three components in this case,
resulting in a system of six equations. Although it is pos-
sible to solve the equations in this way there is no
advantage over the primitive equations as in the 2-D case.
Boundary conditions are generally difficult to state in

streamfunction-vorticity methods.

3.3 Pressure Correction Method

Harlow and Welch proposed in 1965 a 3-D method using the
primitive variables p,u,v,w. Their solution is known as the
Pressure Correction or PC method. In this method one ad-
vances in time by first calculating intermediate values of
the velocity components from the equations of motion leaving
out the pressure terms. In terms of (3.1) this means one
temporarily leaves out the last column and the last row of
the system (3.1). Using for instance a simple explicit

scheme
V'’ =V - At( Conv. - Diff.) (3.2)
where At is a time step and
Conv. and Diff. the convective

and diffusive terms resp.

The true new velocities can be expressed in the inter-

mediate values V' plus a correction in terms of the still
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unknown pressure gradient. The new velocities must satisfy
the continuity equation div V = 0. Insertion then results

in :
VZ(p/p) = /At div(V’) (3.3)
where V2 stands for the Laplacian.

Solution of this Poisson equation yields the pressure
distribution on the new time level, which then can be used
to correct the V' values. A boundary condition for the pres-
sure on the solid boundaries is necessary but can be derived

from the equation of motion (Peyret and Taylor,1983).

3.4 Artificial Compressibility

In 1967 Chorin proposed a seemingly different method
known as the Artificial Compressibility (AC) method. In this
method an "artificial” time derivative of the pressure is
added teo the continuity equation, thus removing the dif-
ficulty mentioned at the beginning of this chapter. Instead

of div V = 0 the equation of continuity now reads:
apap/at + podiv V =0 (3.4)

This equation differs from the true compressible con-
tinuity equation in two ways. Firstly by the appearance of
the compressibility factor o and secondly by the fact that
the second term of (3.4) is independent of the density p.
This last circumstance makes the solution easier because it
causes (3.4) to be a linear equation. The compressibility

factor determines the propagation speed of the artificial
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pressure wave and can be used to affect the "time" in which
the steady state is reached. Its influence is discussed in
more detall in section 4.4.5.

Mathematically the system (2.1),(3.4) has the form of the
compressible Navier-Stokes equations and in principle it can
be solved by the same methods that are used for the SWE.
This is an important advantage as there is a lot of computa-
tional experience in this kind of methods. The well known
Leendertse method for the SWE is such a method based on the
Peaceman-Rachford Alternating Direction Implicit (ADI)
scheme. This scheme is centered in time, which means that
the time advancing is based on a centered interpolation be-
tween the spatial values on the old and on the new time
level.

As mentioned in 1.3 this particular scheme is not
suitable for 3-D. The ADI scheme we use in this thesis is
fully implicit, which means that the time advancing is based
on the spatial derivatives of the new time level only. In
chapter 5 we will show that, when the convection terms are
included in the ADI procedure, such a scheme will never be
unconditionally stable in 3-D. Consequently, in our proce-
dure we will treat the convection-diffusion terms separately
from the ADI process.

While there is a basic difference between the PC and AC
method, because the AC method'leads to a hyperbolic system
and the PC method to a diffusive or elliptic system, the use
of a fully implicit time integrating scheme tends to remove
this difference. A heavily damped hyperbolic system behaves
like an elliptic system. Indeed, Chorin introduced in 1968 a
kind of PC method which he considered as a dynamic form of
his earlier AC method.

To explain this we will write down both systems. For

simplicity we give the 2-D case, but the same argument is
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valid in 3-D. The convection-diffusion terms are denoted by

the characters CD.

The PC method :

u' =u - At CD (3.5a)
v =v" - At ¢D (3.5b)
1/p(32p/3x2 + 32p/dy?) = du’'/8x + 8v' /3y (3.5¢)

and the AC method :

o™l WM - oAt o - 1/p ap/ax (3.6a)
VLo GB ac op - 1/p Bp/ay (3.6b)
ntl n
P =P +

+ At{1/p(82%2p/8x2% + 32p/3y2?) - 3u'/3x - 3v' /3y (3.6¢c)

Comparing both systems, we see that 3.6c can be regarded
as a single iteration step in the solution of (3.5c¢). Thus,
the main difference between both methods is that in the PG
method, after execution of steps (3.5a and b), equation
(3.5¢) is solved for the pressure at every time step, while
in the AC method the stationary solution is attained by time

stepping, or iterating, over the whole system (3.6).

In the following chapters we will use as pressure term

in the Navier-Stokes equations the expression g grad h (g =
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acceleration of gravity) instead of grad(p/p). The water
level h in this expression should not be confused with a
free surface level. In this thesis the letter h is used in
the sense of a piezometric head i.e. a measure of the pres-
sure within the fluid. Instead of the compressibility factor
ap we will use @ = g a_. This formulation permits a physical
interpretation of the compressibility factor a. Having the
dimension of 1/m it can be understood as the ratio between
the free surface (m?) of the fluid within an imaginary pitot
tube and the unit fluid volume (m3). A picture of this idea
is found in fig. 3.1 where the different forms of the con-
tinuity equation are depicted schematically.

The still-water propagation speed of the artificial com-

pression wave (2.13) becomes in the new notation:

c = J(g/a) (3.7)

3.5 The Computational Grid

Numerical solution methods require some grid system on
which the computation is done. There are methods that dis-
cretize only the boundary (boundary-element method) but
generally a network of grid iines is constructed over the
whole computational domain. Two basic methods of spatial
discretisation can be discerned: the finite difference (FD)
and the finite element (FE) method. A third, the finite
volume (FV) method, is a FD-based method that tries to cap-
ture the conservation properties of the FE-method. (see also

section 8.2.2,
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1
hl&l lh hlL >
i 4
dh/dt = - d(hu)/3x
a: free surface flow (SWE)
U
dp/dt = - 3(pu)/ax
b: compressible flow
W u
————-’ __’
du/dx = 0
c: incompressible flow
N
u y w
a dh/dt = - Ju/dx
d: artificial compressible flow
fig. 3.1
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Our choice of grid system was guided by the wish to make
use of the existing experience in (compressible) SWE solu-
tion techniques. Most programs in this area are based on
finite differences, because this method is economical in its
use of computer memory. With the development of cheaper com-
puting power the more versatile FE methods have become
economically feasible but, for 3-D use, these programs re-
quire the storage and processing of a great amount of
geometrical data which still makes them too extensive for
small computers. Moreover, the generation of a FE-grid is a
major task.

On the other hand, a regular FD-grid is very easy to set
up and requires hardly any geometrical data. In its most
simple form, only the number of grid points and grid size in
each direction, so six numbers in all, have to be recorded.
Of course there are disadvantages, the most important being
the inability of the FD-grid to describe irregular bound-
aries of the computational domain. To counteract this
circumstance boundary fitted coordinates are sometimes
employed. The grid then follows the boundaries, but is by
some mapping method transformed into a regular grid in which
the finite differences can be defined.

Another problem is the accuracy of the solution at the
solid boundaries. With turbulent flow boundary layers will
appear. To describe these boundary layers accurately a very
small grid size is required locally. With a regular grid
having a constant grid size over the whole field, this leads
to a prohibitive number of grid points and, because of the
Courant condition, to very small time steps.

Notwithstanding these disadvantages we propose to use the
simple regular FD-grid. To enhance the accuracy at the
boundaries we will use the so-called "porosity method". In

this method grid cells that are cut by the boundary are
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mathematically given a surface and a volume that corresponds
to the part of the cell that is open to the flow. The
geometry itself is left unchanged. The method will be ex-
plained in section 8.2. Simulation of the effect of boundary
layers is attained by assuming a logarithmic velocity
profile in the last grid cell towards a solid boundary ac-
cording to the "law of the wall". This approach results in a
relation between the velocity and its derivative in the last
grid point, which can be used as a boundary condition. See
section 8.3,

In the next éhapter (section 4.2) a more detailed

description of the grid is given.

3.6 Conclusions

In this chapter arguments were given for the choice of
the solution method. The chosen method is based on the
principle of artificial compressibility, making it possible
to use solution techniques for compressible flow for the
incompressible Navier-Stokes equations. For economical
reasons we decided to use a simple finite difference grid.

Thus, we can use existing techniques like ADI for the
time integration of the difference equations. These tech-

niques will be discussed in the next chapter.
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4. THE NUMERICAL SOLUTION OF THE AC EQUATIONS

4.1 Introduction

According to the method of artificial compressibility the

following system of equations has to be solved :

av/dt + g grad h + (V.grad)V - v div(grad V) = 0
(4.1)
dh/6t + 1/a div V = 0

with V = (u,v,w)T
and a = compressibility

factor

Remark :

As explained at the end of section 3.4 the appearance of
the acceleration of gravity g in (4.1) is connected to the
use of the piezometric head h instead of the pressure

proper.

The first terms of the two equations (4.1) are time
derivatives, the remaining terms contain only spatial
derivatives. The spatial terms can be taken together in a
symbolic operator Da operating on a vector ¢ = (u,v,w,h)T.

We get:
a¢/ot + Da ¢ =0 (4.2)

If we choose as our computational domain a set of dis-
crete points instead of the continuum, the spatial
derivatives can be approximated by finite differences be-

tween grid points. It is then possible to rewrite the



symbolic formula (4.2) as a system of ordinary differential

equations in time

dp/dt + D ¥ = 0 (4.3)

While in (4.2) ¢ and Da are a 4 component vector and a 4
X 4 matrix respectively, in (4.3) 3 consists of 4 components
for each grid point. For N grid points Dn will be a 4N x 4N
matrix. Numerical solution of the system (4.3) is obtained
by some time-integrating process. Usually this involves dis-
cretizing the time axis. The time integration proceeds then
from one time level to the next so one can speak of an old
and a new time level (¢n and ¢n+1’ respectively).

This integration process can be represented by :
P - Gn P (4.4)

For a simple explicit time integration scheme (Euler)

Gncan be expressed as:

Gn = (I - At Dn)

with I the identity matrix.

Often one chooses an implicit time integrator because of
the better stability properties of implicit schemes. In this

case G takes the form A-lB and (4.4) becomes

A"t gy (4.5)

For the well known Crank-Nicolson scheme for instance

A=0.5(1I+ At Dn) and B =0.5 (I - At Dn)
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System (4.5) can be solved either iteratively or directly.

As stated in chapter 1 we will use partly an explicit,
partly an implicit (ADI) scheme for the time integration of
the system (4.3). This method will be discussed in the fol-

lowing chapters.

Some remarks must be made at this point regarding the
linearity of the expressions used above. Although (4.1) is a
non-linear equation due to the convective term (V.grad) V
we treat the matrices Da’ Dn and Gn as being independent of
¢ and ¥ respectively. The reason for this is that the non-
linearity complicates the analysis considerably. By assuming
the convective term in (4.1) to be (Vc.grad) V where Vc is
a (locally) constant convecting velocity (4.1l) becomes a
linear equation in V and the subsequent linear analysis will
be valid.

The following argument for this assumption can be given
In the Fourier representation of the vector of unknowns that
we will use in the following chapters, we analyse the be-
haviour of a single Fourier component. For such a component
the convecting velocity consists of the summation of all
components. For problems that converge to a stationary
situation, this summation will behave more or less as a con-
stant in respect to a single (short wavelength) component.

In the actual solving of (4.5) the system must be linear
in ¢n+1 so Dn should at most be dependent on components of
¢n, which means that the convecting velocity in the convec-
tive terms is always taken on the old time level. In an
explicit method the derivatives are always taken on this
level, so linearity of the system is not obligatory in that

case.



In section 4.2 of this chapter we give a more detailed
description of the spatial discretisation. In 4.3 the time
discretisation is treated. A review of ADI methods is given.
In the last part of the chapter we discuss the use of ADI

for the 3-D artificial compressibility equations.

4.2 The Spatial Discretisation
4.2.1 Grid-staggering

As mentioned in section 3.5 we use a simple regular finite
difference grid. The computational domain consists of a rec-
tangular block (fig. 4.1). Technical details are given in
section 9.2.1. The actual flow domain is embedded in this

block, leaving a number of "dry" grid points that are not

fig. 4.1 Computational domain

used in the computation. It would have been possible to
store only those grid points that are actually used. This is

common practice in several SWE programs. Such a system
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however, requires a complicated addressing system, while the
rectangular domain, although not as efficient in its use of
memory, has the great advantage that every neighbouring
point of the point (i,j,k) can be addressed directly as
(i+1,j,k), (i,j-1,k), etc.

Another feature, which is well known from 2-D practice,
is the so-called staggered grid. This name is derived from
the fact that in this grid the points where the velocity
components are defined are shifted away from the pressure
points (Hansen,1956, Harlow e.a.,1965). In the Netherlands
staggered grids were used in 1-D problems by Dronkers(1964)
and in 2-D by Leendertse(1967) and in many subsequent
programs.

Another way of looking at a staggered grid is by con-
sidering it as a portion of a dense grid (i.e. a grid where
all flow variables are defined in each grid point, as in

fig. 4.2a). To show this we consider the 1-D wave equation :

]
o

du/dt + g dh/ax

1
[w]

a 3h/3t + du/dx

If this system of equations is discretized with central

difference approximations for the spatial derivatives we

get !
dui
gw te/ax by b= 0
dh,
@ gr *L/Bx (ugy- vy ) =0

This results in two independent systems of differential

equations, one system involving "odd" u’s and "even" h's,



the other "even" u’s and "odd" h's (figs. 4.2b and c).
Without loss of accuracy one system can be left out. The
result is the staggered grid. In respect to the dense grid
the staggered grid contains in 2-D a quarter and in 3-D a

eighth of the number of variables of the dense grid.

|<-ax—>]|

a: dense grid

_ * _ * _— * _—

1 2 3 4 5 6 7
b: staggered grid (u-odd h-even)

* —_— * * —_— *

1 2 3 4 5 6 7

c: staggered grid (u-even h-odd)

|<-----Bx---->] |<-----Ax---->]|
* * . * R *
1 1 2 2 3 3 4

fig. 4.2



While the above derivation leads to a numbering system
as in fig. 4.2a, it is customary, in accordance with the
original shifting procedure, to consider the distance be-
tween two pressure points (or between two corresponding
velocity components) as the grid size proper (fig.4.2d).

Of course, the argument given above for the wave equa-
tion is not valid for the full Navier-Stokes equations. On
the staggered grid the convection and diffusion terms can
only be approximated centrally with twice the grid size of
the dense grid. For the convection terms we still have the
problem mentioned earlier that there are actually two inde-
pendent contributions to the total solution. A consequence
of this fact is the possibility of spurious solutions (see

also Stelling,1984).

4.2.2 Difference Approximations
In the system (4.2):
d¢/at + Da ¢ =0

the symbolic operator Da contains the following elements:

[ oD 0 0 g 8/0% |
0 CD 0 g 8/3y
0 0 cD g 8/08z

|1/ 8/8% 1/a 8/3y l/a 3/8z 0 |
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where CD stands for:
CD = u 3/3x + v 3/3y + w _3/3z - v(82/8x? + 92/3y? + 02%/322)
The system (4.3):
dy/dt + Dn Y =0

is built up by evaluating (4.2) in every grid point and sub-
stituting central differences for every spatial derivative.
For most terms of (4.1) this is a straightforward matter.
For the convection terms however, several possibilities ex-
ist. Taking the term u du/dx as an example, the most simple

form is:

A W R S I N S IR

Other possible formulations are given in section 8.2. If
however, as done in the Fourier analysis given below, the
convecting velocity is considered a constant, these formula-

tions are equivalent to each other.

ul % u2
I =1

U ean / ¢ (ul+u2+u3+ud)
u3 * us

fig. 4.3 Averaging procedure



Because of the staggered grid it is not always possible
to specify the velocity components on the location where
they are needed by the difference formula. In this case the
value is obtained by centrally averaging over 4 surrounding

points. See fig. 4.3.

4.2.3 Fourier Analysis of the Spatial Solution

To analyse the spatial discretisation by Fourier methods
we must assume a constant convecting velocity. Then the
problem becomes linear and can be analysed using Fourier
transforms. By means of such an analysis we can compare the
analytical system (4.2) with its spatial difference ap-
proximation (4.3). Theoretically, this analysis is valid for
periodic boundary conditions only, but it gives a clear in-
sight into the effects of the discretisation on the ampli-
tude and phase of the Fourier components of the solution.

For this purpose we substitute in both (4.2) and (4.3) a

single Fourier component :
P(x,y,2,t) = $(t) exp(i k.r) (4.6)

where $ = complex amplitude of ¥
i=/-1
k = vectorial wave number
with components nx,ny,n

z
r = position vector

Remark :
Because $ is a complex entity it represents both the

amplitude and the phase of the spatial solution.
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Substitution of (4.6) into (4.2) results in :

dp/dt + Dfa.ﬁ =0 %.7)
where the elements of Dfa are
[1i CD 0 0 ige |
a X
0 i CDa 0 ig ny
0 0 i¢D igk,
ik ik ik

L X 4 A 0

o o o e

with i1 €D =3i (u Kk +v K _+w K ) +v (2 + K 2+ r 2)
a c X c 'y c z x y z
N.B. Contrary to its notational appearance i CDa contains a

real part due to the diffusion term. The notation is used to

indicate that i CDa has a large imaginary component.

In the discrete case (4.6) is defined only on the grid
points (i,j,k). This means that the position vector r now
has discrete components

r_ - (iax,j aykaz)’

For a sinusoidal function the difference quotients can be
expressed as trigonometric functions. Substitution of (4.6)
in (4.3) results in a system of 4 equations :

dp/dt + D -0 (4.8)

fn P

where the elements of Dfn are:
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- i sin(1/2nXAX) T

i CDn 0 0 1/,8%
i sin(‘/znvAy)
0 i CDn 0 17,4y
i sin(l/anAz)
0 0 i CDn 17,02
i sin(l/,6_Ax) i sin(l/,x _Ay) i sin(l/,k_Az)
X y z 0
L a 1/,Ax a 1/,Ay a l/,Az -
with 1 €D _ = ’
sin(k_ AX) sin?(1/,k_ Ax)
i(u — 22—+ ..) +v ( % + ..
c Ax o 1/ Ax2 o

N.B. Like i CDa above, i CDn contains a real part.

4.2.4 Accuracy of the Spatial Discretisation

Because sin(x)= ( x + /gx% + ... ), D in (4.8) is a

fn
second order accurate, consistent approximation of Dfa in
4.7).

In order to give a physical meaning to the error made by
the spatial discretisation we write the system represented

by (4.8) in a different form :

do/dt + i g E;k B + 1(V_.E;K)V + v(E;k.E,k)¥ = 0
(4.9)
dh/dt + 1/a i(E,k).0 = 0

where E;, and E, are 3 x 3 diagonal matrices with elements

4.11



- sin(l/znxAx) g

-0 0
1/2nxAx
in(l
E, - 0 sin(1/,k_Ay) 0
/.6 Ay
y sin(/,k_Az)
0 0 —z
L /2nzAz
- sin(nxAx) 0 0 8
nXAx
E, - 0 sin(x_Ay) 0
k_Ay
y sin(x _Az)
0 0 -z
K _Az
- z

Compared to the Fourier transform (4.7) of the original
equation (4.1) the wave number k=(mx,ny,nz)T is replaced in
the spatial difference approximation by E k where E is a

3 x 3 matrix. By rearranging, these matrices can be combined
with the physical coefficients of the Navier-Stokes equa-

tions resulting in :

*
1. a numerical propagation speed: c = E, Jg/a = E; ¢

with ¢ the physical still water propagation

. 2 3 *
2. a numerical convective velocity: VC = E, Vc

Py - 3 . 3 *
3. a numerical viscosity coefficient: v = E;E; v

An important consequence of the spatial discretisation is
that the medium becomes anisotropic and dispersive. This is
caused by the dependency of the elements of E;, and E, on the

absolute value and the direction of k. .The error is least

4.12



for directions of k at equal angles to the three coordinate
directions and largest for directions of k that coincide
with the coordinate axes. Because the difference approxima-
tion of the convection term involves double grid spacings
the error in the convection speed is more serious than that
in propagation or viscosity. The error in the convection

speed is depicted in fig. 4.4 (Vichnevetsky and Bowles,1982)

for various values of the wave number.

. . *
Directional value of Vc/Vc as function of wavenumber k (2-D)

(from Vichnevetsky and Bowles,1982)

fig. 4.4
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4,3 Time Discretisation
4.3.1 Explicit and Implicit Methods

Numerical time integration involves the step-wise cal-
culation of the flow values on successive discrete time
levels. The new values are calculated from one or more ear-
lier, already calculated, time levels. The starting point is
either a known situation or some arbitrary flow pattern.
(The latter case, of course, applies to stationary flow
problems). Unless the initial situation is known, one has to
calculate enough time levels until the starting situation is
"forgotten" due to the physical and/or numerical damping. At
this point the solution is reached for stationary problems
while in the dynamic case the solution has physical meaning
from this point on.

Basically time integration methods can be divided into
explicit and implicit methods. In an explicit method a new
value (i.e. the value of a flow variable on the next time
level) is expressed explicitly in flow variables on earlier

time levels
I kB (4.10)

Depending on the number of earlier time levels in (4.10) one
speaks of single- or multi-step methods. Unless one employs
time consuming replacing techniques, those earlier levels
all have to be kept in memory. In 3-D calculations this
leads to great amounts of memory space. In this respect it
is advantageous to restrict the number of levels in memory.
Therefore, we will limit ourselves to methods that use the
last level only. In such a single-step method one may speak

of the new and the old time level.
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In implicit methods the function f as in (4.10) depends
not only on the old time level but also on the new, still

unknown, level

v =@ ¥ (4.11)

Such a system can be solved by iteration (Gauss-Seidel,
§.0.R.), but also directly by matrix manipulation
(inversion, Gaussian elimination, etc.). A mnon-linear vector
problem can only be solved by some kind of iteration
process. Howevef, such a process can consist of a repeated
direct solution of the linearized system. In this case the
system matrix is dependent on ¥ and is adjusted after each
direct solving. For stationary flow calculations this last
problem is academic as the time evolution and the iteration

procedure generally proceed as one and the same process.

The time discretisation transforms the system of ordinary
differential equations (4.3) into a system of algebraic dif-
ference equations. We will consider the following methods

a. The fully explicit method (Euler)

SoLl 4P L ac D_ 7 (4.12)

b. The fully implicit method :
1/)n+1= ¢n - At Dn ¢n+1 (4.13)

Here, the time difference (¢n+1_ ¢n)/At is exclusively

based on values on the new time level.
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c. The Crank-Nicolson formula :

n+l

T 1/.At (d_ ¥

n+1=

" ¥ +D_ ) (4.14)

By this formula a central time differencing is obtained.

The three methods can be represented in one formula, which
hereafter we will call the general implicit method :

p™o g - pac b ™ (1-p) ac D 4P (4.15)

with -8 a real number between 0 and 1

Methods (4.12) and (4.13) are first order accurate in time,
(4.14) (and thus (4.15) for B=0.5) is second order accurate.
For hyperbolic problems method (4.12) is unstable, method
(4.13) stable, while (4.14) is marginally stable. In (4.15)

B must be between 0.5 and 1. for stability.

4.3.2 ADI Methods

In multi-dimensional problems, implicit methods lead
generally to very large systems of equations. To reduce the
amount of computational work the Alternating Direction
Implicit or ADI methods were developed. In an ADI method the
system of equations is split up in a number of smaller sys-
tems. Each of these systems typically solves the equations
for one directional line of unknowns. All components of the
solution vector ¥ that are not on this line are taken ex-
plicitly that is to say on the old time level. In most

applications of the method, only three unknowns per equation
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are taken implicitly, which leads to 3-diagonal systems that
are easily solved by a direct method (Thomas algorithm).
Incorporating all terms of the Navier-Stokes equations in
the ADI method would result in 5-diagonal systems that in
principle could be solved in a similar manner.

ADI was first introduced by Peaceman and Rachford
(simultaneously with Douglas, 1955) as a solution technique
for the 2-D diffusion equation. The method consists of two
successive time steps. In the first step the x-differences
are taken on the new time level and the y-differences on the
old. In the second step the roles of x and y are reversed :
the y-differences are taken implicitly and the x-differences
explicitly. Generally the two time steps are regarded as two
half steps so that the whole scheme fits in one time step

n+l/,

v W /g D™ 2 e by

(4.16)

1 1
¢n+l= 1/)n+ /2_ ‘/zAt DX1‘(’n+ /2_ 1,8t Dy¢n+1

where DX and D_ are the parts of Dn containing

the x-differences and y-differences, respectively.
- . . . n+l/,
By eliminating the intermediate value ¥ and a rear-
rangement of terms we can compare (4.16) with the Crank-
Nicolson formula (4.14)

Peaceman-Rachford :

(1+ 1/, D)1 + 1/,4¢ D) L
(4.17)
(1 - /586 D) (L - 1/za¢ Dy).wn
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Crank-Nicolson :

(1 + 1/,88 D+ /388 D) p L
(4.18)
(1 - 1/,8e D - 1/,At Dy) "

Comparison of (4.17) with (4.18) shows that the ADI scheme
is obtained by factorisation of the expressions within the
brackets in the Crank-Nicolson formula. Subtracting (4.17)
from (4.18) gives the difference, being the error due to the
ADI formulation :
1/,8t? D_D_ (™ 4
Xy

Because (¢n+1_ ¢n) is of order At, this shows that the
Peaceman-Rachford scheme is a second order accurate ap-
proximation of the Crank-Nicholson formula and thus also a
second-order approximation of the differential equation
(4.3).

in its original form the Peaceman-Rachford scheme is not
extendible to 3-D, because it is based on two (half) time
steps corresponding to two spatial directions.

In 1956 Douglas and Rachford published a method that can
be used for the solution of the 3-D diffusion equation. This
scheme is based on a rather different philosophy. Instead of
being set up as two successive time steps the Douglas-
Rachford procedure consists of a repeated application of the
full time step. For each spatial direction such an iteration
is executed, each to be regarded as a correction on the
preceding one. In the original notation of the 1956 paper

the correctional character of the method can be recognized :
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* n * n n
') =% - At (wa + Dy¢ + Dz¢ ) (4.19%a)

* *% n
= R - 4.19
Y ¥ At (Dyll’ Dy¢ ) ( b)
n+l

PP L ae (Dz¢“+1- D_¥") (4.19¢)

Thus, (4.19b) corrects for the fact that in (4.19a) the y-
differences were taken explicitly while (4.19c) does the

same for the z-differences.

A better known notation for the same scheme is :

% n * n n

¥ =¥ At (D + Dy + D g

*% n * *k n

Y =¥ - At (DX¢ + Dy¢ + Dzw ) (4.20)
n+l ¢n At (D ¢* + D **+ D n+l

¥ = - ac (D g D)

* *k
Eliminating the intermediate values ¥ and ¥ and rearrang-

ing, we can write (4.20) as :

(1 + 88D )(L+AcD)(1+ AL D) e (4.21)
s - {At?(D DOyt DyD +D.D ) - At3(D D_D ))(¢ -

From this it is evident that the Douglas-Rachford scheme is
a second-order accurate approximation of the fully implicit
scheme (4.13), but as the fully implicit method (4.13) is
only first order accurate the same will apply to (4.21).

An interesting combination of the ideas of Peaceman-
Rachford and Douglas-Rachford is due to Brian (1961). His
scheme consists of the execution of a fully implicit step

according to the Douglas-Rachford scheme, followed by an
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explicit step. The complete scheme thus becomes again second
order accurate in time like the Peaceman-Rachford scheme but

now in 3-D.

All ADI schemes mentioned above are summarized by the
general formulation of Douglas and Gunn (1964). They use the
philosophy of the Douglas-Rachford scheme but instead of the
fully implicit treatment of the "new direction" in each suc-
cessive correction a weighted average of explicit and

implicit terms is used as in (4.15)
" = g7 At (BD_p+ (1-8) D_y™+ D_y™+ D y")
X P X y z

*%* n * n
¥ =¥ - At (D yp+ (1-8) Dy +
+ B DY+ (1) Dy + Dy") (4.22)

p™ e g ae (8 D"+ (1-p) D" +
*% n
+ 80" (1-p) D"
y n+l 7

n
+ 8 0"+ (1-p) DY
with B between 0. and 1.

Remark :

The original Peaceman-Rachford formulation can be ex-
pressed by a 2-D version of the Douglas-Gunn formula by
substituting the intermediate value ¢n+1/2 in the PR formula
(4.16) by (Vreugdenhil,1989)

ntl/,

" B ¥+ (1-8) »° with B=0.5
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Beam and Warming (1978, see also Briley and McDonald,
1980) give a more elegant notation of (4.22), the so-called

delta-formulation :
* n n n n
(1+ 8 At Dx)( Y - P ) = - At( Dx¢ + Dyw + Dz¢ )

(1+p ae D) 2Ty = (4.23)

n *k n

1+ paep)( ™ty 9™y

This notation makes it clear that in an actual computation
according to the Douglas-Gunn formula there is no need to
store the intermediate time levels ¢* and ¢**. All relevant
information can be kept in two arrays of variables, one for
the old time level ¢n and one for the successive differences
-8, @7 9D ana @M
tained by adding the last difference to the values of the

- ¢n). The new values are ob-
old time level.

Because we are interested in the stationary solution the
important property of a numerical time integration method is
its stability rather than its accuracy. The time integration
is used as an iterative procedure towards the stationary
solution. If for instance we use a very large time step in
an implicit method, rendering a crude time approximation,
this may (and in fact often does) slow down the convergence,
but the true solution of the stationary equations will in
principle be reached independent of the inaccuracy of the
time discretisation. This idea is expressed by the delta-
formulation (4.23) which after elimination of the
intermediate increments (w*-¢n) and (w**-¢n) reads

n+1_

(l+AtDX)(l+AtDy)(1+AtDz)(1/z ™) = - AtD P (4.24)
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If this procedure converges to a stationary solution ¥, this

solution will satisfy

independent of At.

4.4 ADI Schemes for the AC Navier-Stokes Equations

4.4.1 Introduction

In this section we give the reasons which led to the
choice of the computational system. This choice has to do
with the way the convective terms are incorporated in the
total scheme. In dynamical computations an important problem
concerning these terms is their non-linearity, but as we are
considering stationary flow this is not a great issue in our
application. However, there is another difficulty which com-
plicates the extension of the scheme to three dimensions

The compressible Navier-Stokes equations are a combina-
tion of the three basic problems in the theory of partial

differential equations, i.e.:

I. the heat equation : d¢/3t = v V2¢
II. the transport equation : 8¢/3t = - (V.V)¢
III. the wave equation : 32%24/8t2 = c? V2§

Problem I and II are often combined and denoted as the
convection-diffusion equation. This equation arises when the

pressure gradient in the Navier-Stokes equation (2.1) is
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omitted. If on the other hand the convection-diffusion terms
are omitted we get, in combination with (2.2), a form of the
wave equation III.

As will be shown in chapter 5 there is a fundamental
problem, connected with the transport problem II and thus
with the convective terms in the N.-S. equations, in the
extension of the ADI method to 3-D. It can be proven that,
for the transport problem, the stability properties of the
ADI scheme in 3-D differ from those in 2-D : while the
scheme is unconditionally stable in 2-D (for !/,< B < 1)
this is not so in 3-D. If the convective terms are treated
outside the ADI process, the latter regains its 2-D
stability properties.

Another reason to treat both the convective terms and the
diffusion terms separately from the ADI process is the then
possible reduction in number of equations to be solved as
well as in memory space needed for the field variables.

In the following sections three possible options to in-
corporate the convection-diffusion (or CD-) terms are
given :

a: All terms included in the ADI process,
Explicit integration of the CD-terms, completely
separated from the ADI process, (Alternative I)

c: Explicit integration of the CD-terms, integrated in

the ADI process (Alternative II).

4.4,.2 ADI Scheme with Convection-Diffusion Terms Included
Application of the Douglas-Gunn formula (4.22) to the AC

Navier-Stokes equations results in the following computa-

tional scheme
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x-direction:

* n * * n n n n
u=u —ﬂ(CDXu +th )-(1-ﬂ)(CDxu +th )- CDyu - CDZu

*® n * n n n n
vV=yv —ﬂ(CDXv )-(1-ﬂ)(CDXv )- CDyv —Gyh - CDZV

(4.25a)
* n * n n n n
W =w -ﬂ(Cwa )-(1-ﬂ)(CDXw )- CDyw - CDZW -Gzh
b= 0™ 1/a( (D u¥)+(1-8) (D u™)+D v4D W)
X X y z
y-direction:
%% p * * *%
u =u -ﬂ(CDxu +th +CDyu ) -
n n n
-(1-ﬂ)(CDx+th + CDyu )-CDzu
** n * ok *%
v =v -B(CD_v+CD v +Gh ) -
: 7 —({-ﬂ)(CD v4eD_vP+G h™)- ¢p v"
X y y z
(4.25b)
** n * *k
w =W -ﬂ(Cwa +CDyw ) -
n n n n
-(L-B)(CD_w'+ CDyW )- CD,w -G h
**_ n_ * *% ) n n n
h =h /el ﬂ(DXu +Dyv Y+(1 ﬂ)(DXu +Dyv )+Dzw }
z-direction:
* * *k
un+l= un—ﬁ( CD.u+G_h + CD.u + CD un+1)-
¥ ¥ . & n n n
-(1-8)( CDxu +GXh + CDyu + CDzu )
* *
v WPop CD_v + CDyv**+Gyh* + cnzv“+1)-
n n n n
-(1-8)( CDXV + CDyv +Gyh + CDZV )
(4.25¢)
* *
WL W"-B(CD_w +CD “rop W™ ae n™.
n n n n
-(1-8)( Cwa + CDyw + CDZw +Gzh )
hn+l= B

- 1/aq ﬂ(Dxu*+DyV**+Dzwn+1)+( 1-8) (Dxun+Dyvn+Dzwn) )
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where CDX = central difference approx. of
At(U3/3x - vd?/dx?)
Gx = central diff. approx. of g At(d/d4x)
Dx = central diff. approx. of At(3/dx)

and likewise in the y- and z-directions

From (4.25) it is clear that all components of the vector
¢=(u,v,w,h)T are updated in each directional step of the ADI
process. Because all three values of ¢*, ¢** and ¢n+1 are
needed in the w-step, three arrays of field-variables must be
kept in storage during the computation. By using the delta
formulation storage can be reduced to two arrays.

A technical possibility exists to employ a buffering tech-
nique to reduce storage to basically one array of field-
variables, but this results in a rather complicated
computational scheme.

For a 3-D computation even a single array of field-
variables takes a great amount of memory space, so it is
advantageous to use a scheme which needs only one of such
arrays, especially if one wants to use the method on minicom-
puters. To reach this goal we propose some modifications to

the scheme (4.25).

4.4.3 Explicit Convection-Diffusion Terms (Alternative I)

In this section we split the time-integration procedure
into two separate steps, somewhat in the manner of a frac-
tional step method. In the first step we advance the solution
with the convection-diffusion terms only, using an explicit
method. In this step all velocity values are updated by

direct replacement.
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Remark :

One "old" line and (in 3-D) one "old" plane are kept in

memory to make a straight Buler method possible. If the

velocity values are replaced without any saving of "old"

values the resulting procedure resembles the angled deriva-

tive method of Robert and Weiss (1966, see also

Stelling,1984). This method has better stability properties

than the explicit method but only if the direction of the

computational sequence is equal to that of the convecting

velocity.

The second step consists of an ADI method for the pressure

terms. Rather than the Douglas-Gunn method we use the

Douglas-Rachford (f=1) variant of ADI. As a result the scheme

(4.25) reduces to:

x-direction:
* *

u=1u"- Gh 4
X
*
v =v'- Gh" (4.
y
w*= w'- G h" 4
z
* n_ 1 - * , ,
h=nh /a( Dxu + Dyv + Dzw ) (4
y-direction:
K% *
u =u'- Gh (4.
bd
Ex
Ve v e n™ (.
y
*%
w =w'- Gh" (4.
z
** n * *k ,
h =h"- !/a( Dxu + Dyv + Dzw ) (4.

4.26
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z-direction:

Wy th* (4.261)
T (4.263)
y
W e Gzhn+1 (4.26Kk)
*
KL t/a( D_u'+ Dyv**+ Dzwn+1) (4.261)

where u’,v' and w’ are the al-
ready updated velocities from the explicit convection-
diffusion procedure as in system (4.27).

Inspection of this scheme shows that (4.26e,i) and (4.263)
are just repetitions of (4.26a) and (4.26f) respectively,
while the values on the lefthand side of (4.26b,c and g) are
not used. Thus the same result can be achieved using only 6
instead of 12 equations. The intermediate values h* and
h**appear only within the x- and y-step,respectively and do
not have to be saved.

Thus, the above mentioned modifications mean an important
reduction both in computing effort and memory capacity needed
for a calculation. The fact that the accuracy of the scheme
is only first order in time is not important as we are con-
cerned with stationary problems. While the first step still
is only conditionally stable, the second step is now uncondi-

tionally stable as will be shown in section 5.4

Using an abbreviated notation the resulting scheme can be

given as:
u'= u™- ¢cd™
vi= v2- cD(vY) (4.27a)

W= wo- CD(wn)
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n+l

u = ADI(u’,h)

v ApI(ve by (4.27b)
wn+1= ADI(w’ ,h)

n+l n+tl n+l n+l

h" "= ADI(u  ~,v —,w )

where CD again stands for the convection-
diffusion operation and ADI for the ADI-procedure as given in
(4.26)

4.4.4 Explicit CD-Steps Integrated in ADI Scheme
(Alternative II)

Because the ADI procedure consists of three directional
steps, another order of operations is also possible. Each
directional ADI step can be combined with the explicit
convection-diffusion operation of the corresponding velocity

component. This results in:

u'= u- CD(un)

W ApI(u’ by

vi= v CD(vn)

vV ap1(vrny (4.28)
w'= wi- CD(wn)

W ADI(w’ )

hn+1= ADI(un+1',Vn+1,wn+1)

We will show in chapter 6 that scheme (4.28) has better
stability properties than (4.27). Accordingly (4.28) is

adopted as the final scheme we will use. We conclude this
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chapter by writing out the last scheme in a more extensive

way, using the same notation as in (4.25)

x-direction:

y-direction:

z-direction:

Remark:

u’ = u® cDp_u"- ¢Db_u"- CD u”
X y z
n+l

' *
u =u - G h
X

_ n+l . ,
h h /a(Dxu + Dyv + Dzw )

v’ =+v™ ¢ v"®- ¢cp v"- ¢p V"
X y z
' K%
vn+1= v - G h
y
*%
B C v 10 o™ b VP D wny
X y z
w’' = wn- CD wn- CD wn- (99))] wn
X y z
!
wn+1= w - G hn+l
z
hn+1= hn_ l/a(DXun+l+ Dyvn+1+ Dzwn+l)

(4.29)

The first two equations of each directional step can of

course be combined into one operation. Each of the resulting

operations then is a consistent approximation of the cor-

responding component of the original AC equations (4.1). It

has however advantages to keep the explicit and ADI steps

separated. Apart from a more modular structure in program-

ming, it is also possible to use a different time step for

the explicit and the ADI parts of the computation.
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4.5 Influence of the Compressibility Factor a

In section 3.4 the still water propagation of the artifi-

cial compression wave was given as

e, = J(g/@)

Here we will compute the propagation if the convecting
velocity differs from zero. We start with the Fourier trans-
form of the AC equations (4.1). Equating the determinant of

the coefficients to zero yields the characteristic equation :
(c - vn)2[( c-V)ec - g/al =0 (4.30)

where ¢ = propagation speed
and Vn= component of convecting velocity

parallel to k (or : Vn= Vc.k )

Equation (4.30) has four solutions
A double solution ¢ = Vn’ representing the transport
of the transversal modes of the flow in the two possible in-
dependent directions perpendicular to the wave number vector
k.

Two solutions representing the forward and backward

propagated waves connected with the longitudinal flow modes

Forward wave : ¢

YVt J(1/V 2+ g/a)

Backward wave : ¢

1)V J(1/V 2 + g/e)

Note that the propagation velocity always exceeds the con-

vecting velocity. This means that in the artificial
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compressibility method the flow stays "subsonic". However,
for small values of g/a the backward or upstream propagation
may become extremely slow.

According to Kwak and Chang (1984) the value of g/a should
be chosen such that the time it takes for the pressure wave

to reestablish the condition of incompressibility :
vV.v=20

is small compared to the time of the spreading of the viscous
effects over the computational domain. The time scale of the
spreading of turbulent diffusion can be estimated from the

rate of growth of the boundary layer along a flat plate

5§ =2 ./(utt)
where § = thickness of bound. layer

and t time

1

As an example we take a computational domain with a length of
100 m and a depth of 10 m. The turbulent viscosity is chosen
as 0.1 m?/sec. Taking for § the depth of the channel we find
for the time needed for the influence of the bottom friction

to diffuse to the surface

td = 250 sec

The time needed for the upstream pressure wave to travel the

length of the channel is
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with ¢ = 1/,V - J(vg/a + g/a)

For a convecting velocity of 1 m/sec and values of the
compressibility factor a less than 1 mjl, tp will be about
one order smaller than ty

On the other hand we cannot take value of a too small (or
g/a too large). The reason for this is that with a large
value of g/a the system of equations that has to be solved
becomes "stiff", i.e. the time scale of the pressure wave is
much smaller than the time scale of the convection and diffu-
sion. This causes problems with the ADI solution method.

As an example, consider the scheme (4.28). We assume that
the solution at t=nAt satisfies continuity :

v, (v e - (4.31)

In the explicit u-step the velocity component u” is changed

into u’ by the CD-terms, so the intermediate solution :
n nT
(u',v ,w)

in general will not satisfy the continuity equation.

If the value of g/a in the subsequent ADI-x step is large,
the resulting velocity component un+1 will have such a value
that the flow is again more or less divergence free, because
a small deviation of V.V from zero will cause large pressure
differences, forcing the u-component towards V.V = 0. Thus,

after the ADI-x step we have

v. ™! T o (4.32)
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Comparing (4.32) with (4.31) we see that apparently :

n+l n
u T ou

(assuming steady boundary conditions)

The effect of the explicit CD step is more or less nul-
lified by the subsequent ADI step and the influence of the CD
terms per time step is very limited.

In the scheme according to (4.27) a similar behaviour is
found. Here, the effects of the three directional explicit CD
steps are, for large g/a, almost completely resolved in the
subsequent ADI-x step. Thus, after the first ADI-x step, con-

tinuity is more or less satisfied :

In the following ADI-y and ADI-z steps the v’ and w’ velocity
components will hardly be modified. Again the pressure dis-
tribution, caused by the CD-terms, does not "survive" the
first ADI step and thus cannot be used to spread the in-
fluence of these terms over the three spatial directions.

Theoretically, alternative II (=scheme (4.28)) will con-
verge to the right solution, independent of the value of g/a,
but it will be clear that the rate of convergence will be
very low for large g/a.

The final solution in the case of alternative I (=scheme
(4.27)) is not independent of the value of g/a. See also ex-

pression (6.10b) in section 6.3.

The above mentioned effects become serious if the propaga-
tion velocity /(g/a) becomes an order of magnitude larger
than the flow velocity itself. In case of a different time

step for the convection-diffusion part of the equations and
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for the ADI part, we must consider the respective Courant
numbers rather than the velocities. In this case the Courant
number based on the flow velocity should be of the same order

as the Courant number associated with artificial pressure

wave propagation.

4.34



5. THE STABILITY OF ADI TIME-INTEGRATION SCHEMES
5.1 Introduction

In this chapter we will analyse the numerical stability
of ADI schemes. First we will discuss a number of different
methods used to ascertain the stability of a time integra-
tion scheme. Next we will use the most commonly used method,
the von Neumann stability analysis, to show that stability
in 2D does not automatically ensure stability in 3D. In par-
ticular we will show that the Douglas-Gunn ADI procedure is
not unconditionally stable for the 3D transport equation.

In section 5.6 the stability of the ADI method for the
time integration of the discrete wave equation is analysed.
It is shown that in this case there is no fundamental dif-
ference in stability properties between the 2-D and 3-D
application of the scheme.

Finally it is concluded that, due to the convective
terms, the application of ADI to the 3-D Navier-Stokes equa-
tions will result in a process that is only conditionally
stable. Two Courant numbers can be defined : one connected
to the wave propagation and one connected to the convective
velocity. By splitting the total process in a "pressure
wave" part and a "convection-diffusion" part, we have the
possibility to apply the ADI integration to the wave part
only, giving this part an unconditional stability. Thus, the
stability of the total scheme is determined by the Courant
number based on the convecting velocity. This velocity is
generally much lower than the wave propagation speed, admit-

ting a larger time step for the total scheme.
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5.2 Methods to Analyse Stability

A general notion of the stability of a numerical time
integration process is given by the demand that the eigen-
values of G in the representation of the system of
difference equations:

nt+l n

=G (5.1)

should not exceed unity in absolute value. The most direct
method of investigation would be the calculation of these
eigenvalues but in practice this is complicated by the fact
that G is often a very large matrix and, unless the computa-
tional domain is very simple, irregular. Still, this method,
known as the matrix method, can be used although generally
the eigenvalues can only be estimated. An advantage of this
method is that the boundaries are taken into consideration.
See for example Praagman (1979).

Another possibility is to consider the Fourier transform
of (5.1). The amplification matrix G then becomes manageable
and the eigenvalues can be computed in many cases. The basis
for methods of this class is the well known von Neumann
stability analysis. Again we demand that the eigenvalues of
G do not exceed unity in absolute value. Theoretically the
method is restricted to simple boundary conditions and
linear problems, so that the Fourier decomposition is wvalid.
Several authors have developed more refined stability condi-
tions based on the same principle (see Richtmyer and
Morton,1967). For our purposes the original von Neumann

method is considered adequate.

For the sake of completeness we will mention two methods

that are based on other principles than the amplification



matrix, viz. the energy method (Friedrichs,1954) and Hirt's
stability analysis (Hirt,1968).

In the energy method one chooses a suitable quantity
which represents the value of the solution vector . Usually
this is some norm of %. In some problems this quantity rep-
resents an amount of energy, hence the name. Stability is
ensured if this quantity does not grow in time which in some
cases can be investigated by direct calculation.

Hirt’'s method is related to the modified equation ap-
proach (Warming and Hyett,1974) which is usually used to
check the consistency of the difference equations. Each term
of the difference equation is expanded in a Taylor series
around the central point. If the numerical approximation is
consistent the result of this operation will, at the limict,
restate the original differential equation for At, Ax —+ 0.

Used as a stability analysis this method groups the
truncation error terms in odd- and even-order differential
terms. The even order terms are related to the absolute
value of the amplification, while the odd terms influence
the propagation speed. For stability the even order terms
should have such a sign that they act in the same direction

as the viscosity (itself a second-order term).

5.3 The Stability of the 1-D Convection-Diffusion Equation

As an example of the von Neumann method we will derive
the stability condition for the explicit in time, central in
space, difference approximation (FTCS-method) of the 1D

convective-diffusive transport equation:

LA o %
S +UZE - v E =0 (5.2)



The corresponding difference equation reads:

n+l n

¥ vy -

1

(5.3)
UAt n n vAt n n n
" 3ax Pie1” Pio1) taxz it ¥io )

Insertion of

¢? = ﬁm exp(i k j Ax) m=n,n+l j=i-1,i,i+l

i=/-1 k=wavenumber

and dividing by the common factor results in the following

expression for the complex amplitude :

A B %%Esin(k AX) - %ﬁ%g(l-cos(k ax))] B (5.4)

The quantity between the square brackets forms the scalar
amplification factor. Due to the second term it is a complex
number which can be depicted in the complex plane as a func-
tion of the wave number k (fig 5.1). For -r < k AXx < «w , G

describes an ellipse in the complex plane with axes

horizontal (real) axis

(1 - 2vAr/Ax? ) + 2vAt/Ax?
(5.5)
vertical (imaginary) axis

(1 - 2vAat/Bx2 ) + 1 UAt/Ax

For stability this ellipse should lie entirely within the

unit circle.
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¢

—_—

—~— . 2 2
unit circle h j vAt/Ax

fig. 5.1 explicit scheme

From (5.5) two necessary, but not sufficient, conditions

can be deduced:

1. If the Courant number UAt/Ax > 1, the process is unstable
for every value of the viscosity coefficient v.
2. If the diffusion number vAt/Ax2 > !/, the process will be

unstable for every value of the convecting velocity U.

Graphically, these two conditions are represented by the
vertical and horizontal axis of the above mentioned ellipse.
The ratio between these axes forms the cell Reynolds

number
Rec = UAx/v

For Rec> 2 the vertical axis will exceed the horizontal axis

in length. We then consider the numerical problem convection

dominated.
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In practical 3-D applications we shall always try to use
large grid-sizes in order to restrict the amount of neces-
sary memory space. Moreover, because our interest is in low
viscosity fluid, the viscosity coefficient will have a small
value. Therefore, in our applications, the problem will
generally be convection dominated.

Geometrically this means that, for a Courant number less
than unity, the horizontal axis of the afore-mentioned el-
lipse will always be situated within the unit circle. Under
this circumstance the ellipse will lie completely within the
unit circle only if the curvature in point (1,0) is less
than unity (fig. 5.1). The curvature in this point is given
by c?/a, where a and c are the horizontal and vertical semi-
axes of the ellipse, respectively. Because c= UAt/Ax and a—

2vAt/Ax?, this leads to a stability condition :

U2at/2v < 1 or At < 2p /02 (5.6)

In most practical applications this restriction is much more

severe than the Courant condition.

5.4 Extension to 3-D

The 3-D formulation of the convection-diffusion equation

reads

ay/at + (V.V) ¢ - vV2% =0 (5.7)

with V

(u,v,w)T= the (constant)

convecting velocity



Although the transported quantity may be a vector, the
amplification can still be expressed as a complex scalar
number because the three component equations of (5.7) are
independent. In a similar manner as in section 5.3 an

amplification factor for the FTCS-method can be derived :

u s1n(nxAx) l—cos(nxAx)

G=1-ilt ——p— - WAt ————

v sin A l-cos(x_A
(ny y) ( y y)

- i At —ay - 2uAt ____Z§7__—_ (5.8)
\ sin(nZAz) 1-cos(nZAz)

The graphical representation of (5.8) in the complex plane
consists in the 3-D case of three ellipses "in series". Just
as in the 1-D case the stability for the convection
dominated problem depends on the radius of curvature of this
graph in the point (1,0). This radius is found by adding the
three curvatures of the separate ellipses. Thus, the
stability condition for the explicit time integration of the

3-D convection-diffusion equation is given by :

(u2/2v + v2/20 + w2/2v ) At < 1

or:

At < 2v/(u? + v2 + w?) (5.9)

In addition we have the demand that the total of the

horizontal axes should not exceed unity or



2v At (1/Ax%+1/Ay2+1/Az2) < 1

For small v and reasonable values for Ax, Ay and Az the
problem will be convection dominated and (5.9) will be the
determining stability condition. These results can also be

found in Hindmarsh, Gresho and Griffiths (1984).

It should be noted that for a general direction of the con-
vecting velocity the condition (5.9) is, in a certain sense,

more restrictive than condition (5.6) derived for the 1-D

case : For a convecting velocity with equal components
= =w=1V

u = v, o=, C/j3

the maximum At according to (5.9) is equal to :

- 2
Atcrit 2V/Vc

In chapter 6 we shall show that the practical value of At
for the combined explicit-ADI method that we use for the
solution of the full 3-D Navier-Stokes equations is in the

vicinity of the 1-D criterion (5.6)
— 2
At it 2v/u

Cri

which is three times as large.
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5.5 The Stability of the Douglas-Gunn ADI Scheme for the
Convection-Diffusion Equation

5.5.1 General Remarks

As mentioned in section 4.3 the Douglas-Rachford ADI
method and its generalization by Douglas-Gunn were intro-
duced by those authors as ADI scheme’s that are extendible
to 3-D, which the original Peaceman-Rachford scheme is not.
Although this claim is correct for the (parabolic) diffusion
equation it is not generally true for the (hyperbolic)
transport equation. We will show that the convection-
diffusion equation, and thus the Navier-Stokes equations as
a whole, is not stable in the Douglas-Gunn approximation in

3-D. (See also South,1985)

5.5.2 The Scalar 3-D Convection-Diffusion Equation

We repeat the 3-D convection-diffusion equation as given
by (5.7)

3¢/3t + (V.V)¢ - v V24 =0 (5.7)
with V = (u,v,w)T- the convecting velocity
For simplicity we will regard ¢ here as a scalar quantity.

The Fourier transform of the spatial central difference

approximation results in :

ddp/dt + D P =0 (5.10)



with D =

i [U sin(nxAx)/Ax + Vv sin(nyAy)/Ay + W sin(mZAz)/Az]

sinz(l/zxxAx) sinz(l/znyAy) sin’(l/znzAz)

+ +
1/ 48%2 1/ 48y2 1/ 4022

Before considering ADI-methods we will first analyse the
stability of the general implicit method (4.13). In this

analysis we will write alternatively:

At D = At(D_+ D + D )
X 'y z
or :

At D =a; +1ib;

to indicate either the dimensionality or the complex charac-
ter of D. Thus, the diffusion term of (5.7) is represented
by a,, the convection term by b,.

The general implicit method can be written as:

L +p8 At(DX+ Dy+ Dz)] ¢n+l= n (5.11)
[1 - (1-p) Ac(D + Dy+ D] ¥

Hence the amplification-factor of this method is represented
by :

1 - (1-8) At(DX+ Dv+ DZ)
1+5 At(DX+ Dy+ Dz)

om (5.12)

Using At(DX+ Dy+ Dz) = a, + ib; we can calculate the squared

absolute value of G :

2a, + (28-1)(a,;?+b,?)

*
2. = -
IGI ce 1 1 + 2Ba; + p2(a,%+b,?) (5.13)
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From this it follows that for stability it is required that
B>1,[1- 2a,/(a;?+b,2) (5.14)

For (a,%+b;?) -+ 0, we have a;<<b; and (5.14) is reduced to
the well known stability condition of the general implicit
method : B > !/,. In the viscid case (a;>0) the lowest value
of the wavenumber k is marginally stable for g8 = 1/,, for
higher values of k the viscosity has a stabilizing in-

fluence.

A graphical representation of formula (5.12) is given in
fig. 5.2. In this figure the absolute value of the
amplification factor G can be obtained as the ratio between
the distances from the origin to the extremities of the line
AtD. In the figure those distances are marked accordingly

"numerator" and "denominator".

N.B. While in fig. 5.1 the end point of the vector AtD
describes a true ellipse, the corresponding graphs in fig.
5.2 are true ellipses only in the case that u/Ax=v/Ay=w/Az
and v/Ax?=v/Ay?=v/Az?. As mentioned in section 5.4 the
ellipse-like graphs in this figure.are constructed by adding
up three separate ellipses, one for every space direction.
It follows immediately from geometrical reasoning that for
the inviscid case with g=!/, the numerator and denominator
will have an equal length and thus |G|=1. (fig. 5.2a)

Note that the points for which the distance to the ex-
tremities of the complex AtD are equal will lie on a line
normal to and bisecting the length AtD. If this normal
passes the origin on the positive side (for positive AtD),
the denominator will exceed the numerator in absolute value.

From this observation it can be understood that, while for



-

a: inviscid

b: viscid

fig. 5.2 General Implicit Method
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the higher wave-numbers |G| is less than unity even for
values of B8 smaller than !/,, for the lower limit of the
wavenumber |k|] + 0 , B must be at least !/, for stability.
Thus, the same results as found analytically can be deduced
from the graphical representation fig. 5.2.

This graphical representation of the stability will be
useful in the analysis of the ADI method which now follows.
While in the foregoing example the dimensionality of the
problem did not create a fundamental difference in the
result, we shall see that in case of the ADI-method there is

a marked difference between 2-D and 3-D.

The general ADI-formula of Douglass-Gunn (4.22) can be

*
written, after elimination of the intermediate values 3% and
*%

Y , as

n+tl n
(1+ﬂAth)(1+ﬂAtDy)(1+5AtDz) (¥ P ) = (5.15)

n
-At(Dx+ Dy+ Dz) Y

The amplification factor for this scheme is :

At(D + D + D)
X Y Z

G =1 - (5.16)
(1+ﬂAtDX)(l+ﬂAtDy)§l+ﬂAtDz)
We need some abbreviations:
At(DX+ Dy+ DZ) = a, + ib, =
(5.17a)

=a+a+a+i(b+b +Db)
X 'y z X 'y z
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At2(D.D. + D D + DD ) = a, + ib, =
Xy yz Xz

(ax+ibx)(ay+iby)+(ay+1by)(az+ibz)+
+(ax+1bx)(az+1bz)- (5.17b)

aa+aa+aa-bb-bb-bb+

Xy y z Z X Xy y z zZ X
+i(a b + b a+ab +b a+ ab + b a)
Xy Xy Yz yz2 Z X Z X

At3(DnyDz) = az + ibz =
=(ax+1bx)(ay+1by)(az+1bz)=
aaa-abb-bab->bbat+ (5.17¢)

Xyz Xyz Xyz Xyez

+i(aba+baa+aab-bbb)
Xy 2 Xy z Xy z Xy z

Note that, while a, and b, represent the diffusion term and
convection term, respectively, this is not so for a,, ag ,
b, and by, which are combinations of these terms.

With these abbreviations we can express the amplification
G of (5.15) as:

1 - (1-B)(a,+ib,) + B2?(a,+ib,) + B3(ag+iby)

1 + B(a,+ib;) + B%(a,+ib,) + B3(ag+iby)

(5.18)

After some calculation we find for the squared absolute

value of G :

lol=-
2a,;+(28-1)(a,2+b,2)+2a, (f%a,+f3%a,)+2b, (B2?b,+83%by)

(14Ba,+B%a,+B3%a;3)2 + (Bby+B%b,+8%b5)?

1 -
(5.19)

which is to be compared to (5.14).
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It is convenient to use a further abbreviation :
R = )62(32+i-b2) + ﬂ3(33+ib3) (5.20)

This R represents the terms that originate from the fac-
torisation that is done in the ADI method (see e.g. (4.17)
and (4.18)). Because the terms of R contain higher powers of
At, the value of R goes faster to zero, for At»0, than the
main terms of formula (5.16) so the ADI method is consistent
with the general implicit method and, for pB=!/,, second or-
der accurate. Héwever, when analysing stability, we consider
high wave numbers and a finite value of At. In this case the
value of R becomes important.

Using (5.20) we can rewrite (5.18) in such a way that it
can be readily compared with the expression for the

amplification-factor (5.8) of the general implicit method.

1 +R - (1-8) At(DX+ Dv+ Dz)

¢ = 1+R+B8At(D+D+D) (5.21)
X 'y =z

As can be seen, apart from the extra terms R, the two ex-

pressions (5.12) and (5.21) are quite alike.

In fig. 5.3 a graphical representation of (5.21) is
given in the same manner as was done for the general im-
plicit method. Because R appears both in the numerator and
in the denominator, the complex length AtD is shifted over
the distance R. From fig. 5.3 the destabilizing influence of
R can be understood. Destabilization occurs when the imagi-
nary component of R has a sign opposite to that of the

imaginary part of At(Dx+ Dy+ DZ).
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Destabilizing influence of ADI factorisation terms
fig.5.3

For a low viscosity convection-diffusion 3-D process, the
main part of R consists of the term -iﬂ3(bxbybz), which for
high wave number and reasonable Courant number can attain

large values, easily exceeding the value of lAtD|.

Thus, it can be explained why the 37D ADI process behaves
differently in 3-D as compared to 2-D. In the two dimen-
sional case R consists of only the first term in (5.20). For
a small value of the diffusion number this term will contain
only a small imaginary component, or none at all in the in-
viscid case. The real part of R does not endanger the
stability.

In three dimensions the inviscid case leads to uncondi-
tional instability. For values of 8 > !/, in the viscid case

conditional stability is possible.
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5.5.3 Examples

As an illustration of the theory developed in the forego-

ing section we will give a few examples.

A. 2-D inviscid:

a;= 0, a,= -bxby , bpo=0

As for 2-D az=b;~0 we get from (5.20) R = 0. This means that
the stability criterion of the ADI method is equal to that

of the general implicit method (4.15).

B. 2-D viscid:

= B2 - i
Now R = 8 (axay bxby) + 1(axby+ aybx)’ so R may possible
have an imaginary component of a sign opposite to that of
(DX+ Dy). However, by putting ag=bz=0 in (5.19), it can be
shown that the numerator in the expression under the root is

always positive, indicating unconditional stability.

C. 3-D inviscid:

a, =0, a,= -b.b -b b -b b
Xy yz X2z

With these values R becomes

= B2(- - - - 3
R = p2(-bb -bb b b ) - i(A%bb )

Depending on the sign of bx’ by and bz, R may contain a
large imaginary component of a sign opposite that of
b1=(Dx+ Dy+ Dz)’ resulting in unconditional instability for
B < 1/, as in the 2-D case, but now also for g = 1/, (see
fig. 5.3a).

For '/, < B < 1 the scheme is conditionally stable. From
(5.19) we have :

(28-1)b,2 + 28%b,bg > 0



or:

for b,>0

for b;<0

(28-1)b,

(2B8-1)b; > -283b,

< -283b,

Two different situations must be considered :

In the first situation we take the

approximated wave number

vector k' parallel to the convecting velocity V (The com-

ponents of the approximated wave number k'’ differ from their

exact value by the factors sin(nxAx)/(nxAx), etc.). We set

bx=by=bz=b ,i.e. b;=3b , by= b3 , and u=v=w=|V|//3. The

result is a stability condition for At

3(2B8-1) As

72 [v[ B°®

At <

T
numeraco_’

—_—

situation A: k'//V

— denominator—

(5.22)

situation B: k’l A

fig. 5.4 Douglas-Rachford ADI
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The second situation arises when k'’ is almost perpen-
dicular to V. In this case by has a finite value for b,
infinitely small, resulting in unconditional instability.
Therefore, we must conclude that the ADI formulation of the
3-D inviscid convection equation is unconditional unstable.

The same results can be obtained graphically from

fig. 5.4. For simplicity B=1 in this figure.

However, further analysis of the three dimensional func-
tion (28-1)b,=-283%b, in the bx,by,bz-space reveals that the
regions of instability connected to the second situation
described above are very narrow near the origin.
Consequently these regions will be strongly affected and in

fact disappear if a viscosity term iadded to the equation.

D. 3-D viscid:

For the viscid 3-D case, which of course is the one we are
primarily interested in, it is difficult to derive a
stability condition, but it can be shown by direct calcula-
tion of G from (5.19) or (5.21) for the critical directions
that the damping effect of the viscosity in the ADI method
tends to be less than in the general implicit method. Thus a
practical estimation of the stability condition will be the
one that is derived in the inviscid case for the situation

that k' is parallel to V :

3 (28-1) As

5.6 Stability of ADI for the Wave Equation

In this section we will apply the foregoing results to

the 3-D wave equation:
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av/at + gvh = 0
(5.23)
adp/dt + V.V =0

Because we intend to use, in the final solution proce-
dure, the fully implicit Douglas-Rachford version of ADI we
choose B8 = 1. Because (5.23) is a vector equation the fac-
tors

(1+Ath) s (1+AtDy) and (1+AtDZ)

in the Douglas-Gunn formula (5.15) (with fg=1) become in the

Fourier transform of (5.23) the matrices

1 0 0 ige 1 0 0 O 1 0 0 0

0 1 0 0 0 1 0 igp 0 1 0 0

0o 0 1 of’Jo o 1 o |o o 1 ig (5.24)
i€/ 0 0 1 0 in/a 0 1 0 0 if/a 1

with €=At sin(l/znxAX)/(l/zAx)
n=At sin(l/znyAy)/(l/sz)
¢=At sin(l/zszZ)/(L/zAZ)

We have seen in section 5.5 that the main reason of the
instability of the Douglas-Gunn formula originates from the
term AtsDnyDz. Direct multiplication of the corresponding
matrices (i.e. the matrices (5.24) with zeros on the
diagonal) for the problem (5.23) shows this product to be
equal to the zero matrix. Thus, we do not expect stability
problems for ADI time integration of the wave equation
(5.23). Analysis as was done for the scalar problem in sec-
tions 5.3 and 5.4 is not so easy, but it is possible to
determine the eigenvalues of the amplification matrix. This

is done in the following way :
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First we write the Fourier transform of the inviscid wave

equation (5.23) as:
A @™ M= s PP (5.25)
with § = (4,9,%,9)

From (5.15) we see that A is the product of the matrices
(5.24)

1 -g/a.§n  -g/a.£¢ igf

A = 0 1 'g/a-ﬂf ig']
0 0 1 igt

ié/a in/a i¢/a 1

while AtD is the summation of the same matrices (5.24) omit-

ting the diagonals :

0 0 0 igé

_ 0 0 0 ign
AtD = 0 0 0 ige
ié/a in/a if/a 0

Now we calculate the matrix B = A - AtD :

1 -g/a.én -g/a.f5 O
B - 0 1 -g/a.nt O
0 0 1 0
0 0 0 1

With the matrices A and B we can write the Fourier transform
of (5.23) as :
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A $n+1 - B 12’n
. n+l , n <
The eigenvalues A = 3 /Y, follow from the characteris-

tic equation:

AxX-B=0
or:

(A-1)2(ddd. 22 - 22 + 1) =0 (5.26)
with ddd = (l+g/a.£2) (1+g/a.n?) (l+g/a.02).

Solution of (5.26) gives:

1 i

2,2 = dad ¥ dad

J(ddd-1) A3,4 -1

The eigenvectors associated with the two eigenvalues A1’2
lie in the (hyper)plane through the wave number vector k and
the h-axis. They represent the positive and negative direc-
tion of the pressure waves along k. These pressure waves are
accompanied by longitudinal velocity waves. The absolute
value of these eigenvalues is always smaller than unity.

The two "trivial" eigenvalues A3’4 can be associated with
the two independent space directions perpendicular to k.
Their meaning is that any transversal Fourier component of
the velocity field will be unaffected by the time integra-
tion of (5.23).

Thus, as expected, the ADI method applied to the wave

equation yields an unconditionally numerical process.
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5.7 Conclusions

In the preceeding section is was proven that the 3-D ADI
time integrating method is, at best, conditionally stable
for scalar convective problems. The reason for this be-
haviour can be summarized thus

Basic to the ADI-method is the factorisation of the ex-

pression:
1+At(Dx+ Dy+ Dz) into (1+Ath)(1+AtDy)(1+AtDz) (5.27)

which means that, compared to the original, the ADI process
adds certain terms ( R in our notation) to the amplification

factor G:

1 - AE(1-p)(D_+ D+ D)) + R

G=1+Atﬂ(D+D+D)+R (5.28)
X y z

For R=0 (general implicit method) the absolute value of G
is less than unity if:
1. <1/,
2. the real part of
Dx+Dy+Dz positive.
For those conditions we have unconditional (i.e. for every
Vc’ k and At) stability.
In case of the ADI method R differs from zero. In 2-D
applications (Dz=0):
R = B2Ac Dny

For complex DX’Dy with a predominant imaginary component, R

will contain a predominant real component and the absolute

value of G remains less than unity.
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In the 3-D case R becomes predoﬁinantly imaginary due to
the term DnyDz and G can take values over unity. Thus,

stability is, at best, conditional.

For the 3-D wave equation the matrix DnyDz equals zero.
Consequently the ADI solution method is unconditionally
stable. Due to the simple structure of the matrices this can

be shown analytically.

For the compressible or AC Navier-Stokes equations the
same principles as deduced for the convection-diffusion
equation are valid, but a proof as given in section 5.5 is
much more complicated for the general case, due to the fact
that Dx’ Dy’ DZ and R in expression (5.28) are now 4 x 4

matrices. Relation (5.28), now properly written as:
-1
G = (1+AtB(DX+Dy+Dz)+R) (1-At(1-ﬁ)(Dx+Dy+Dz)+R) (5.29)

is still valid, but the geometrical interpretation as given

in section 5.5 is not possible.

Although by using the fully implicit Douglas-Rachford ADI
scheme for the solution of the system (4.1) the allowed time
step can be chosen two or three times larger than with the
simple explicit Euler (or FTCS) method, we decided, for
reasons explained in section 4.4, to use separate time-
integration methods for the compression wave part and the
convection-diffusion part.

For the compression wave we use ADI. Because of the rela-
tively high propagation speed of the artificial compression
wave, the use of a simple explicit scheme for this part

would result in a very small time step. The relationship
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between the allowed time step for an explicit scheme is ex-
pressed by the Courant number CAt/Ax where C is the
propagation speed. This Courant number is a measure of the
"numerical propagation speed"”, i.e. the speed of the numeri-
cal information transfer through the computational grid.
Heuristically, it can be stated that, in order to have a
stable computation, this numerical propagation should always
exceed the physical propagation speed.

For the pressure wave part of the equations this propaga-

tion speed is in our notation :

c = J(g/a)

As explained in section 4.5 this propagation should be
sufficiently high to maintain the condition of incompres-
sibility. For values of a = 0.5 to 1. the condition that the
Courant number must be less than unity for a simple explicit
process leads to a maximum time step At = 0.25 Ax.

The convection-diffusion part of the solution moves with
the speed of the convecting velocity, which for our applica-
tions will be 1 a 2 m/sec. The Courant condition then leads
to a time step of the same order as the numerical value of
the grid size.

Thus, it is important that the time step limitation can
be based on the convection-diffusion part of the equations

rather than on the wave part.

In the next chapter we will see that the combination of
this explicit scheme with ADI for the pressure wave has some
stabilizing effect on the FICS scheme. As a result one has
to comply with the 1-D stability condition rather than the
full 3-D condition. This 1-D condition is less stringent

and thus a larger time step can be used.
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6. THE STABILITY OF THE ADI-SCHEME IN COMBINATION WITH
EXPLICIT CONVECTION-DIFFUSION TERMS

6.1 Introduction

For reasons given in section 4.4 we have adopted a dif-
ferent time integration procedure for the terms of the
Navier-Stokes equations that describe the (artificial) pres-
sure wave and for the convection-diffusion terms. In chapter
5 it was shown that the ADI scheme is unconditionally
stable if used for the pressure wave part. The convection-
diffusion part is integrated in time by a simple Euler
explicit scheme. One can expect the stability condition of
the total computational system to be equal to the stability
condition for the explicit process. If both steps are ex-
ecuted consecutively as in (4.27) this is indeed the case.

As mentioned in 4.4.2 another sequence of operations is
possible. Here we will approach this possibility from a dif-
ferent starting point. In 4.3.2 the "delta"- formulation of
the ADI process was brought to attention mainly as a means
of reducing the amount of necessary memory space. Here we
use this formulation to illustrate a more fundamental
aspect.

We repeat this formulation (4.24) in a different form :

A (™ 4Py - A ° (6.1)

N.B. Contrary to its use in (5.25) where the wave equation
was .considered, (6.1) now is intended to contain all the
terms of the N.-S. AC equations (4.1).

If we consider (6.1) as an iteration process towards a

stationary solution ¥, this solution will be independent of
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the elements of A. This idea is expressed by MacCormack
(1985) symbolically as

(Numerics) Ay = (Physics) %

Thus, we can omit the convection-diffusion terms on the
left-hand side of (6.1) without consequences for the final
(stationary) solution which will be reached as ¢n+1 ap-
proximates ¢n. This happens to result in a scheme that is
identical to the scheme (4.29) where the explicit steps are
executed intermittently with the directional steps of the
ADI process. It will be shown in section 6.3 that this or-
dering gives better stability properties to the total
scheme.

Using the same technique as in section 5.6, we will
determine the characteristic equation associated with sys-

tems of the form :
n+l n
AD =B P (6.2)

which we will use as a model for the time integration of the
AC Navier-Stokes equations. In the next sections we will
determine the characteristic equation of (6.2) for the two
alternative ways to incorporate the explicit convection-
diffusion terms in the total system as mentioned in section

4.4,

6.2 Alternative I : Separate Treatment of the Explicit Terms

In the first alternative (4.27) we start by advancing the
numerical solution y with the explicit convection-diffusion

terms for the three velocity components
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, [v v - At (Conv. + Diff.)
e e M ]

or, using the abbreviation iCD for the convection-diffusion

terms of the Fourier transform (as in 4.8)):

, _ |(1-icD) 0 n
P’ = [ 0 1 ") (6.3a)
This step is followed by the Douglas-Rachford ADI scheme

which advances the pressure values and at the same time cor-

rects the velocities :
+
Ay Thoy

or:

A ™ _ B (1-icp) ¥° (6.3b)

where A and B are the matrices as given for the wave equa-

tion (5.25)

Performing the multiplication on the righthand side of
(6.3b) we get:

A $n+1 _ Blﬁn (6.4)
with B,
1-iCD -g/a xy(l1-iCD) -g/a xz(1-iCD) 0]
B. = 0 1-icD -g/a yz(1-iCD) 0
1 0 0 1-iCD 0
0 0 0 1
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The corresponding characteristic equation is

AX-B, =0

or, after some calculation :

(A - (1-iCD))2?[dddA? - (2-iCD)A + (1-iCD)] = 0O (6.5)

with ddd as in (5.26)

giving the eigenvalues

1-1/,iCD i . .
= - f2->" —_ - -1)-1 2
Al,z 355 * 353 J{(1-1iCD) (ddd-1)-1/, (iCD)?2}
(6.6)
A3,4= 1- icD

From this result it is clear that the longitudinal com-
ponents (i.e. the compression wave) are damped by the fully
implicit ADI method. The two transverse components of the
solution vector are amplified with a factor identical to the
separate explicit convection-diffusion equation (6.2) as was
to be expected. Thus, the stability properties of the total

scheme are equal to those of the explicit Euler scheme.

6.3 Alternative II : Explicit Terms Integrated in ADI Scheme

The second alternative is represented by the system :

$n+l n

A -B, § (6.7)
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Again the matrix A is as in (5.25). To obtain the matrix B,

we first write (6.7) in the delta-form:
+1 n
A@T - =B - P° (6.8)
Within the brackets on the righthand side of this expression

we must have the coefficients of the stationary Navier-

Stokes equations:

[ -icD 0 0 -igé]
0 -icD 0 -ign
B, - A=
0 0 -iCh -ig¢
|-ié/a -in/a  -if/a 0 |

Adding A to this matrix we get for B,

[1-iCD  -g/a.&n -g/a.€¢ O]
0 1-iCD -g/a.nt¢ 0
B, =
0 0 1-icD 0
|0 0 0 1

With this result the characteristic equation for the scheme

(4.28) reads

AX-B,=0 (6.9)



or
ddd. )% - {2ddd+2-iCD(d d +d d +d_d )}A% +
Xy Xz yaz
+{ddd+5-iCD(6+d d +d d +d_d )+(iCD)2(d_+d_+d ))I2?% -
Xy X2z Yy 2z Xy z
-{3(1-iCD)2+(1-iCD)3}x + (1-icD)3 =0

with £, n, ¢ as in (5.24)
ddd = d d d
Xy z

dx = (l+g/a.£2)
dy = (l+g/a.n?)
dz = (l+g/a.t?)

The analytical solution of this equation is not as easy
as in the case of the first alternative. Some confidence in
its correctness can be obtained by noting that for the ap-

proximations

.

R

dd+dd+dd 1+2ddad
Xy Yz Xz Xyz

A

dx+ dy+ dZ 2 + dxdydz .
equation (6.9) reduces

to (6.5). If the wave number vector k is chosen in the
direction of one of the coordinate axes the approximations
mentioned above are exact and thus the same eigenvalues are
found as in alternative I.

Using numerical methods it is possible to calculate the
eigen-values and -vectors of (6.9) for specific values of k,
Vc, @, B and v. In fig. 6.1 the results of such a computa-

tion are shown. In fig. 6.la the real and imaginary
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components, and in fig. 6.1b the absolute value of the
largest eigenvalue is plotted versus the absolute value of
the wavenumber k. In the same figure the corresponding value
for alternative I (or purely explicit) is indicated. In this

case the direction of k is such that
nxAx=nyAy=nZAz (or €=n={)

It can be observed that, while the theoretical stability
limits are about the same, the value of the amplification
and hence the growth of the instability is less for alterna-
tive II for this direction of k.

From this kind of computations the following properties of
the scheme according to alternative II can be found:

For directions of k not along the coordinate axes, the
absolute value of the greatest eigenvalue for alternative II
is closer to unity than the greatest absolute value accord-
ing to (6.6) for alternative I. Furthermore, the imaginary
component of the eigenvalues associated with the transverse
components of the solution is reduced in the directions away
from the coordinate axes.

An interesting consequence of this reduction of the im-
aginary component is that the error in the convecting
velocity, made by the spatial discretisation process (see
section 4.2.4), is to a certain extent compensated for by
the error in the time integration. While the imaginary com-
ponent of both eigenvalues associated with the transverse
directions is reduced, the real component is somewhat in-
creased in one direction and somewhat decreased in the
other. Thus, in the transient phase of the solution, some
positive and negative numerical viscosity is added to the
explicit process by the intermixing with the ADI integra-

tion.
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Another result is that the largest eigenvalue will be
reduced automatically, if the explicit stability limit is
locally exceeded. Along the coordinate axes, the ADI process
does not influence the explicit steps, but for these direc-
tions of the wave number vector the computation is in effect
one dimensional. Thus, the practical stability of the total

scheme will be close to the 1-D limit.

6.4 Further Comparison between Alternative I and II

The properties of the two alternative scheme’s can also
be illustrated in terms of the "ADI error term" R as defined
by (5.20)

Alternative I leads to the expression :

n

(1 +R + D) ¢n+l = (1 + R) (1-iCD) ¥ (6.10)
while alternative II results in :
n+1l . n
(L+R+D) 7y = (1 +R - iCD) ¢ (6.11)

In these expressions CD again contains the convection diffu-
sion terms while D represents the remaining terms of the
Navier-Stokes equations.

To compare the two expressions (6.10) and (6.11l) we

rewrite (6.11) as
n+1l -1
(L+R+D) ¥ = (1 +R) (1 - (1+R) "iCD) (6.11a)
Instead of the term iCD in (6.10) we have (1+R)-1iCD in

(6.11la), which represents the influence of the implicit ADI

part of the computation on the explicit part.
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Another point of interest is revealed if we write (6.10)

and (6.11) in delta-form :

Alternative 1

n

(1 +R+D) - y®) = (- D - iCD - iCD.R) ¥  (6.10b)

Alternative I1

(1 +R+D) @ Y

(- D - icD) " (6.11b)

While the second alternative (6.11lb) converges to the exact
stationary solution (D + iCD) % = 0, the converged solution
of the first alternative (6.10b) still contains an error
term iCD.R. While this does not make (6.11) inconsistent ( R
goes to zero with At), it makes the final stationary solu-
tion dependent on, among others, the time step and the
compressibility factor a.

From the arguments given in this chapter it will be clear
that in our opinion the second alternative (4.29) is to be

preferred.
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7. TURBULENCE
7.1 Introduction

Although the effect of turbulence on the flow is of ut-
most importance we will in this thesis restrict ourselves to
very simple turbulence models. A turbulence model is needed
for the closure of the Navier-Stokes equations (2.1-2.2).
These equations are theoretically valid for turbulent flow
but existing numerical solution techniques cannot as yet
deal with the highly irregular small scale turbulent motion.
To solve the equations for turbulent flow in a manner as
discussed in this thesis would involve extremely fine grids
and corresponding small time steps, leading to prohibitive
computing times.

Instead one solves the Navier-Stokes equations for the
mean values of the flow variables. As will be explained in
section 7.2 the coefficient of the viscosity term in this
case no longer represents the molecular viscosity v but
rather the flow dependent "turbulent viscosity" Ve The
relation between the flow-variables proper (p, u, v and w)
and Ve forms the above mentioned closure problem. It neces-
sitates some turbulence model. Many of these models exist
and are used in engineering practice. Still, there is much
difference of opinion about the applicability of the various
models. The problem of turbulence modelling can be regarded
as a separate problem and in this thesis only the most
simple form of turbulence model, the constant eddy vis-
cosity, is employed.

In section 7.2 the principles, on which the idea of tur-
bulent or eddy viscosity is based, are discussed and in
section 7.3 some useful formulae for the a priori determina-

tion of the eddy viscosity are given.
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7.2 Turbulence Models

7.2.1 Theoretical Background

Most turbulence models presently in use are based on the
following two concepts:

a. The separation of the turbulent motion in a mean and a
fluctuating part.

b. The translation of the extra terms that arise from the
non linearity of the original equations into “"viscous"
terms.

The first concept is due to Reynolds(1895), the second to
Boussinesq(1877, historically unconnected to Reynolds’' re-
search. Boussinesq tried to describe simply the greater
resistance felt by turbulent flow compared to laminar flow

as an artificial viscosity effect).

We start with the Navier-Stokes equation (2.1) where v
now represents the molecular viscosity coefficient.
According to Reynolds the flow variables are considered to

consist of a mean and a fluctuating part

(7.1)

After insertion of the righthand sides of (7.1) into the
Navier-Stokes equation, the ensemble average of this equa-
tion is taken. As a result of this operation one gets an
equation for the mean values of the flow variables that is
identical to the original N.-S. equation for the linear
terms. Due to the non-linearity of the convection term an

additional term appears:
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(V grad).V =((V+v') grad).(V+v’) =(V grad).V + (v'grad).v’

This additional term (v'grad).v’ is in most textbooks writ-

ten in its components :
8/8x(u’'?) + 3/3y(u'v’') + 3/3z(u'w")
3/8x(u'v") + 8/3y(v'?) + 8/3z(v'w') (7.2)
3/3x(u'w') + 3/3y(v'w') + 3/3z(w'2)
or in the Ricci notation :
a/axj(ﬁzﬁg)

In this notation V = (ul,uz,u3)T and the
spatial ordinates : x;,X;,Xj.

i and j assume the values 1,2 and 3 while
repeated appearance of an index in a term means
summation over the three values of that index

(Einstein convention).

The averaged products in (7.2) can be interpreted as
stresses and are consequently known as the Reynold stresses.
As such they can be combined with the viscosity term in the

original N.-S. equation :

1 - =
aui/at + /pap/axi + ujaui/axj a/axj(rij/p) 0
(7.3)

where rij/p =v 6ui/6xj - uiuj
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The terms —G;ﬁ; represent the unknown correlations between
the fluctuating motions and to be able to use equation (7.3)
their values must be related to the mean flow variables.
This relation forms the closure problem mentioned in section
7.1.

7.2.2 Eddy Viscosity

In numerical flow computation the relation between the
turbulent stresses -GEG; and the mean flow variables is com-
monly taken from Boussinesq'’s assumption that the turbulent
stresses (i.e. the second term in the expression for rij/p
in (7.3) ) can be expressed in analogy to the viscous stress

as the product of a coefficient v and the local velocity

gradient. This coefficient is calied the "turbulent
viscosity" or "eddy viscosity" coefficient. Because its
value is flow dependent and thus spatially varying we can no
longer employ the simple viscosity term as in (2.1).
Instead, the expression for the eddy viscosity now consists

of two terms for each velocity component :
a/axj('rij/p) = a/axj[(u + ut)(aui/axj+ auj/axi)] (7.4)

Generally, the value of v is negligible compared to Voo ex-
cept in the boundary layer along the wall where the
turbulence decreases to zero. In our model, where the bound-
ary layer is represented by a logarithmic wall function (see
section 8.3), the molecular viscosity coefficient can be
omitted from (7.4).

Because of the Boussinesq assumption the problem of tur-
bulence modelling is shifted from the unknown Reynold

stresses to an unknown eddy viscosity. Most turbulence
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models in use today try to describe the distribution of this
eddy viscosity over the computational domain.

A well known formula that links the local eddy viscosity
directly to the local flow conditions is the mixing length

formula (Prandl,1925)

v~ 12|au/ay| (7.5)
with 1 = a mixing length
and 3u/dy the crossflow gradient

The use of this formula shifts the problem of describing the
eddy viscosity to that of the mixing length. For the deter-
mination of the mixing length (i.e. the spatial scale of the
eddies) formulas exists for several situations. For instance
in the neighbourhood of a solid boundary the mixing length

is often taken as (von Karman,1930)
l=xy (7.6)
with & = 0.4
and y = distance to the wall
Remark :

If (7.6) and (7.5) are used to express Ve in the equation

for the wall shear stress
T P Ve du/dy

the solution of this differential equation results in the

"law of the wall"
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u(y) = u*/k In(y/y,)

with u* = /(Tw/p) (or wall
friction velocity)
and y, = integration constant

related to the bot-

tom roughness

Another, more general formula is due to Buleev (see Rodi-
,1984)

1 =«x/x [[(/d)an (7.7)
with d = distance to the
wall
and [f(..)dn

= integration over
the cross section

of the flow domain

The most advanced turbulence model based on the eddy vis-
cosity concept is the x-¢ model. In this model the eddy
Vviscosity is a function of the turbulent energy x and the
rate of dissipation ¢. Both these quantities are treated as
substances that are generated, transported and diffused by
the flow. Because not all these phenomena can be formulated
exactly, new unknown correlations appear, for which assump-
tions must be taken. This results in a set of 5 constants,
that are assumed to be valid for a wide range of flow situa-
tions. A more extensive description can be found in Rodi
(1984) .

7.6



7.3 The Constant Eddy Viscosity Model

In the present stage of development we do not as yet con-
sider it meaningful to employ an advanced turbulence model.
Most turbulence models are based on the local velocity
gradient. And, while the grid density may be sufficient to
describe the general flow field, the gradients, especially
near singular points where the velocity changes rapidly, are
represented not accurately enough to be used as a basis for
a turbulence model. If such a model is based on the local
gradients only,-as in the mixing length model, one may cor-
rect for the coarseness of the grid by locally adapting the
value of the mixing length, but this presumes knowledge
about the development of shear layers in the model.

Thus, in a flow model as is described here one quickly
reaches the point where a turbulence model is more refined
than the flow model itself. Of course, with a simple eddy
viscosity model the responsibility for the right modelling
of turbulence effects is shifted towards the user.

The most simple turbulence model assumes the eddy vis-
cosity equal to a constant over the computational domain.
This would be acceptable in flow situations where the tur-
bulence can be considered homogeneous, for instance in
regions where the flow is accelerating everywhere because of
a decreasing cross section.

A more general model can be obtained by allowing the eddy
viscosity to be a spatially varying but known quantity. This
involves a certain a priori knowledge of the flow. This
knowledge can be based on experience or even on trial and
error calculations with different eddy viscosity distribu-
tions. Useful formulas are given by Lean and Weare (1979)

for two cases of turbulence generation :
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free shear layer generated turbulence :

_ 1/2 U, x/R (7.8)

with U, = free stream velocity

v
t

x = downstream distance to

separation point

=]
]

numerical constant = 288

bottom generated turbulence

(depth averaged value)

ve = 0.08 u¥ d (7.9)

with u* = /(rw/p)
d = depth

remark : Lean and Weare use in formula (7.9) a
numerical constant 0.16 but introduce a factor !/,
in their relation between u* and the mean velo-
city. Consequently we use for the numerical
constant the value 0.08. A theoretical derivation
of this same formula leads to a numerical factor

0.067 or x/6.

Another formula for the turbulence generated in a free

shear layer is given by Prandl (see Rodi,1984)
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=Ccy|u__-uU

max minI (7.10)

Yt
with C = a constant = 0.01 - 0.026
and y = layer width ( or distance

between U and U .
max mi

Remark :

If formula (7.8) and (7.10) are combined, we find a rela-
tion between the streamwise development x and lateral
development y of the shear layer. Equating v in (7.8) and
(7.10) gives

/2 Up x/R =C y U,
Taking the values R=300 and C=0.01 (the latter value is sug-

gested in Rodi, 1984 for plane shear layers) we get for the

relation y/x :

y/X = 6
This can be considered as a measure of the reattachment

length after a backstep and it agrees well with the usual

value of about 7.
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8. BOUNDARY TREATMENT
8.1 Introduction

In a practical numerical model the boundary treatment is
of extreme importance because the flow is driven, and thus
completely determined, by the boundary conditions.
Boundaries can be divided in active boundaries like inflow
and outflow boundaries and passive ones like solid walls and
symmetry planes. _

It is advantégeous to make a further distinction. If we
consider the Navier-Stokes equations as a combination of the
wave equation and the convection-diffusion equation (see
section 4.4.1), we can give, in the numerical approximation,
separate boundary conditions for these two parts of the full
N.-S. equations. The two sets of boundary conditions should
not conflict with each other.

For the wave equation either the velocity component nor-
mal to the boundary or the pressure must be specified at
all boundaries. At the inflow usually the normal velocity
component is specified and at the outflow the pressure dis-
tribution. The reason for this is given below. If the
outflow boundary is chosen far enough downstream of the area
of interest, a uniform pressure distribution, representing a
hydrostatic pressure distribution, can be given in most
cases,

On solid walls as well as on symmetry planes we can
simply impose a zero normal velocity, so a pressure condi-

tion is never needed in this case.
For the convection diffusion equation, because of its

parabolic character, the normal and tangential components of

the velocity must be given on all boundaries. However, for
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high Reynolds numbers steep velocity gradients will appear
at the outflow boundary, if the boundary condition does not
match the value of the velocity that is convected towards
the outflow boundary. Thus, a very small grid size is neces-
sary to represent the analytical solution. This effect,
known as the numerical outflow boundary layer, is controlled

by the cell Reynolds number
Re_ = V_Ax/v

It can be shown (Vreugdenhil,1989) that for the explicit
time integration with central differences (FTCS) the cell
Reynolds number ReC must be less than 2 to prevent an oscil-
latory solution near the outflow boundary. This severe
restriction on the grid size can be removed by specifying a
zero second derivative for all velocity components on the
outflow boundary, because this neutralizes the viscosity
term.

Thus, we do not want to specify the velocity itself at
the outflow boundary. Instead we use in the wave equation
part of the solution process a pressure condition on the
outflow, together with the above mentioned second deriva-
tives of the velocity components,

On solid boundaries unfortunately we must specify a zero
normal velocity, but here the problem is less severe, as the
convecting velocity normal to the wall is generally small.
Furthermore, in most cases a slip condition is given on the
wall (see section 8.3) which diminishes the gradients of the
tangential velocity components near the wall.

In table 8.1 the boundary conditions that are used in the
applications of chapter 9 are summarized. In this table we
use the notation Vn for the velocity component normal to the

boundary and Vt for the tangential component.
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wave equation convection-diff. equation
inflow Vn given Vnand Vt given
outflow uniform pressure 62Vn/8n2=0 , 62Vt/8n2=0
solid wall Vn=0 Vn=0 s Vt= slip
symmetry . Vn=0 Vn=0 , 6Vt/8n=0

table 8.1 Boundary Conditions

As can be observed in table 8.1 there are no conflicting
boundary conditions for the two parts of the computational
procedure.

The second derivative of Vn that is specified for the
convection diffusion part of the equations is formally ex-
traneous for the wave equation, but no problems were
encountered in the computations in this respect.

At solid walls and symmetry planes the boundary condi-
tions are effectuated by means of a slip factor (see section
8.3.3). They are treated implicitly, i.e. the derivatives
are evaluated and used in the same time step. In contrast,
the second derivatives at the outflow boundary are taken
explicitly : they are evaluated on the basis of the
velocities of the old time step. For the computation of sta-

tionary flow this difference is not important.

Another class of problems is connected with the use of a

regular grid. The main disadvantage of the regular finite
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difference grid is its inability to follow the physical
boundaries other than in a "staircase"-like manner. For in-
flow and outflow boundaries this is in many cases less
important because the modeller is often free in his choice
of the exact location of those boundaries, viz. they can
often be taken along grid lines. Closed boundaries, however,
are generally dictated by the physical structure one wants
to model so in this case it is important that the grid can
accurately represent the shape of the physical boundary. In
2-D models one can sometimes circumvent the problem by ap-
plying a very fine grid, but in 3-D applications this would
lead to a prohibitive amount of gridpoints.

A common method to solve this problem is the use of
generalized, or boundary fitted, coordinates. In this method
the physical space is mapped or transformed to a simple rec-
tangular computational domain. This tranformation is such
that the physical boundaries coincide with coordinate lines
in the computational domain, removing the need for compli-
cated boundary conditions. The method works well if the
curvilinear grid can be chosen along streamlines of the
flow, but if recirculating flows are present, this is
generally impossible. In such cases care must be taken that
transformation errors do not degrade the accuracy of the
flow computation. Thus, this method is especially useful in
flows around streamlined bodies (e.g. airfoils), but less so
when the boundaries exhibit sharp corners. Application of
the method in practical engineering use involves complicated
grid generation programs and the storage of much geometrical
data. Nevertheless many reports of succesfull application
exist in literature (for instance: Kwak,1989).

Still, in our opinion the advantages of a simple rectan-
gular grid do prevail over its disadvantages, if one aims

toward minicomputer applications. Furthermore, possibilities



exist to improve the approximation of closed boundaries. By
using a finite volume approach for the gridcells adjacent to
the boundary, in a method known as the porosity method or
fractional area/volume method (Hirt,1984), the above men-
tioned disadvantages can be overcome to a great extent. This
method will be explained in section 8.2.

Another problem inherent to the regular grid is that it
is generally too coarse to represent boundary layers, unless
one is again prepared to use an enormous amount of grid
points. A well-known solution to this problem is the use of
wall functions. This involves a slip condition on the wall.
To impose such a condition on a staircase-boundary requires
some ingenuity. This problem will be dealt with in section
8.3.

8.2 The Porosity Method

8.2.1 Description of the Boundary Problem

Because we use a simple regular finite difference grid we
cannot accurately describe, without further measures, solid
boundaries other than those that coincide with cell bound-
aries. Oblique or curved boundaries must be represented in a
"staircase" manner as indicated in fig. 8.1. This repre-
sentation has several drawbacks.

In the general case the influence of the staircase-
boundary will extend over several grid distances away from
the boundary. In order to represent the flow along the wall
more or less accurately a fine grid must be used.

A more fundamental disadvantage is the impossibility to
specify a free slip condition on a general oblique boundary.

Some authors (Weare,1979) maintain that a staircase-boundary
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always results in a no-slip condition. Usually the following
argument is given

Velocity component V; in fig. 8.la must be set to zero to
satisfy the condition of no mass flow through the wall.

Accordingly component V, always "feels" a no-slip condition.
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fig. 8.1

This problem can be partly solved by considering V, in
fig. 8.1a as a non-zero tangential component in diffusion
terms of the convection diffusion equation and as a zero
normal component in the flow terms in the continuity equa-
tion. In this way it is possible to construct, at least for
the stationary case, a free slip condition on a boundary
line that makes an angle of 45 degrees with the grid lines

as in fig. 8.1a.
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But in the situation in fig. 8.1b, where the boundary
intersects the grid in the ratio 1:2 the use of different
boundary conditions for the different terms is not suffi-
cient to attain a free slip condition. In order to satisfy
continuity, velocity component V, must have the same value
as Uy, while the free slip condition should result in V, =
2%U,. Thus, the value of V4 will be too low and even when
the boundary condition for the diffusion terms is set to

free slip, some wall friction will be felt by the flow.

8.2.2 Finite Volume Approach

To counteract the difficulties mentioned in the foregoing
section, we decided to use a finite volume approach to the
grid cells adjoining the solid boundaries. In a finite
volume method the finite difference equations are written in

flux form:
dy/dt + 8F/4x + 3G/8y + 9H/dz = 0 (8.1)

where F(¥), G(¥) and H(y¥) are fluxes
through the cell-faces

Equation (8.1) is integrated over the cell using Green's

theorem :

a/etfff v av + [[ F ds_ + [f e ds_ + JI B ds -0 (8.2)
If ¥ is taken constant over the cell volume V and the fluxes

are taken constant over their respective surfaces Sx’ Sy and

Sz’ (8.2) simplifies to :
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a/dt(ypV) + FyAx, - F Ax, +
+ G,Ay, - G Ay; + (8.3)
HyAz, - HjAzy, = 0

with F, , Ax,; ,etc as indicated in fig. 8.2a

In the case of the equation of continuity the fluxes are

obtained by multiplication of the velocity components with
the appropriate cell surfaces. In this form the equation is
automatically mass conserving on a staggered grid where the

velocity components are situated on the cell faces.
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a: finite volume b: porosity

fig. 8.2

For the equations of motion the formulation is more com-
plicated because it is not possible, in the staggered grid,

to define a cell (or finite volume) in such a way that all
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necessary velocity components and pressures are available at
the cell surface. Thus, interpolations are necessary to for-

mulate the fluxes in this case.

8.2.3 The Porosity Formulation

A method that is closely associated with the finite
volume formulation is the so-called porosity method. In this
method the equations are formulated in flux form, as in the
finite volume method. The only difference with the finite
volume method proper is that the geometrical data are based
on the regular grid rather than on the real boundary. In the
finite volume formulation the partly cut off-cell would be
represented as in fig. 8.2a, with the fluxes situated in the
center of the "open" part of the cell faces. In the porosity
formulation (fig. 8.2b) this same cell takes the position of
the full cell. The respective surfaces, however, are given
an "open" area conforming to the corresponding cut-off area
in fig. 8.3a. Likewise the volume of the cell is reduced to
that of the cut-off cell, but the cell center remains at the
regular grid point C. The name "porosity" reflects the fact
that the cell is not cut off by the boundary, dividing it in
a open and solid part, but made porous by a blockage evenly
distributed over the cell.

If the quantity, needed to formulate the flux, is
directly available on the cell face, the porosity formula-
tion is just as accurate as the finite volume method. If
interpolation is necessary, the fact that the geometrical
locations of the concerned values are not correct may affect
the result. The velocity fluxes on oblique cell faces are

always zero because of the solid boundary so the fact that



the flux should be perpendicular to the cell surface is not
important here. ‘

The advantage of the porosity method over the finite
volume method lies in the fact that in the former method the
grid remains regular. Thus, the amount of geometrical data
to be retained is reduced to the "porosities"™ of the cells.
This means that, for the cells adjoining the solid boundary,
six surface areas and one volume per cell have to be stored
with the grid data.

In the calculations in chapter 9 of this thesis the
porosity method is used for the formulation of the equation
of continuity and for the formulation of the convection
terms in the equations of motion. Application to the con-
tinuity equation is straightforward conform fig. 8.2b.

The porosity formulation for the equations of motion is
more complicated because not all necessary quantities are
known on the cell faces. They have to be approximated by
interpolations. As an example we consider the u-equation.

The computational cell is now situated centered around U,.

Us .
!
4 1) -
1z Val
q0__> fo) l.’h__* o u_2+
4 4

double cell for equation of motion

fig. 8.3
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Because we do not want to store a separate cell system with
its own volumes and surfaces, we choose as a control volume
a double-cell consisting of two "continuity" cells as indi-
cated in fig. 8.3.

In terms of equation (8.1) the fluxes in the u-equation

of motion are expressed as

gh + u? - v du/dx
= uv - v du/ady (8.4)

= uw - v du/dz

The pressure term gh poses a difficulty because the pressure
is not specified on the solid boundary (The fact that this
is not necessary is one of the advantages of the artificial
compressibility method). In our computational scheme the
pressure term is approximated with regular finite dif-
ferences.

The friction terms are also difficult to incorporate in
the porosity formulation. Here the fact that the true
geometrical data are not available, i.e. the distance of the
cell centre to the solid boundary is not known, hinders an
accurate description. This problem is dealt with in section
8.4.

As a result of the above mentioned considerations our

version of the porosity method can be expressed as follows

a/8tfff uw av + [[ u? de + [ uv dSy + [[ uw dSz =
(8.5)
Iff ( -gdny/ax + B/BXJ.(rij/P) ) av

where for the viscosity term the expression (7.4) is used.
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Equation (8.5) shows that in the expression on the left-
hand side momentum is conserved over the control volume V.
The righthand side represents the pressure and friction
forces. They are expressed in the non-conserving finite dif-
ference formulation.

The separate terms of the lefthand side of (8.5) are cal-
culated according to

/0t [ff u av = ™ WPyx v
with V = open cell volume
Jf vz dS_ = Ax,%U,%U, - AX,*Uy*U,
JI uv dS. = (Ays+Ay,)*(Vs+V,)*(Us+U,)/2 -
(Ay;+AY ) * (V1 +V,) % (U, +U, ) /2

ff uw dSz

(Azg+Az ) * (W +W, ) * (U, +U,) /2 -
(Az +AzZ, ) * (W +W, )% (Ug+U, ) /2

according to the nomenclature in fig. 8.3

Treatment of the v- and w- equations of motion is similar.

8.3 Wall Friction
8.3.1 Introduction

The physically correct boundary condition of viscous flow
is no-slip. This means that all three components of the flow
velocity should be zero at the solid boundary. However, in
the boundary layer along a solid wall the turbulence
decreases to zero towards the wall so the turbulent vis-

cosity coefficient v, also tends to zero. At the wall the
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velocity gradient of the flow component parallel to the wall
is determined solely by the molecular viscosity coefficient
v. In the case of a high Reynolds number the gradient in the
region close to the wall is very steep and for its proper
representation a very fine grid would be necessary. This can
be avoided by using a parametric representation for the
velocity in the boundary layer, commonly known as a wall
function. For turbulent flows this function generally
describes a logarithmic profile over the boundary layer and
is used to relate the velocity gradient in the first grid-
point away from the wall to the physically réquired no-slip
boundary condition at the wall.

From a computational point of view the Dirichlet boundary
condition of no slip is replaced by a Neumann type boundary
condition, prescribing the gradient of the velocity parallel
to the wall. By means of the wall function this gradient is
a function of the velocity in the first grid point away from

the wall.

8.3.2 The Wall Function

At the wall the turbulence is suppressed and the flow is
completely determined by the molecular viscosity of the
fluid. For hydraulically smooth walls a laminar viscous sub-
layer exists very close to the wall. A little further away
from the wall the flow gradually becomes turbulent. This
turbulent boundary layer may encompass the whole flow
region. In most engineering applications we have walls that
are hydraulically rough and only a turbulent boundary layer
exists at the wall. In the region close to the wall the tan-
gential component of the velocity has a very steep gradient.

To avoid a very small grid size to accomodate these
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gradients we do not use a no-slip boundary condition at the
wall proper, but instead a boundary condition based on the
*"law of the wall" (Rodi,1980, see also section 7.2).

The associated theory is based on the assumption that the
value of the shear stress 7, at the wall can be considered
constant for the steep gradient part of the turbulent bound-
ary layer, or, in our case, for the region between the wall
and the first grid point away from the wall. For simplicity
we first consider a 2-D region with u the tangential

velocity and y the perpendicular distance to the wall.

The turbulent viscosity coefficient v is expressed with

Prandl’s mixing length formula (7.5)

- 12
Ve 12 Ju/ady

where u = the flow velocity along the wall

and y = the distance to the wall

According to (7.6) the mixing length 1 is related to the
distance y by :

l=xy
with & = von Karman’s constant (0.4)
which expresses the notion that the turbulent eddies grow

linearly with their distance to the wall.

With constant shear stress T, over the turbulent boundary

layer we have

T =p (kydudy)? =r

or
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J(r /p)

du/dy = %y

(8.6)

The expression j(fw/p) is commonly designated the wall fric-

tion velocity u¥*.

The solution of the differential equation (8.6) gives the

wall function :

am) = L 1n(y/yo) (8.7)

where y, is an integration constant empiri-

cally related to the wall friction coefficient by :
Yo = k_/ 33

with kn= roughness parameter of Nikuradse

8.3.3 The Slip Formulation
From (8.7) we can express the wall shear stress T (i.e.
the shear stress that the wall imposes on the fluid body) as

function of the velocity in the first grid point away from

the wall y,
TP k2u(y,)2/1n2(y,/Yo) (8.8)

In this first point y; the influence of the wall is "felt"

by the diffusion term of the Navier-Stokes equations :
3(r /P /3y = 3(v du/dy)/dy

or in finite differences :
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u(yz)-u(y;) u(y,)-u(slip)
Vtz_XZKy—J_ T Vel 1Ay (8.9)

where y, = the second grid point

away from the wall

See also fig. 8.4.

slip formulation

fig. 8.4

In order for the wall friction to exert the proper shear
stress on the fluid we must equate the rightmost term in

(8.9) to the wall shear stress (8.8) divided by p :

v BEZRELR) 2 w212 (a/ye)  (8.10)
or !
Ys1ip = (17 351 Yy By
(8.11)



2 A -1
itha,-—r 08y
! aSI thnz(Y1/YO) [ s]

Remark :

The value of Ve in (8.11) neutralizes the value of the
turbulent viscosity in the apropriate diffussion term. In
this way the wall shear stress has its proper value even if
the coefficient of turbulent viscosity, as used in the equa-

tions, is not physically correct near the wall.

If we assume that locally the velocity varies only normal
to the wall, we can translate the theory developed above to
the more general case of a solid boundary that intersects
the grid at an arbitrary angle. Then, the shear stress T,
becomes a vector parallel to the wall. It will have the
direction of the local velocity (whose component normal to

the wall is zero) and (8.8) now must be written as
TSP k2/1n2(d,/dy) |V,| Vv,

(8.10) becomes

v Vi -V _ K2 |V1|/1n2(d1/do) v,
t An
where V, = the velocity vector at a
distance d; from the wall

the coordinate normal

and n

to the boundary
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Expressing An in its direction cosines the slip velocity V,

is given by :

Velip™ a - a51|v,|) . vy (8.12)

with (..)1 the velocity in the first

"live" grid point away from the wall

x2

4 3517 v In?(4,/d,)

Axicos 3 (8.13)

where Axi- Ax,Ay, Az
and v the angle between the
normal and the corresponding

coordinate direction.

In formula (8.13) the value of a depends on d1 and on
the direction of differencing, i.e. the value of j in the
tensor element Tis that is represented. While d; generally
can be replaced by its mean value, the factor Axicos 7; must
be given its correct value to prevent the influence of the
"staircase" boundary on the flow pattern, especially if a
substantial wall friction is specified on this boundary.

The use of (8.12) and (8.13) in the computational scheme

will be discussed in section 8.4.2.

8.3.4 Vorticity Defect of the Wall Function Formulation
In many computational methods wall functions are used to

model the turbulent boundary layer. It is useful to point

out a possible source of error comnected to the above
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described use of wall functions or partial slip boundary

conditions.
To illustrate the problem we will consider a turbulent

flow parallel to a solid wall. Note that in the following we
do not consider the turbulent motion of the fluid but the
averaged values of the flow variables as used in the com-

putational method.
In the neighbourhood of the wall the vorticity of the

flow can be expressed as
w = Ju/dy

with u and y as in fig. 8.4

In fig. 8.5 the velocity- and vorticity distribution as

function of the distance y from the wall is indicated.
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As seen in fig. 8.5b the vorticity decreases sharply from a
high value at the wall to a low value further away from the
wall. The use of a wall function to generate a boundary con-
dition is equivalent to the approximation of the functions
in fig. 8.5 by the dashed lines in the region of the bound-
ary layer. Thus, part of the wall vorticity is neglected. In
the situation considered so far this is no problem, but if
the main flow separates from the wall, for instance as in
the situations depicted in fig. 8.6a and b, the neglected
amount of vorticity should be convected into the computa-
tional domain. How this should be done computationally is a
complicated matter beyond the scope of this thesis, but the
modeller should be aware of the possible error made by the

use of the boundary conditions as described here.
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8.4 Implementation in the Computational Scheme

8.2.1.Porosity

As noted in section 8.2.3 application of the porosity
method involves the storage of the volume and surface area's
of the grid cells adjacent to the solid walls in the model.
It is possible to design a complicated addressing system and
store the necessary data for the boundary cells only.

We chose a simpler system where the data for all cells
are kept in storage, but in an efficient manner using one
single word of storage per grid cell. Per grid cell four
integer values ( volume 0-999, 3 area’s 0-99 ) are stored. A
special code is used to indicate a cell that is completely
open ( or completely closed) in which case the formulation
as given in (8.5) can be simplified.

A separate program generates the necessary geometrical
data from user specified contour planes describing the

structure(s) to be modelled. See appendix A.

8.4.2 Viscosity and Wall Function

The viscosity coefficient in (4.1) is used to describe
the turbulent viscosity of the flow. Thus, the possibility
must exist to specify a spatially varying value.

The wall friction also may differ for different sections
of the solid walls in the model.

To accomodate these needs a separate array is used to
store both the viscosity coefficients and, for grid cells
near the boundaries, the slip factors (8.13). Because a com-

putational point may be connected to other "active" points
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as well as to the boundary, per grid cell three values, rep-
resenting either a viscosity coefficient or a slipfactor,
must be stored. Using the same storage technique as
described in the preceding section for the grid data, these
three values are stored in one memory word.

While the value of the turbulent viscosity coefficient,
at least theoretically, is independent of direction, the

value of the slipfactor a_, that must be specified is dif-

ferent for each coordinatzldirection as explained in section
8.3.3. However, in the applications described in chapter 9,
notably for the oblique walls in the second example, this
difference in direction is not made, because the present
form of the grid-generating program (appendix A) cannot as

yet generate the necessary directional information.

If the value of the viscosity coefficient depends on the
local velocity gradient (for instance, if one uses the
mixing length formula (7.5)) the array containing those
values is updated a few times during the computation.

Including the arrays mentioned in this and the preceding
section, seven arrays in all are needed during the flow com-
putation : four for the primary flow variables u, v, w and
h, one for the geometrcal data, one for the viscosity/slip
coefficients and an auxilary array. This last array permits
a faster computational scheme, but it can be omitted if

storage capacity is a problem,

8.4.3 Free Surface

Most applications, for which the computational method

decribed in this thesis was developed, involve open channel
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flow. This means that the method must provide a way to simu-
late a free surface. Formally this surface is to be
determined during the computation, involving a spatially
varying grid system or a technique, known as MAC (marker and
cell, Harlow and Welch,1965). If the variation in surface
elevation is small a simpler simulation of the free surface
is often permitted: the so-called rigid 1lid approximation.
One replaces the free surface by a rigid lid on which a
varying pressure is permitted. The boundary condition given
is that of zero normal flow and free slip.

The method of artificial compressibility permits another
simple solution of the problem of simulating the free sur-
face. If in the surface layer of grid cells the continuity
equation according to (4.1) is replaced by its SWE counter-
part (2.11), a top layer with a variable vertical dimension
is created. Variations of the water level less than the ver-
tical grid size can thus be represented in the difference
scheme. However, the gain in accuracy is small because of
the small amount of fluid mass involved. Moreover the ad-
vantage of a linear continuity equation is lost. In the
applications in chapter 9 the rigid lid approximation is

used in all cases.
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9. APPLICATIONS

9.1 Introduction

9.1.1 Short Description of Numerical Examples

In this chapter we present three applications of the com-
putational method developed in the foregoing text. As a
first example a theoretical configuration is treated : a
harbor situated in the outer bend of a river. This problem
is used to demonstrate a possible difference between the 2-D
SWE, and the full 3-D solution. The artificial compres-
sibility method is very easily adapted to a 2-D SWE problem,
so the comparison can be done with one and the same computer
program. For simplicity we use a constant depth in both the
2-D and the 3-D computation, although a variable bathymetry
could be accomodated with only a few changes in the 2-D ver-
sion of the program. A rigid lid approximation (i.e. the
free surface is simulated by a fixed, free slip boundary) is
used in both computations.

The second and third applications concern real struc-
tures, They represent each a different class of problems. In
the second application, where the flow through the intake
structure of a small hydro-power station is computed, the
flow accelerates and no back flow occurs. In the third ex-
ample the flow decelerates and regions of back flow are
present. This application numerically simulates the flow
through a gate in the proposed storm surge barrier in the
Rotterdam Waterway. Both computations could be compared with

measurements from physical scale models.
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9.1.2 Determination of Computation Parameters

Computation parameters can be divided in physical
parameters, i.e. the dimensions of the structure to be
modelled, the velocity V and the eddy or turbulent viscosity

v and the numerical parameters, i.e. the grid sizes Ax,

e
Ay, Az, the time step At and the propagation speed of the
artificial pressure wave /(g/a). These parameters can be
combined into several important nondimensional numbers that
determine the behaviour of the numerical solution.

From the physical parameters we obtain the turbulent

Reynolds number
Ret= VL /ut
where L is a characteristic length

The classical Reynolds number determines the ratio between
the inertial and viscous forces acting on the fluid.
Similarly the turbulent Reynolds number determines the ratio
between the inertial forces in terms of the mean flow
velocities and the forces generated by the eddy viscosity,

i.e. the representation of the turbulent stresses.
Other combinations result in
a: The Courant numbers : uAt/Ax, VAt/Ay, wAt/Az
This Courant number is based on the flow velocity.
As explained in chapter 6 the stability of our
numerical scheme depends on the 1-D Courant number

rather than on the full 3-D Courant number. In our

computations we have to deal with the maximum of
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the three Courant numbers cited above.
b: The Courant number : /(g/e) At/As
with As = the smallest grid size

This number is associated with the artificial
pressure wave. Because this wave travels in all
directions the smallest grid size is the deter-

mining one.

¢: The diffusion dominated stability limit
(hereafter called "diffusion limit")
1 1 1

7 + 352 ) At

2ut( axz T Ay

Here we must take the full 3-D form.

d: The convection dominated stability numbers

(hereafter called "convection parameter")
2 2 2
u At/2ut, v At/Zut, w At/2vt

Again the maximum of these three numbers is the

determining entity.

Because the convection-diffusion terms of the Navier-
Stokes equations are treated explicitly in our numerical
scheme, the Courant number based on the flow velocities and
the diffusion limit should always be smaller than unity,
because otherwise the computation will be unstable for every
Fourier component of the solution. While the latter may be

close to unity, the Courant number should always stay well



below unity. In our experiments its value was about 0.3 or
less. -

The Courant number based on the pressure wave propagation
velocity may take values greater than unity, because this
part of the computation is performed implicitly. As ex-
plained in section 4.5 the propagation velocity should not
be chosen too large.

According to the von Neumann stability analysis (see sec-
tion 5.4) the convection parameter should be less than
unity. However, it was found in the experiments that stable
computations were possible with the maximum of the three
numbers taking values of 2 to 3. The reason for this may be
the fact that this parameter is associated with the lower

range of wave numbers.

In some cases another number is important as well : the

cell Reynold number
Rec= VAs/vt

where V is the convecting velocity

in the direction of grid size As.

As mentioned in section 8.1 this number plays a part in the
behaviour of the solution near the outflow boundary. If the
cell Reynolds number attains values larger than 2, wiggles
will appear in the solution. This problem is eliminated by
specifying a zero second derivative boundary condition at
the outflow boundary. However, in some cases the wiggles
associated with the cell Reynolds limit occur at other loca-
tions in the flow field. In some situations, e.g. near a

stagnation point, a high velocity gradient may exist which
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cannot be resolved by the spatial grid. An example of such a

situation is found in the first application (section 9.2.4).

In a practical computation one starts by determining the
grid sizes. If we disregard the problem just mentioned, the
choice of the grid size is governed by two factors : the
smallest eddy to be resolved, or the smallest (double)
radius of curvature that must be followed by the flow, and
the available computer memory space.

An estimation of the smallest resolvable eddy can be made
on the basis of the spatial error mentioned in section
4.2.4. If we assume that this eddy is built up from Fourier
components with a wave length equal to the diameter of the
eddy, and if we require that the spatial error does not
exceed 10%, it can be calculated from the theory in section
4.2.4 that there should be at least 8 grid lengths across an
eddy.

Having determined the grid size, the time step is chosen
on the basis of the non dimensional parameters mentioned
under a, b, ¢ and d above.

For the time step of the ADI part of the computation a
value can be chosen on the basis of the Courant number (b)
associated with the propagation of the artificial pressure
wave, Because the ADI part of the computation is uncondi-
tionally stable this Courant number may exceed unity, but
for reasons mentioned in section 4.5 it should not be taken
too high. Its value is not very critical. In our experiments
we give the ADI Courant number a value of 2 to 3,

The propagation speed /(g/a) is taken up to 5 times the
maximum flow velocity. To limit the velocities in the tran-
sient phase, a computation is generally started with a
higher propagation speed. In this way the initial pressure

disturbance is spread rapidly over the computational domain.
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If the model is somewhat converged, the propagation speed,
or rather the compressibility factor a, is set to its final

value.

9.2 Harbor in Outer River Bend
9.2.1 Grid System

In this and the following sections we will use the words-
:"north","south","east" and "west" to indicate the four
sides in the horizontal plane of the computational domain.
In the vertical direction the words "surface" and "bottom"
are used.

The basic grid system consists of a block of 40 X 40 X 11
grid cells. Normal to each cell face a velocity component is
located in the center of that face, while the pressure, or
rather the piezometric height, is situated in the center of
each cell. In each cell the pressure in the center and the
velocity components on the southern, eastern and downward
face are associated with each other, i.e. they are indicated
with the same values of the grid numbers i, j and k. The.
cell (1,1,1) forms the upper north-west cormer of the block,
while u(i), v(j) and w(k) point south-, east- and downward,
respectively. See also fig. 4.1. The outer layer on each
side of the computational block (including the upper
surface) consists of dummy cells. They are used to specify
the in- and outflow boundaries. Thus, we have a block of 38
x 38 x 9 possible active cells. By closing off (parts of)
these cells the desired geometry is obtained. By using the
porosity formulation mentioned in section 8.2, cells can be
partially blocked and the boundaries do not have to coincide

with grid planes.
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fig. 9.1 : Harbor in river bend

In the model we are considering in this section the
desired geometry is obtained by closing a block of 20 x 20 x
11 cells in the south-east corner, which results in a
geometry that can be considered as a square basin situated
at the outer bend of a channel. See fig. 9.1. For
simplicity, a constant depth is assumed.

For both the 2-D and 3-D model the horizontal grid size
was chosen as AX = Ay = 1 m., resulting in a basin with

dimensions 19 x 19 m. The depth is 4.5 m.



9.2.2 The 2-D Model

The 2-D and 3-D computation work both with the grid sys-
tem described in the preceding section, but in the 2-D
computation only one layer of grid cells is used. Because
the uppermost layer is used to specify the free slip condi-
tions representing the free surface (see also section 8.4.3)
the second layer is the active one. In the 2-D computation
the third layer is used to specify the bottom friction. This
is done by using the "vertical" viscosity terms in the u- \
and v- equations to simulate the bottom friction by means of
the slip formulation discussed in section 8.3.3, This for-
mulation allows a quadratic dependence of the bottom
friction on the velocity conform the SWE friction terms.

The SWE bottom friction terms usually are given as

2 42
E—éégﬁtz—l in the x-direction and

242
g Y_%égﬁiz_l in the y-direction

where g = acceleration of gravity

friction coefficient of Chezy

depth

The finite difference approximations of the viscosity
terms in the u- and v-equation of the system (4.1) for a
free slip surface condition and a partial slip bottom condi-

tion according to formula (8.12) result in :

u J(u2+v?2)

Ve ag T g in the x-direction and
(9.1)
v J(u2+v?) . . .
Ve 2o 222 in the y-direction.
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By taking
= 2 2
a =8 Az2/(C2D ut) (9.2)

the standard 3-D formulation can be used for the 2-D com-
putation. Because we use a rigid 1id approximation, the
variation in water level does not appear in the continuity
equation, which for constant depth is then reduced to V.V =
0. Thus, Az enters the 2-D formulation in (9.2) only. It can

be treated as a numerical factor, relating a to v, .

sl t
The bottom friction in the model is determined by the
depth D and the value of the Chezy coefficient C. In the

present computation the following values where used :

D=4.5m
C =50 ml/z/s

The remaining computation parameters are listed below:

- Inflow at north boundary :

u= V_cos( J2T2 x 3) for j=2,30 ; u=0  for j=31,40
_ . Jj-2 = i . _ .
v= Vm51n( 78 ¥ 2) for j=2,30 ;W Vm for j=31,40

with Vm= depth averaged velocity = 1. m/s

and j = grid number (west to east)

This results in an inflow with a direction varying
linearly from due south at the west boundary to due

east eastwards of point A in fig. 9.1.



- Outflow at east boundary :

a uniform pressure distribution h=0

82u/8x2=0 and 82%v/3x%=0
- Horizontal viscosity coefficient :
ve= 0.025 m?/s

This value is based on formula (7.9). The value of

u* in this formula is obtained according to

ux = jg~Vm/C = 0.063 m/s (9.3)

- Horizontal slip factor = 0.15 m-ls

This value simulates an arbitrary roughness of the

river banks.
- Vertical slip factor

To obtain this value we must chose an arbitrary
value for Az. The value for ag then follows from

(9.2). In this case we took :

Az = 2.4 m, a ,=0.2 m-ls
sl

- Time step for the convection-diffusion part of the

computation :
Atcd = 0.125 s

This choice results in the following values of the

nondimensional computation parameters :
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Maximum Courant number : uA:t = L. T 0.125 = 0.125

Diffusion limit : 2ut(1/Ax2+1/Ay2)At =
0.05 x (1/141/1) x 0.125 = 0.0125

Convection parameter : u2/2utAt =1/0.05 x 0.125 = 2.5

The time step is determined by the convection

parameter.
- Time step for the ADI part of the computation :

Atadi= 0.5 s

- Compressibility factor a = 0.2 m L

The last two figures result in a Courant number for

the ADI process
Courant . .= 2.25
adi

with a propagation speed of the artificial pressure

wave of 4.5 m/s

The result of the 2-D computation is given in fig. 9.2.
The velocity vectors in this and the following plots are
drawn in the cell center, by averaging the velocity com-
ponents on opposite cell faces. A velocity vector is drawn
for every other cell in the horizontal plane.

From the figure it can be observed that the primary flow

penetrates the whole of the basin. No eddy is generated.
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9.2.3 The 3-D Model

The 3-D model employs the same grid system as the 2-D
model, except that now all layers are used. The vertical

grid size regains its proper meaning

Az = 0.5 m

Because there are 9 active grid cells in the vertical this
results in a depth of 4.5 m,, the same as in the 2-D case.
To create a flow situation that is as much as possible
identical to the situation in the 2-D computation, the same
in- and outflow conditions are chosen. Of course, in the 3-D
model a vertical distribution of the inflow must be given.

This distribution is obtained from the logarithmic formula:
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V(z) = v¥/x 1In(z/z,)

with v¥ = 0.063 m/s as in the 2-D model
and z, = 0.0045 m.

The value of z, is related to the Chezy coefficient used

in the 2-D model with the formula :

C = (Jg/k) In(D/ez,)

The remaining parameters are chosen identical to the 2-D

case

ve= 0.025 m?/s

-1
asl(bottom) =0.2m s

a_, (side walls) = 0.15 m Ls

Because now three dimensions are involved and because the
surface velocity is slightly higher than the mean velocity
used in the 2D computation, the non dimensional parameters
are different. The determining number, i.e. the convection

parameter becomes

V2At/2ut= 1.082 x 0.125 / 0.05 = 2.9
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The result of the 3-D computation is given in fig.
9.3a,b,c. In this figure the horizontal velocity is plotted
on three depth levels : 0.25 m(a), 2.25 m(b) and 3.75 m(c)
from the surface. Fig. 9.4 gives the velocity vectors in
three vertical cross sections: one along the west boundary
(fig. 9.4a), one along the line B-B as indicated in fig. 9.1
(fig.9.4b) and one along the east boundary of the harbor
(fig. 9.4c). From this figures a strong helical movement is

visible.

About 600 ADI iterations and 2400 convection-diffusion
iterations were needed for convergence, i.e. to reach a

steady state. Expressed in cpu-time this means

2.5 hours on IBM 3083

17 hours on Harris 1000
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On the IBM machine, using 4-byte words, the computer
program (without arrays) demands 250 Kbyte of memory. The
arrays containing the flow variables and parameters take

another 500 Kbyte for the dimensions used in this case.

Remark :

In the method of artificial compressibility, the time
axis of the computation has no physical meaning, but some
relation with the physics of the flow exists : The computa-
tional time (i.e. number of iterations x At) must at least
exceed the time needed for the boundary conditions to spread
their influence through the computational domain. See sec-

tion 4.5.

9.2.4 Discussion

Comparing the results from the 2-D and the 3-D computa-
tion the conclusion can be drawn that a calculation of
sediment transport based on the 2-D computation would differ
considerably from one that is based on the 3-D flow field.
In the 3-D result almost no flow enters the harbor in the
lower half of the water body where most of the sediment is
concentrated. Near the bottom a strong outflow exists at the
east side of the entrance. The difference is caused by a
strong vertical eddy as shown in fig. 9.4.

In order to compare the results of the 2- and 3-D com-
putation, we computed the depth average of the 3-D
computation. The result of this averaging is given in fig.
9.5. There is an interesting difference between the 2-D and
the averaged 3-D result, which becomes visible when the 2-D
field is subtracted from the 3-D averaged field. A weak

horizontal eddy (the velocity vectors in fig. 9.5 are
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multiplied by 5) shows up, indicating that in the 3-D com-
putation the penetration of the primary flow is stronger
than in the 2-D computation.

Some trouble was experienced near the east side of the
harbor entrance. In earlier computations, wiggles appeared
here during the transient stage of the computation because a
stagnation point is formed where the flow hits the wall.
Upstream of this point the cell Reynolds number limit prob-
ably is violated. This kind of wiggles cannot be reduced by
decreasing the time step, as they are part of the exact
solution of the difference equations. The wiggles were
transported slowly towards the outflow boundary but did not
disappear in the steady solution. The problem was overcome
by locally increasing the value of the eddy viscosity in the
vicinity of the stagnation point by 20%. In fig. 9.6 it can
be seen that near the east side of the entrance, where the
flow leaves the harbor a reduced amount of wiggling still

exists.

9.3 Intake Structure Hydro-Power Station

9.2.1 Introduction

The purpose of the numerical experiment described in this
section is twofold. Firstly, we want to examine how well the
model reproduces the measured flow pattern. Because we aim
at the use of this model on small computer installations,
acceptable results should be obtained without an excessive
amount of grid points. Secondly, the possibility must exist
to model complicated configurations without too much effort.
This means that the calculation of the volumes and areas of

the boundary cells in connection with the porosity method
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should be done automatically. A special "grid generating"
program was developed for this purpose.

In the following application both aspects could be
tested.

In the past several weirs have been constructed in the
river Maas, mainly to control the water levels in periods of
low discharge. Lately small hydro-power stations are being
build parallel to these weirs. Because of the small dif-
ference in water level an optimal design of the intake
structure is important in order to make a maximum use of the
available head.

To test the numerical model a comparison is made with a
physical model of the intake structure designed for the
power station next to the weir near Alphen a/d Maas. This
physical model (scale 1 : 40, undistorted) was available at
Delft Hydraulics and measurements could be obtained for the

purpose of the validation of the numerical model. A lay-out
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of the physical model is shown in fig. 9.7, while in fig.
9.8 the part of this model that was simulated numerically is
sketched. In this figure the rays along which the measure-
ments were taken are indicated. Ray 1 and 2 coincide with
the boundaries of the numerical model.

From the physical model velocity measurements (absolute
value and horizontal direction averaged over 2 minutes) were
obtained with a micro propeller on several depths per loca-
tion. The numerical model covers only a small part of the
physical model which incorporates upstream and downstream
river sections. In a regular numerical design process a
larger 2-D model could be used to furnish the boundary
values of the 3-D model. In the present case these boundary
values were taken from the measurements along the outer rays
(ray 1 and 2) in fig. 9.8. These rays thus form the north
and east boundary of the model, which covers an area of 160
x 160 m.

The measurements along the rays 3, 4 and 5 (fig. 9.8) are
compared to the results of the numerical computation.

In the following we mean by "inflow" and "outflow" in in-
and outflow of the numerical model. The outflow of the model
is in the real design the inlet to the turbines. This inlet
is divided in four equal sections each leading to a separate
turbine. This part of the design is not incorporated in the

numerical model.

9.3.2 Grid System

The horizontal grid size was determined on the basis of
the curvature of the pier at the east side of the outflow.
The rule of 8 grid lengths given in section 9.1.2 leads to a

grid size of about 4 m. Because of the large difference in
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depth ( minimum depth: 6.5 m, maximum: 13.5 m.) the vertical
grid size was taken 1.5 m. in order to have a minimal amount
of vertical points in the shallowest region. The number of
vertical points thus becomes 11, including the dummy cells.

As the total number of grid points was limited by the
memory capacity of the available mini computer (Harris
1000), we ended up with a basic rectangular block of grid
points consisting of 40 x 40 x 11 points. With the horizon-
tal grid size of 4 m. this leads to an model area of 160 x
160 m.

The resulting schematisation is rather coarse but the
purpose of this test is also to investigate to what extent
the methods discussed in the last chapter can compensate for

this coarseness.

!

TG

H

bottom topography
fig. 9.9

Within the basic block of grid points the actual flow
domain is bounded by user specified planes. A special
program calculates the intersections with the grid lines and
the "porosity factors" for each grid cell that is inter-

sected. Per cell a wetted volume and three wetted areas are
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determined. Details of this procedure are given in appendix
A. The perspective view of this schematisation is shown in

fig. 9.9.

9.3.3 Boundary Conditions and Computation Parameters

The horizontal outline of the numerical model is given in
fig. 9.8. On the north and east boundary the velocity com-
ponents are specified according to the measurements in the
physical model. Measurements were available on every fourth
grid point along the north and east boundary, each for two
depth levels. The remaining boundary values were obtained by
linear interpolating. When necessary, data were extrapolated
towards the bottom using a roughly logarithmic fitting.

A locally varying viscosity coefficient was used based on
formula (7.9) and the local depth. In each horizontal loca-

tion its value was constant over the vertical. Thus
v, =0.08 ux D

t

with D = local depth
and u*= 0.063 m/s

Further computation parameters were

- Outflow :

a uniform pressure distribution h=0

3%u/dx? = 82v/3x2 = 3?w/3x? = 0

The assumption of a uniform pressure distribution

can be justified by the reasoning that the design
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is aimed at an even distribution of the flow across
the turbines. If this goal is reached, the pressure

distribution will be more or less hydrostatic.
- Wall roughness

Because of the spatially varying Vs the value of
asy depends on the local viscosity according to
formula (8.13) with d,=0.0045 m.

- Time step :
The time step was chosen on the basis of the con-
vection parameter. It was found that, to avoid
trouble near the boundaries, this limit should be
chosen somewhat lower than with the first applica-
tion. The reason is that the use of the porosity
method has a destabilizing effect on the computa-

tion. Stable computations could be performed with :

With these values we get the following non dimensional
parameters for the convection-diffusion part of the computa-

tion :

1 x 0.2

i = 0.05

Courant number : uAt/AX or VvAt/Ay =

Diffusion limit : 2Vt(1/16+1/16+1/2.25) 0.2 = 0.0072
This value is based on the lowest value of Ve
which occurs at the location of the smallest depth.

Convection parameter : u2/2ut = 1.54

Here we take the value of Vs where the maximum ve-
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locity occurs. This is around ray 5 in the outflow

channel.

The compressibility factor is chosen as 0.3, resulting in
a propagation speed of 5.7 m/s. The time step for the ADI

part of the computation is
At = 0.4 s

resulting in a Courant number associated with the pressure

wave of :

Couranta .= 241—5—943 =1.5

di 1.5

based on the smallest grid size (Az = 1.5 m).

About 800 ADI iterations and 1600 convection-diffusion

iterations were necessary to reach steady state.

9.3.4 Results and Comparison to Measurements

The result of the computation is given in fig. 9.10. In
this figure the horizontal velocities are given for the
surface-, middle- and bottom-layer in a single plot. It can
be observed that the flow has a double helical movement in
the outflow channel, i.e. towards the turbine entrances.
This, and the bottom step in front of the entrance
redistributes the flow in such a way that an even distribu-
tion of the flow between the turbines is obtained. In table
9.1 the distribution of the flow between the four separate
turbine openings is given and compared to the measured

values.
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Turbine opening no: 4 3 2 1

Measured : 26.1 22.4 25.5 26.0

Calculated : 23.9 23.7 24.7 27.7

Distribution of outflow in %
table 9.1

As mentioned in section 9.3.1 measurements were available
for comparison along rays 3, 4 and 5 (fig. 9.8). They con-
sisted of the horizontal absolute velocities and directions
on positions along the rays, as indicated in fig. 9.8. In
every position velocity and horizontal direction were
measured at at least two depth levels. Ray 3 and 4 were
chosen in such a way that direct comparison with the numeri-
cal model was possible. In the case of ray 5 some
interpolation of the numerical results was necessary. The
result of the comparison is presented in the graphs in fig.
9.11. In this figure the measured velocity is multiplied by
a factor /40 in order to obtain the prototype values. The
angles are given in degrees in respect to a nort-south line

(south = 0°, east = 90°).
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9.3.5 Discussion

The computed values agree reasonably well with the
measurements. The absolute velocity and the direction of the
flow, if averaged over the vertical, have about the right
value, but it can be seen in the graphs (fig. 9.11) that the
variation over the vertical is generally larger in the
physical model.

From table 9.1, where the horizontal distribution over
the four outflow sections is given, it appears that in the
physical model a greater fraction of the fluid follows the
west bank, resulting in a concentration at the west side of
the outflow channel. In fig. 9.10 an eddy is visible on the
west bank. While a weak eddy also was apparent in the physi-
cal model, this eddy may be too strong in the numerical
model resulting in the effect mentioned above. The large
deviation in point 8 on ray 3 also indicates that here the
calculated and measured flow field do not agree. Note, that
this point is situated near the same eddy.

Other calculations were performed. In these calculations
a spatially constant viscosity coefficient was used. With a
value of ve about equal to the lowest value used in the com-
putation described above (i.e. vt=0.035) the eddy on the
west bank disappeared. However, the distribution over the
outflow sections hardly changed. Also the graphs as in fig.
9.11 stayed practically the same except in point 8 (ray 3)
where much better agreement was found.

In a third calculation a higher value of the bottom fric-
tion was used : a = 0.45 m-ls with V= 0.05 m?/s. This
resulted in a better agreement between the measured and cal-
culated absolute velocities, but the calculated directions
showed much less vertical variation although the vertical

average remained acceptable.
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Some influence of the compressibility factor was found on
the flow pattern near ray 5. If the value of a=0.1 (which
was used to start the computations) was not changed into a
greater value, the influence of the "staircase" boundary
became visible in the flow field along the oblique wall,

notwithstanding the porosity formulation.

9.4 Gate in Storm Surge Barrier

9.4.1 Introduction

The model presented here concerns a detail of a much
larger design for the removable storm surge barrier that is
to be constructed in the Rotterdam Waterway. In this design
the barrier is equipped with a large number of gates to dis-
charge the river flow during low tide without having to open
the barrier itself. To study the flow through these gates a
physical scale model (1 : 30, undistorted) was constructed
representing the space between the vertical symmetry planes
through the middle of two subsequent gates. This study of-
fered a good opportunity to test our numerical model.

The numerical model covered half the scale model, using
the vertical mid-plane of the scale model as a symmetry
boundary.

A general view of the model is given in fig. 9.12a, while
fig. 9.12b shows the horizontal plan. The west boundary is
formed by the symmetry plane in the middle of the gate, the
east boundary is situated on the symmetry plane between two
subsequent gates. The barrier and gate are situated at the
north end of the model. Because the direction of the jet
through the gate is unknown a priori, we could not take the

gate itself as the inflow boundary. As indicated in
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fig. 9.12, the inflow boundary was chosen 8 grid sizes
upstream from the aperture. This had an interesting conse-
quence connected to the use of the artificial
compressibility method. In other applications the calcula-
tion could be started with the full boundary values and the
internal field variables initially set to zero. Here, this
procedure caused very high velocities in the aperture during
the transient phase of the calculation. These velocities
made the calculation unstable, resulting in overflow. The
reason for this behaviour can be explained as follows :

Upstream of the restriction caused by the gate aperture the



fluid is compressed, i.e. the (negative) divergence builds
up. This results in a high pressure gradient across the gate
during the transient phase, causing the high velocities men-
tioned above.

The solution of this problem was either to apply the
boundary conditions gradually, i.e. starting with a zero
inflow and slowly increase its value, or to chose initially
a low value of the compressibility factor a. When the solu-
tion has converged to a more or less stationary flow, the

value of a can be increased.

9.4.2 Grid System

The gate opening is situated between 2 and 7 m below the
upstream water level. The head loss over the barrier is 1 m,
while the downstream depth = 16 m. The vertical grid size
for this application was chosen on the basis of the vertical
eddy that was expected to develop below the gate opening. A
grid size Az = 1 m results in 10 grid points between the
sill and the bottom. To limit the total number of grid
points, a larger horizontal grid size was selected : Ax = Ay
= 1.5 m.

Originally the number of cells in the main stream direc-
tion was chosen as 65 but it was found that, in order to be
able to specify a hydrostatic pressure distribution at the
outflow boundary, this boundary should be placed further
downstream. The resulting grid system thus consists of a
block of 95 X 12 X 19 grid cells, corresponding to the width
of the model of 15 m.

The water surface must be specified upstream as well as
downstream from the gate aperture. If all other coefficients

are chosen correctly one should find a pressure condition
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along the upper boundaries that corresponds with the free
surface condition, i.e. the calculated values of the
piezometric height up- and down-stream of the gate should
agree with the specified difference in surface level (fig.
9.13).

9.4.3 Boundary Conditions and Computation Parameters

The inflow velocity is given as 2.10 m/s. From this it
follows that the velocity in the gate opening will be around
4 m/s. This velocity is taken as a basis for the determina-
tion of the eddy viscosity. Because it is difficult to
specify a distribution a priori, a spatially constant value
was chosen. Applying formula (7.9), using the downstream
depth (=16 m.) and a friction velocity v*=0.25 m/s the value

of for the eddy viscosity becomes
- 2
Ve 0.35 m?/s

According (8.13), taking z, = 0.0045 m we find for the bot-

1i ct :
tom slip factor ag,

-1
a1~ 0.0l m “s
Along the free surface and along the two side walls a free
slip (asl= 0 ) condition is specified. Along the walls of

the gate structure a slip factor of 0.01 m_ls is taken.

Remark :
The viscosity coefficient can also be based on formula

(7.10) for a free shear layer. Taking Uma - Umin- 4 m/s a

X
value of 5 m for the shear layer width results in the same
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value for v, as found above. The value of d is somewhat ar-
bitrary. Theoretically, the shear layer width is zero at the
separation point, increasing downstream reaching finally a

figure of the order of the water depth (15m.).

Because of the high velocity a small time step must be

chosen :
Atcd= 0.1 s

resulting in the following non dimensional computation
parameters
UAt 4. x 0.1 _

Courantcd : A = 1.5

0.32

Diffusion limit : 2ut(1/Ax2+1/Ay2+1/Az2)At
0.7 x (1/2.25+1/2.25+1/1) x 0.1 = 0.13

2.3

]

Convection parameter : u2/2ut =16/0.7 x 0.1

As stated in section 9.4.1 the compressibility factor is
given a low value until the the flow has an almost zero
divergence. Computations are performed with a = 0.1 m-1 for
about 1000 iterations. Then the value of a is increased to
0.2 and the computation is continued for another 2000 itera-
tions. For the ADI part of the computation the same time
step is used as for the convection-diffusion part. This

results in a Courant number for the pressure wave of :
Courantadi = /(g/a)At/Az =" =1

for the first part of the computation and :
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Courant .. = 0.7 for the final part.
adi

In the final part the propagation velocity is about 7 m/s

Because the great length of the computational domain and
the small amount of wall friction (three free slip walls)
the total number of iterations was rather large. It took a
great number of iterations before the pressure wave sub-
sided. Possibly a smaller initial value of the
compressibility factor a would have been more efficient. At
the other hand it is difficult to acertain when steady state
is reached, because the velocity in the secondary flow
regions changes very slowly. Thus, a lot of iterations are
needed to make sure the solution is indeed stationary. The
present computation was continued for about 10000 itera-
tions. It must be noted however that, after some change in a
boundary condition or other parameter, one just continues
the computation without starting anew with a zero field of
flow variables. Thus, subsequent computations, even if small
changes in the geometry are made, generally take fewer

iterations than the first computation.

9.4.4 Results and Comparison to Measurements

In fig. 9.14 the velocity field is given in some horizon-
tal and vertical cross sections parallel to the main stream
direction. A jet is formed that is directed downward and to
the west symmetry boundary. It hits the bottom about 25 m
downstream (in the physical model this distance is less
15 m), and turns upward towards the other side of the model.

This helical movement is clearly seen in the cross
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horizontal cross section at down stream surface

fig. 9.l4c
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sections perpendicular to the main stream direction (fig.
9.15). As a result, a large region of back flow appears be-
hind the closed section of the barrier. A vertical eddy
exists below the gate opening. A remnant of this same move-
ment is discernible in the vertical streamwise cross section
along the east boundary (fig. 9.14).

In fig. 9.13 the piezometric head along the surface at
the western boundary (i.e. the center line of the gate ) is
depicted. Across the gate a loss of head of about 1 m. is
computed, which agrees with the difference in surface level
chosen a priori. The variation in surface pressure up- and
downstream from the gate are not represented by the geometry
of the model. This is a consequence of the adopted rigid lid
approximation.

In the physical scale model velocities were measured
along two streamwise rays near the bottom as indicated in
fig. 9.12a. In two places a vertical distribution was ob-
tained. Only the u-component (= main stream direction) was
measured. Measurents were performed with a micro propellor
instrument, electronically averaged over 100 s in each
direction.

The measured velocities are compared with the calculated

values in fig. 9.16.

9.4.5 Discussion

A controversial element in this kind of computation is
the simple approach to turbulence. In the present computa-
tion a constant value of the eddy viscosity for the whole
computational domain is used. A more sophisticated applica-
tion of the constant eddy viscosity model is possible, for

instance on the basis of a formula like (7.8),
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in which the eddy viscosity is related to the distance from
the separation point. The main problem here is that, because
of the low value of the eddy viscosity near this point, the
specified distribution probably will have a large influence
on the direction of the jet. This makes the choice of the
correct distribution a difficult task. We believe that in a
numerical model that is to used for engineering purposes the
eddy viscosity distribution either should be generated
automatically, i.e. by some thrustworthy turbulence model,
or on the basis of simple, objective rules.

In the present case the jet will be diffused too
strongly, due to the high value of the viscosity coefficient
near the separation point. As a result the velocities in the
regions of back flow are too low. Still, even with the
simple turbulence model used, the location of those regions

is reproduced fairly well by the numerical model.
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10. CONCLUSIONS

In this thesis a computational model for three dimen-
sional stationary fluid flow is developed based on the full
3-D Navier-Stokes equations. The efficiency of the proposed
numerical method makes it feasible to perform 3-D flow com-
putations, in which the flow in the direct surroundings of a
hydraulic construction is simulated, on mini-computers or
even PC's.

Three-dimensional simulation of this kind of flows is impor-
tant because, as is demonstrated by the first example in
chapter 9, substantial differences may occur between the 2-D
depth averaged solution and the full 3-D solution.
Especially in calculations where the flow solution is used
to determine the transport of sediment or contaminants, this

difference has great impact on the final results.

By using the method of artificial compressibility the
incompressible Navier-Stokes equations are transformed into
a variant of the compressible equations. This makes it pos-
sible to employ finite difference methods very similar to
the methods used for the solution of the 2-D SWE equations.
These methods are very efficient because they use ADI on a
regular staggered finite difference grid. We believe that
the use of wall functions in the manner as described in
chapter 8 of this thesis in combination with the porosity
method of Patankar e.a. eliminates the disadvantages of such
a grid system sufficiently to reach results that are accept-
able for engineering purposes. Because of the computational
efficiency of a method based on these principles, such a
method can be used on relatively small computers. This kind

of computation becomes of practical interest to engineers if
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the cpu-time on a mini-computer does not exceed 15 hours,
i.e. programs can be run overnight.

The method of artificial compressibility is not basically
different from the more common method of pressure correc-
tion, so in principle the proposed numerical scheme can be
used for dynamical calculations with minor changes in the

program.

Because the alternating direction implicit (ADI) method
is an important part of the solution procedure, attention is
given to the extension of this method to 3-D. It is con-
cluded that for hyperbolical problems the stability
properties of the 3-D ADI method are fundamentally different
compared to the 2-D version of this method. This difference
is graphically demonstrated using the von Neumann stability
theory. In our application the convection terms in the
Navier-Stokes equations are generally dominant. Hence they
exhibit a hyperbolical character.

While in 2-D it is possible to design an unconditionally
stable ADI method (in the linear sense), this is not pos-
sible in 3-D. By treating the convective terms of the
Navier-Stokes equations separately from the ADI process, the
ADI part regains its stability properties. It is shown that
the order in which the different operations are performed
affects the stability properties of the overall computa-
tional procedure. In actual computations using the numerical
scheme developed in this thesis, stable computations could
be performed with a time-step two to three times larger than

the theoretical limit for explicit time integration.

The turbulence is modelled in a simple way using a

predefined distribution of the eddy viscosity . The use of
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more advanced turbulence models intentionally was not incor-
porated in the present study. While for some flows,
especially converging flows, a simple model may be suffi-
cient, for more complicated flows it is difficult to
estimate the viscosity distribution a priori and a better
turbulence model is required. In diverging, and thus
decelerating flow, regions of recirculation may appear. With
the present simple turbulence modelling, the computed
velocities in such regions will generally be too low. It
should be noted, however, that even an advanced turbulence
model like the k-¢ model is not always able to reproduce
such flows properly.

Because of the simple turbulence model, in most cases the
eddy viscosity coefficient will be too high in the vicinity
of a solid wall. To compensate for this fact a partial slip
is specified as a boundary condition at solid walls. By a
special use of the logarithmic wall function, the slip for-
mulation is applied in such a way that the correct value (in
the sense of the mixing length theory) of the bottom shear
stress is obtained, independent of the value of the eddy
viscosity. Thus, as an extreme example, if one should
specify a large value of the eddy viscosity throughout the
computational domain, the results of the 3-D computation
will approach the 2-D horizontal solution with the right
bottom friction. As shown in chapter 9 the same formulation
can indeed be used to simulate the bottom friction in a 2-D
application of the numerical model.

In one application (section 9.3) it was found that the
use of an eddy viscosity, which had the same value
everywhere in the model, gave virtually identical results as
a computation using a spatially varying value based on the

local depth. From this it could be concluded that, lacking a
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trustworthy turbulence model, the use of a spatially con-
stant value of the eddy viscosity is the most objective
representation of the turbulence in the present computa-

tional method.

10.4



References

Beam, R. M. and Warming, R. F., An Implicit Factored Scheme
for the Compressible Navier-Stokes Equations, AiAA J., Vol
16, No 4, 1978

Beam, R. M. and Warming, R. F., An Implicit Fin. Diff.
Algorithm for Hyperbolic Systems in Conservation-Lwa Form
J. Comp. Phys., Vol.22,1976

Brian, P, L. T., A Fin. Difference Method of Higher Order
Accuracy for the Solution of Three-Dimensional Transient
Heat Conducting Problems, Am. Inst. of Chem. Engineering
J., Vol 7,n0 3, 1961

Briley, W. R. and McDonald, H., On the Structure and Use of
Linearized Block Implicit Schemes, J. Comp. Physics, 34,
1980

Chang, J. L. C. and Kwak, D., On the Method of Pseudo Com
pressibility for Numerically Solving Incompressible Flows
AATA paper no. 84-0252, Reno, Nevada, 1984

Chorin, A. J., A Numerical Method for Solving Incompressible
Viscous Flow Problems, J. of Comp. Physics, Vol 2, 1967

Chorin, A. J., The Numerical Solution of the Navier-Stokes
Equations for an Incompressible Fluid, Bull. Am. Math.
Soc., Vol 73, 1967

Dick, E. and Desplanques, D., Fin. El. Sol. of Steady N.-S.
Eq. for Lam. Recirc. Flow with an Accelerated Pseudo
Transient Method, Proc. 3th Int. Conf. Num. Meth. in Lam.
and Turb. Flow, Seattle, 1983

Douglas, J., On the Num. Integration of 32u/dx? + 32v/3y2 =
du/dt by Implicit Methods, J. Soc. Indust. Appl. Math.
(SIAM), Vol 3, No.l, 1955

Douglas, J. and Rachford, H. H., On the Numerical Solution
of Heat Conducting Problems in Two and Three Space
Variables, Trans. of the Am. Math. Soc., Vol 82, 1956



Douglas, J. and Gunn, J. E., A General Formulation of
Alternating Direction Implicit Methods, Part I, Parabolic
and Hyperbolic Problems, Numerische Math., Vol 6, 1964

Dronkers, J. J., Tidal Computations in Rivers and Coastal
Waters, North Holland Publ. 1964 p.388.

Friedrichs, K. 0., Symmetric Hyperbolic Lin. Differential
Equ., Comm. Pure and Appl. Math, Vol 7, 1954

Hansen, W., Theorie zur Errechnung des Wasserstandes und der
Stromungen in Randmeeren nebst Anwendungen, Tellus 8, 1956

Harlow, F. H., Shannon, J. P. and Welch, J. E., Liquid Waves
by Computer, Science 149, 1965

Harlow, F. H. and Welch, J. E., Num. Calc. of Time Dependent
Viscous Incompress. Flow of Fluid with Free Surface,
Physics of Fluids, Vol. 8, No.12, 1965

Hartwich, P. M., Hsu, C. H., Liu, C. H., Vectorizable Impi-
cit Algorithms for the Flux Diff. Split, 3-D Navier-Stokes
Equations, Symp. on Parallel Processor Appl. in Fluid Mech.
ASME Fl1. Engg. Conference, Cincinatti, 1987

Hindmarsh, A. C., Gresho, P. M. and Griffiths,D. F., The
Stab. of Expl. Euler Time-Integration for Certain Fin.
Diff. Approx. of the Multi-Dim. Advection-Diffusion
Equation, Int. J. Num. Meth. in Fluids, Vol 4, 1984

Hirt, C. W., Heuristic Stability Theory for Fin. Diff. Equ.,
J. of Comp. Phys., Vol 2, 1968

Hirt, C. W., Num. Methods for Bluff Body Aerodynamics, von
Karman Institute for Fluid Dynamics, Lecture series, 1984-
06,1984

Kuipers, J. and Vreugdenhil, C. B., Calculations of 2-D
Horizontal Flow, Delft Hydraulics Report S 163-I, 1973

Kwak, D., Computation of Viscous Incompressible Flows, CFD
von Karman Insitute for Fluid Dynamics, Lecture Series
1989-04, 1989

Leendertse, J. J., Aspects of a Computational Model for Long



Period Water Wave Propagation, Thesis TH-Delft 1967

Leendertse, J. J., A New Approach to 3-D Free-Surface Flow
Modeling, Rand Corp. Report R-3712-Neth/RC, 1989

Peaceman, D. W. and Rachford, H. H., The Num. Sol. of
Parabolic and Elliptic Diff. Equations, J. Soc. Indust.
Appl. Math. (SIAM), Vol 3, No.l, 1955

Peyret, R. and Taylor, T. D., Computational Methods for
Fluid Flow, Springer-Verlag, 1983

Praagman, N., Num. Sol. of the Shallow Water Equations by
a Finite Element Method, Thesis, TU-Delft, 1979

Richtmyer, R. D: and Morton, K. W., Difference Methods for
Initial Value Problems, Interscience Publ., 1967

Rodi, W., Turbulence Models and their Appl. in Hydraulics,
IAHR, 1984

South, J. C., Recent Advances in Comp. Transonic Aero-
dynamics, AIAA paper 85-0366, 1985

Stelling, G. S., On the Construction of Computational
Methods for Shallow Water Flow Problems, Thesis, TU-Delft,
1983

Steger, J. L. and Kutler, P., Implicit Fin. Diff. Procedures
for the Computation of Vortex Wakes, AIAA J., Vol 15, No.4
1977

Thom, A. and Apelt, C. J., Field Comp. in Engg. and Physics,
Van Nostrand Co., 1961

Vichenevsky, R. and Bowles, J. B., Fourier Analysis of Num.
Approx. of Hyperbolic Equations, SIAM studies in Appl.
Math., Philadelphia, 1982

Vreugdenhil, C. B., Computational Hydraulics, An
Introduction, Springer Verlag, 1989

Warming, R. F. and Hyett, B. J., The Modified Equation
Approach to the Stability and Accuracy Analysis of Fin.
Diff. Methods, J. Comp. Phys, Vol 14, 1974



Appendix A

Grid Generation
Computation of the wetted areas and volumed of those

cells that are intersected by the solid boundaries

1. A grid block is defined containing the volume of fluid
and solid mass that is to be modelled. This grid block con-
sist of cells. Point (1,1,1) designated the upper north west
corner of the upper north west cell in the block. The grid
lines coincide with the cell ribs. (In the flow calculation,
this grid system is shifted over half a grid size in all
directions. The grid lines then connect the cell centers.
The point (1,1,1) of the grid generation phase becomes the
point (-0.5,-0.5,-0.5) in the flow calculation phase)

2. The horizontal plane is divided in areas by specifying
lines. Each area so formed, receives an unique number. This
number either refers to a "bottom plane" z=ax+by+c or to a
file containing a bottom topography. In this way for every
horizontal coordinate (x,y) or vertical grid line (i,j) a

depht value can be found by the program.

3. In each vertical grid line (i,j) the depth is deter-
minated by z(i,j)=a*i+b*j+c, where a,b and c are a set of
coefficients for the area in which the point (i,j) is lo-
cated. This depth is recorded in an array RZ(i,j,k)
according to k= int(z) and RZ(i,j,k)= amod(z,1). In the same

operation "dry" cell corners are flagged in an array CH.



4. Along j-lines the locations RZ(i,j,k) are connected by
straight lines. Intersections with j-lines are recorded in
RY(i,j,k) as done in operation 3 for RZ.
The same is done for the i-direction. Intersections with
i-lines are recorded in RX(i,j,k).
At this point all geometrical data is recorded in the
three arrays RX, RY and RZ. All dry upper-north-west cell

corners are flagged in array CH(i,j,k).

fig. A.1

5. For the three upstream faces of every cell (upstream for
positive flow along i-, j-, and k-lines) the wetted area is
computed from the information in the CH, RX, RY and RZ ar-
rays. This area is expressed as a percentage ( 100% is a

completely open face).

6. For each cell the wetted volume is obtained by the fol-

lowing method (fig. A.1)

A.2



a. A single intersection as found in operation 3 and 4
is chosen. If no intersection is found on the ribs of a cell
a cell corner is chosen. For each cell face the volume is
computed of the pyramid formed by the wetted area of this
face and the chosen intersection as top. In this way per
cell six pyramids (two with a zero volume) are found, all
having the same point as top. The six volumes added together
are taken as the total wetted volume of the cell. Again this

volume is expressed as a percentage.

7. Cells that are completely "open" (wetted area of all 6
faces and wetted volume = 100%) are flagged. For those cells

a simpler calculation procedure can be done.

8. Finally, for every cell the wetted volume and the wetted
area of the three downstream faces are stored in code
(3 digits for the volume and 3 x 2 digits for the areas plus
a single digit flag) in a single memory word in array

ICH(i,j,k). All other arrays are released.



SAMENVATTING

Dit proefschrift behandelt de numerieke simulatie van
stationaire drie-dimensionale onsamendrukbare stroming.
Hiertoe worden de volledige 3-D Navier-Stokes vergelijkingen
opgelost, waarbij elke ruimte dimensie op dezelfde wijze
behandeld wordt. De gebruikte methode, de kunstmatige
samendrukbaarheid van Chorin, maakt het mogelijk een
gelijksoortig rekenschema te gebruiken als dat wat reeds
veelvuldig wordt toegepast op de ondiep water vergelijkin-
gen. Deze vergelijkingen zijn op te vatten als een speciale
vorm van de 2-D Navier-Stokes vergelijkingen voor samendruk-
baar medium. Een veel gebruikt numerieke oplossings methode
is die van Leendertse. Dit schema lost de vergelijkingen op
met centrale plaats differenties op een regelmatig eindig
differentie rooster. Voor de tijds-integratie wordt een ADI
methode gebruikt, waarbij de convectie termen min of meer
expliciet worden behandeld.

Voor de simulatie van de 3-D onsamendrukbare stroming kan
een dergelijk schema worden gebruikt wanneer dit tot 3-D
wordt uitgebreid. Een belangrijk deel van dit proefschrift
handelt over deze uitbreiding (hoofdstuk 4, 5 en 6). Hoewel
het stabiliteitsprobleem als zodanig reeds bekend is, wordt
in deze studie het fundamentele verschil in stabiliteits
eigenschappen tussen 2-D en 3-D ADI schema's verduidelijkt.

De inpassing van de expliciet behandelde convectie termen
in het totale schema kan op verschillende manieren. Dit
blijkt van invloed op het gedrag van de numerieke oplossing.

Teneinde toepassing op reele situaties mogelijk te maken
wordt een zeer eenvoudig turbulentie model ingevoerd, door
de turbulente viscositeit a priori bekend te veronderstel-
len. Hoewel op deze manier redelijke resultaten zijn
bereikt, zou een betrouwbaar en efficient turbulentie model
de huidige rekenwijze sterk verbeteren. In zijn huidige vorm
is de methode geschikt om op mini-computer installaties
gebruikt te worden.

In een drietal voorbeelden wordt de methode op zijn
bruikbaarheid getest. Behalve in gebieden met sterke neer
vorming, stemmen de gemeten en berekende waarden redelijk
met elkaar overeen.



