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Abstract

The objective of this study is to develop a theoretical framework to judge in which particular
instances a two-dimensional depth-averaged model is sufficient to simulate flow processes in
continental shelf seas or when a fully three-dimensional model is required for accurate results.
A depth-averaged model does not give any vertical information, which is unfortunate when the
model user is interested in it. Moreover, the model output, i.e. the surface elevation and the
depth-averaged velocity components, may be affected by omitting the vertical dimension. In a
frictionless case, two-dimensional and three-dimensional model results would be equal.

First, it is examined whether the reduction from 3D to 2DH has a significant effect on model
output by comparing mathematical models with (2DV) and without (1D) vertical information.
Localized analytical solutions are derived for the propagation of a single (predominant) tidal
constituent in a shallow well-mixed continental shelf sea or estuary. The advective and Coriolis
terms are neglected, the eddy viscosity is assumed constant and the bottom friction term is
linearised. Special attention is paid to the latter, since both 1D and 2DV responses appear to
depend substantially on the way the bottom friction coefficients are defined.

The analytical method developed in this study indicates that certain combinations of the
higher flow velocities (Û > 1 m/s) and water depths (d > 50 m) may cause extensive differences
between the results from a depth-averaged model and from a model that contains vertical
information. However, it should be kept in mind that those two parameters interact and hence
conclusions in general sense are hard to quantify.

The resulting findings are tested by conceptual numerical simulations of steady and unsteady,
periodic flows in a schematized rectangular basin. The results obtained from a three-dimensional
simulation are compared to those from a two-dimensional depth-averaged simulation. Both
simulations show good correspondence with the analytical solutions.

As the development of the study is motivated by practical problems in the North Sea, its
implementation is tested using the European Continental Shelf Model in both two-dimensional
and three-dimensional version. A simple iteration procedure is performed to investigate what
regions in the flow domain may be important. After an orienting 2D calculation a reasonably
simple post-processing step reveals interesting locations where 2D and 3D results are expected
to deviate strongly. For these specific locations the performance of the numerical models is
analysed and compared.

The case study confirms that the modeller needs to be careful when it comes to two-
dimensional depth-averaged hydrodynamic modelling of large-scale domains like the European
Continental Shelf Sea. For tidal propagation through large parts of the Central North Sea
the flow velocities are rather low (Û ≈ 0.2 m/s) and hence two-dimensional (depth-averaged)
models are adequate to calculate flow velocities. For several other regions though, being the
English Channel, the Irish Sea and around the Orkney Islands, it is shown that it is required
to be prudent with interpreting the two-dimensional results.
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û Flow velocity amplitude in x-direction [m/s]
u′ Fluctuating component of flow velocity in x-direction [m/s]
ub Velocity at the bed [m/s]
w Vertical flow velocity [m/s]
x, y Horizontal spacial coordinates [m]
z Vertical spacial coordinate [m]

Greek Symbols

Symbol Description Unit

γ̃ Complex parameter [-]
ε Turbulence dissipation rate [m2/s3]
ζ Water level elevation [m]
θ Time stepping parameter [-]
κ Von Karman constant
κ1, κ2 Friction coefficients for linear 1D and 2DV-model respectively [-]
µ Dynamic viscosity [kg/ms]
ν Kinematic viscosity [m2/s]
νt Turbulent eddy viscosity [m2/s]
ρ Density [kg/m3]
σ1, σ2 Ratio of friction to inertia ratio for 1D and 2DV-model respectively [-]
τb Bed shear-stress [N/m2]
φ Latitude [°]
ω Frequency [rad/s]

xii



Abbreviations

Abbr. Description

1D, 2D, 3D One-, Two-, Three-dimensional
2DH Two-dimensional in horizontal plane (depth-averaged)
2DV Two-dimensional in vertical plane
ADCP Accoustic Doppler Current Profiler
CFL Courant-Friedrichs-Lewy (number)
CG/DG Continuous/Discontinuous Galerkin (method)
ECSM European Continental Shelf Model
FEM Finite Element Method
FINEL FINite ELements (model)
Fr Froude number
GIS Galerkin Interface Stabilization (method)
RANS Reynolds-Averaged Navier-Stokes (equations)
Re Reynolds number
SWE Shallow Water Equations



Chapter 1

Introduction

1.1 Background

The prediction of the behaviour of water masses subjected to winds, waves, currents and tides
is essential for many types of hydraulic engineering, ranging from the design of oil platforms to
the construction of coastal protection works. Hydrodynamic models are widely used to predict
this behaviour, as exact measurement of the hydrodynamics is tedious and costly.

A numerical model is an attempt to represent nature by having a computer solve a set of
equations that are thought to describe the natural processes. As Fischer (1979) explains, this
attempt cannot be completely successful, because nature itself is marvellously complex and
defies exact simulation. The numerical simulation of the real world always means one has to
compromise between exact model fit and model simplicity. The main challenge of computational
modelling is to describe complex reality by an as simple as possible model. In the case of
simulating hydrodynamic processes, first describing the physics with a mathematical model
may imply a loss of information because of simplifying assumptions. Subsequently, even more
information is lost once the mathematical model is converted into a numerical model. This is
shown schematically in the flow chart of figure 1.1, where each of the black arrows imply a loss
of information. The modeller must determine which aspects of the real world are important,
and must be sure that these aspects are simulated correctly by the model.

Three-dimensional models for the prediction of water-system behaviour exist, but have as a
major challenge that they are of such complexity that it brings limitation in both computational
capacity as well as human analytical capacity. Consequently, often two-dimensional or even one-
dimensional models are used, under the assumption that the variation in the omitted dimension
has a limited effect on model output. Whether or not the use of a two-dimensional model is
justified in a specific situation depends on various factors, among which certainly is the water
depth. The industry wishes an overview of these factors and some guidelines that will indicate
until what extent one can comfortably model in two dimensions.
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Figure 1.1: Flow chart of stages in computational hydraulics as used in this study for large-scale
domains. The first box contains the real world of which a model is to be set up, i.e. shelf seas
or estuaries for this research. The succeeding two boxes contain the mathematical spaces that
describe the real world with conservation laws, i.e. continuity and momentum equations for
this research. Next is the discrete space where differential equations are replaced by recurrence
relations which are solved. The final box contains the computational model output calculated by
the computer.



1.2 Problem statement

The main question that will be addressed in this research is when it becomes essential to take
into consideration three-dimensional effects in the hydrodynamics of shelf seas and estuaries.
Two-dimensional hydrodynamic models have proven to be capable of simulating flow and trans-
port processes in rivers, lakes, estuaries, deltas and continental shelf seas. Practice shows that
even when significant three-dimensional effects are expected, such as in wind-driven flows, the
two-dimensional approach may work extremely well. However, there are cases where a two-
dimensional model is not sufficiently representing the actual flow structures. For example, in
continental shelf seas close to the shelf edge this is expected to be the case, because complex
topography and dynamics might cause the velocity profile to be far from uniform. What is lack-
ing presently, is a decision-making framework on whether to use a two- or a three-dimensional
model in such a case. The transition between the use of a two-dimensional model and that of
a three-dimensional one when shifting further offshore, is still a rather grey area.

Which degree of loss of predictive power is acceptable depends on the flow problem to be
studied and on the required model output. Fluid flow problems have all kinds of length, time
and velocity scales, while each application has its own accuracy requirement. This results in
a different appropriate approach for each problem. Obviously the physics to be described has
three spatial dimensions. Depending on the circumstances several simplifications can be opted
in order to describe a flow phenomenon with a one-, two- or three-dimensional mathematical
model. In many coastal engineering applications it is often sufficient to apply a two-dimensional
horizontal model, based on the shallow-water equations. The shallow-water equations describe
nearly-horizontal geophysical flows for which the ratio of the vertical to horizontal velocity
magnitudes is very small, so that the pressure can be assumed hydrostatic and the Navier-
Stokes equations can be integrated over the water depth. If the horizontal velocity is nearly
uniform in the vertical direction, which in many cases is a reasonable assumption, the shallow-
water equations provide a good approximation of the original flow problem while offering a
substantial reduction in terms of complexity and computational effort.

Figure 1.2: The definition of the continental shelf and criteria for the establishment of its outer
limits are set out in article 76 of the UnitedNations (2012) Convention on the Law of the Sea.



1.3 Objectives

The main objective of this research is:

� “To develop a theoretical framework to judge in which particular instances a two-dimensional
model is sufficient to simulate flow processes in continental shelf seas.”

To this end, this research will examine whether the reduction from 3D to 2D has a significant
effect on flow model output being water levels and depth-averaged flow velocities. The research
objective will be achieved by answering the following research questions:

� Which physical processes are relevant in well-mixed continental shelf seas?

� Which simplifications are applied to a flow problem in order to allow the use of two-
dimensional depth-averaged rather than three-dimensional shallow-water equations?

� Which parameters are important when a depth-averaged model is compared to a model
that contains vertical information.

� In which cases is a depth-averaged two-dimensional model still representative?

1.4 Approach

First, research into the physical processes needs to be carried out. This will be done through
a combination of literature study and analytical research. The literature study will enhance
the understanding of the three-dimensional flow in shelf seas. The analytical approach has
to reveal the effect of averaging over depth through analytical solutions to strongly simplified
situations. The function of this mathematical model is tested by different scenarios (1D and
2DV) to establish crude ranges within which the models could be valid.

Next is the numerical modelling of tidal flow in simple geometries to isolate certain processes
in line with the preceding analytical approach. The results obtained from a three-dimensional
simulation are compared to those from a two-dimensional depth-averaged simulation, and both
are compared to the analytical solutions. Merely, the performance of models are discussed for
conceptual cases. The analytical background will now be a very useful tool, because it will
provide a priori knowledge on the importance of parameters.

Subsequently, through a case study in the North Sea the distinctive power of both the two-
dimensional model and the three-dimensional model will be tested. For specific locations, where
three-dimensional processes might be important, the performance of the numerical models is
analysed.

So, this research aims at theory-grounded and evidence-based assessment of the applica-
bility of two- and three-dimensional calculations for both conceptual and real cases and under
additional hypothetical simulated circumstances. Ultimately it will result in a better insight
into the scope to extend the application of two-dimensional numerical flow models.

1.5 Practical relevance

It could be argued that it is no longer necessary to use two-dimensional models since there is a
progression towards increasingly sophisticated three-dimensional models with a higher predictive
power. This progression should however be treated with caution for a number of reasons. First,
three-dimensional models require a considerable increase in computational resources. Also, it
is important to judge the need for improved process representation. As described above, whilst
there may be key three-dimensional processes occurring, the two-dimensional depth-averaged
shallow-water equations may give the same information. So, the reduction from three dimensions
to a two-dimensional model means...



1. ... at least a loss of vertical information (which is unfortunate when the model user is
interested in it);

2. ... but perhaps it has an effect on the model output; the water levels and the depth-
averaged velocities.

The research is done for the specialist consultant Svašek Hydraulics. Svašek focuses on
water dynamics (currents and waves) and sediment transport caused by the water dynamics.
Its regions of expertise are coasts and coastal seas, estuaries and rivers. Its clients include
government bodies and authorities, contractors, industrial companies and general consultants.

Svašek uses the in-house developed two-dimensional numerical flow model FINEL2D. When
calculating the depth-averaged velocity profiles for a client, Svašek wants to be sure that this
calculation is fit-for-purpose, to best serve the interest of the client. For many projects this is the
case, but especially for cases with water depths larger than ±50 m it becomes unclear whether
the calculated flow represents the real fluid flow. Svašek wants to obtain more knowledge about
the limits of applicability of its two-dimensional model in deeper parts of continental shelf seas
than they are familiar with so far.

In addition, Svašek has FINEL3D, a fully 3-dimensional numerical model where no assump-
tions are made with respect to the vertical pressure distribution. Hence, the model is especially
suited to compute currents which vary strongly in both horizontal and vertical directions.

1.6 Thesis outline

Chapter 2 describes the physical processes in continental shelf seas and estuaries. This chapter
also presents the equations of motion and the relevance of the terms for each of the processes.
By assessing the relevance of the terms, the equations of motion are reduced to a workable
mathematical model. Chapter 3 contains analytical solutions to this mathematical model. In
this chapter, the function of the mathematical model is tested by different scenarios (1D and
2DV) to establish crude ranges within which a depth-averaged model could be valid. Chapter
4 treats conceptual simulations for schematized rectangular basins that are compared to the
analytical solutions. Chapter 5 describes a case study containing numerical results from the
European Continental Shelf Model.





Chapter 2

Physical processes in shelf seas and
estuaries

Continental shelf seas are a natural source of economic activities and other forms of human use,
which make hydrodynamic modelling a useful tool for a variety of users. This research focuses
on the parts of shelf seas with water depths larger than circa 50 m, such as the northern North
Sea. This thesis can function as a tool for the prediction of the conditions for pipeline laying or
maintenance of cables or pipelines in such an environment. Further offshore less is known about
the behaviour of the characteristic physical phenomena and the suitability of a two-dimensional
model in such cases. This chapter describes these phenomena, their characteristic length, time
and velocity scales and the governing processes in shelf seas.

Subsequently, the governing equations of motion are discussed and simplified as much as
possible based on commonly used assumptions and approximations. Moreover, for each of the
relevant phenomena the equations are scaled with characteristic values, which will give insight
into which terms of the equations are dominant for which phenomenon. This helps to find out
which processes are governing and which of the parameters are responsible for the behaviour.
All of this results in a basic three-dimensional mathematical model. Finally, by integration
over the water depth the consequences of the reduction from the three-dimensional to the two-
dimensional equations are exposed. This results in two sets of basic equations for both 2D
and 3D modelling of fluid flow problems under circumstances likely to occur in North Sea like
conditions.

2.1 Important phenomena in shelf seas and estuaries

Globally, there are many shelf regions with many different characteristics due to a varying
combination of currents, winds and waves. This section treats the most important phenomena
for shelf seas and estuaries and aims to define characteristic length, time and velocity scales.
Areas of application are tides and wind-driven flows (i.e. storm surges). River flows and
stratified or density-driven flows are beyond the scope of this research.

Tides Tidal motion is generated by the gravitational forces of the sun and moon upon the
rotating earth. In the ocean, the amplitude of the tide is O(0.1m) (Holthuijzen, 2007). The
propagation speed of the tide is c =

√
gd, where d is the water depth. With d ≈ 3000 m, the

tidal propagation speed in the ocean is 175 m/s (or 600 km/h). The particle velocity, tidal
current speed, is much smaller and is related to the water depth and the tidal amplitude via
u = ζ

√
(g/d) ≈ 0.005 m/s.
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As the tidal wave approaches the relatively shallow continental shelf its amplitude increases
to O(1m) and propagation of the wave is retarded (∼30 m/s). Current speed in these seas may
be as high as 0.2 m/s or more. In long, narrow bays or estuaries, resonance may occur and the
amplitude may be as high as 15 m with correspondingly high current speeds. In enclosed seas,
tides are practically absent (e.g. Mediterranean Sea, Black Sea). All is summarised in table
2.1.

The importance of the earth’s rotation in the generation and propagation of tidal waves is
illustrated by amphidromic systems like the North Sea. The semi-diurnal tides of the North
Sea consist of several amphidromic points where the tidal amplitudes are approximately zero.
A good description of many observed tidal characteristics are provided by the so-called Kelvin
waves. In the solutions for these waves a factor is found responsible for the decay in wave
amplitude away from the boundary.

Storm surges Next to tidal forcing, coastal waters are set in motion by atmospheric forcing.
The atmosphere forces shelf seas through winds, and through a modification of the water’s
buoyancy by evaporation, precipitation and heat fluxes, causing buoyancy-driven flow. Winds,
directly driving circulation, are generally making the largest contribution to non-tidal elevations.
In the event of water piling up against the coast, this is called a (storm) surge. A typical property
of surges is that they behave as a wave, travelling along the coast, of which the amplitude grows
with time. The severity of a storm surge depends to a large extent on its timing relative to the
tidal cycle. If the peak of the surge coincides with high tide, the effect can be disastrous. A
characteristic time scale for storm surges is 1− 2 days, so T ≈ 2000 min would be a reasonable
value.

Residual currents In Nihoul and Ronday (1975) the residual current field is defined as the
mean velocity field over a time sufficiently long to cover several tidal periods and thus cancel
transitory wind currents and tidal oscillations. In deriving appropriate equations for the residual
circulation extra non-linear terms appear in the equations of motion due to decomposition of
the velocity vector into a time averaged component and a perturbation. In certain regions,
as a consequence of intensive tidal oscillations, these non-linear contributions are extremely
important and the fluctuating velocity component can be 10 to 100 times larger than the time
averaged velocity component. So, a characteristic time scale is several times a tidal period of
745 minutes, resulting in T ≈ 3500 min.

Seiches Seiches are free oscillations that occur in basins of moderate size (harbours, lakes, bays
or even in a sea). They are standing waves with a frequency equal to the resonance frequency
of the basin in which they occur. Seiches can have periods ranging from a few minutes up
to several hours. As seiches are a resonance phenomenon, it is obvious that the basin size in
relation to the wavelength is an important factor.

Density-driven currents Due to variations in temperature or salinity currents may be
driven. This is however beyond the scope of this thesis because the focus is on well-mixed
shelf seas and estuaries.

2.2 Equations of motion

The three-dimensional Navier-Stokes equations are generally accepted as the mathematical
starting point for fluid flow problems. These equations are based on Newton’s Second Law
and describe the conservation of momentum and mass. Under the assumption of water being
an incompressible fluid the latter equation reduces to the continuity equation:



∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.1)

with velocity components u, v and w in x-, y- and z-direction respectively. The conservation of
momentum is expressed as (Pedlosky, 1982):

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+ ρfv +

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

(2.2a)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
− ρfu+

∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

(2.2b)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
− ρg +

∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

(2.2c)

where ρ denotes the density of the water, p the pressure, f the Coriolis parameter and τij is the

viscous shear stress in i-direction on a j-plane. The stresses are defined as τij = ρν
(
∂ui
∂xj

+
∂uj
∂xi

)
,

where ν is the kinematic viscosity. A short-hand notation is used where xi = (x, y, z) and
ui = (u, v, w) for i = 1, 2, 3.

The assumption of water being an incompressible fluid does not automatically mean that
the fluid density is constant, but rather that it is independent of the pressure. The density may
still vary due to other reasons, such as variations in temperature or salinity. Very often though,
the variations in density are small with respect to the density itself (usually less than a few
percent). Therefore, the density may be taken as a constant ρ0 in all terms but the buoyancy
term, where it is important. The approach of taking density variations into account only in the
buoyancy term is called the Boussinesq approximation.

In essentially all civil engineering applications the flow is found to be turbulent. Turbu-
lence is a chaotic and fluctuating phenomenon. To account for turbulence in the Navier-Stokes
equations the variables are decomposed into a mean and a variation, e.g. u = ū + u′. Substi-
tuting the decomposition for all variables into the momentum equations and taking the average
results in the Reynolds-averaged equations of motion. These have the same form as the orig-
inal Navier-Stokes equations, with additional turbulent stresses called Reynolds stresses, e.g.
τij = ρu′iu

′
j (Uijttewaal, 2011). These turbulent stresses are often found to be many orders of

magnitude larger than the viscous stresses, since molecular viscosity is only important within a
few millimetres of a boundary.

The Reynolds stresses have to be expressed in terms of the mean motion in order to obtain
a closed system of equations. This closure problem is one of the major tasks of turbulence
research. A simple turbulence model uses the Boussinesq hypothesis to describe the turbulent
motions in a similar way to the molecular motions but with eddy viscosity coefficients νht and
νvt for the horizontal and vertical direction respectively. All of the above taken into account
results in the following equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ fv +

∂

∂x

(
νht
∂u

∂x

)
+

∂

∂y

(
νht
∂u

∂y

)
+

∂

∂z

(
νvt
∂u

∂z

)
(2.3a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
− fu +

∂

∂x

(
νht
∂v

∂x

)
+

∂

∂y

(
νht
∂v

∂y

)
+

∂

∂z

(
νvt
∂v

∂z

)
(2.3b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
− ρ

ρ0
g +

∂

∂x

(
νht
∂w

∂x

)
+

∂

∂y

(
νht
∂w

∂y

)
+

∂

∂z

(
νvt
∂w

∂z

)
(2.3c)



2.3 Boundary conditions

In order to compute changes in the structure of the sea, it is necessary not only to know the
governing equations but also the appropriate conditions to apply at the boundaries. Distinction
can be made between different types of boundaries: in the horizontal plane and in the vertical
plane. In horizontal plane the coastlines are assumed to be a fixed land boundaries, which implies
that the velocity normal to the boundary equals zero. Another boundary in the horizontal plane
that might have to be imposed because it is not possible to consider the entire sea; the so-called
open boundary condition. Typical open boundaries are the edge of the continental shelf, as is
treated in chapter 5. In the vertical plane one has to deal with the sea bed and the sea surface.
Lastly, there is the boundary condition in time, the initial condition. Important for this research
are the vertical boundary conditions.

Depth-averaged flow For depth-averaged flow the shear-stress at the bed induced by a
turbulent flow is assumed to be given by a quadratic friction law:

τb =
ρ0g |U |U
C2

1

= ρ0cf1 |U |U (2.4)

where |U | is the magnitude of the depth-averaged horizontal velocity and C1 is the Chézy
coefficient for a depth-averaged model.

Flow with vertical information For models with vertical information, e.g. 2DV or 3D
models, a quadratic bed stress formulation is used that is quite similar to the one for depth-
averaged computations. The bed shear stress in 3D may be related to the current just above
the bed:

τb = ρ0cf2|ub|ub (2.5)

with ub is the magnitude of the horizontal velocity just above the bed. More on the bottom
boundary condition in Chapter 3.

The next section treats a more extensive analysis of the equations of motion, with emphasis
on the relative importance of the terms. In chapter 3 the equations are extremely simplified in
order to find some analytical solutions.

2.4 Scaling the equations

Within the framework of this research it is inconvenient to work with the full equations, because
it makes the succeeding analysis unnecessarily laborious. Implementing characteristic scales for
each of the parameters gives insight into which terms in the equations are negligible in which
situation. Accordingly, the equations can be simplified to a certain extent.

Firstly, the continuity equation is considered. Suppose U characterises the scales of the
horizontal velocities u and v, L characterises the horizontal length scales x and y, and H the
vertical scale z. Then, the continuity equation scales leads to an expression for the vertical
velocity scale W :

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

U

L
+
U

L
+
W

H
= 0 =⇒ W ∼ O

(
UH

L

)



Figure 2.1: Definition of the surface elevation ζ and the undisturbed water depth d.

In table 2.1 characteristic time, length and velocity scales are summarised for the physical
phenomena discussed in the previous section (partly from Battjes (2002)). It shows that the
horizontal velocity component is a few orders of magnitude larger than the vertical velocity
component for all relevant phenomena. Therefore, the vertical velocity component can be ne-
glected for the type of applications treated in this research and thus it will not be considered.

Table 2.1: Characteristic scales for different physical phenomena.

Type T [min] L [m] H [m] U [m/s] W [m/s]

Tide in the ocean 745 106 3000 0.3 9 · 10−4

Tide in shelf seas 745 105 50 0.5 3 · 10−4

Tide in estuaries 745 103 15 1 2 · 10−2

Storm surges 2000 105 50 1.5 8 · 10−4

Residual currents 3500 105 50 2 1 · 10−3

Seiches 20 103 20 0.5 1 · 10−2

Substituting the above scales into the vertical momentum equation 2.3c shows that the only
important balance in the vertical is the balance between the pressure gradient and gravity for
all of the physical phenomena. The other terms are so small that they can be dropped without
changing the dominant characteristics of the solutions. Therefore, the vertical momentum
equation reduces to the so-called hydrostatic balance:

∂p

∂z
= −ρg (2.6)

Integration of equation 2.6 in vertical direction gives: p(z) = ρg(ζ − z) + patm when ∂ρ
∂z = 0,

where ζ is the elevation of the free surface (see figure 2.1) and patm is the atmospheric pressure
at the free surface. Now

∂p
∂x = ρg ∂ζ∂x
∂p
∂y = ρg ∂ζ∂y

if
∂ρ

∂x
,
∂ρ

∂y
= 0 (2.7a)

Substituting this into the horizontal momentum equations 2.3a and 2.3b gives:



∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− ∂

∂z

(
νt
∂u

∂z

)
= −g ∂ζ

∂x
+ fv (2.8a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− ∂

∂z

(
νt
∂v

∂z

)
= −g ∂ζ

∂y
− fu (2.8b)

Together with neglecting the vertical velocity component and substituting the water level gra-
dient for the pressure gradient, a few other terms were neglected in order to get from equations
2.3a and 2.3b to the above set of equations. The turbulent stresses are often found to be many
orders of magnitude larger than the viscous stresses, since molecular viscosity only is impor-
tant within a few millimetres of a boundary. Therefore the viscous stresses are not taken into
account. Also, the horizontal turbulent stresses are not taken into account.

Equations 2.8 are taken as the starting point. The succeeding analysis aims to examine the
relative orders of magnitude rather than the exact magnitude of the terms. The essence is to
gain insight into the parameters that decide which contributions are the most important in a
certain situation and also, which are negligible, and why.

Looking at the terms separately and scaling them with the above discussed length, time and
velocity scales:

Inertia: ∂u
∂t ∼

U
T

Advection: u∂u∂x ∼
U2

L

Vertical diffusion of momentum: ∂
∂z

(
νt
∂u
∂z

)
∼ ν U

H2

Pressure gradient: −g ∂ζ∂x ∼ g
∆H
L

Coriolis: fv ∼ fU

An extremely important term in this research is the friction term, because this term is
defined differently in a two-dimensional model. A comparison will be made in the next section.
For a three-dimensional model the ratio between the friction term and the inertia term can be
expressed as:

friction

inertia
∼ νU/H2

U/T
∼ ν

ωH2
, where ω ∼ 1

T
(2.9)

This shows that important parameters are the viscosity ν, the wave frequency ω and a vertical
length scale (e.g. the water depth d). Vreugdenhil, C.B. (1994) already discussed a dimensionless
combination of these parameters: ωd2/ν. This dimensionless parameter is used extensively in
the analytical approach in the next chapter. Vreugdenhil compares a dynamic expression for
the bed shear stress with an expression where the bottom stress is proportional to the depth-
averaged velocity as in a steady state. The result is a ratio, shown in figure 2.2, as a function
of this parameter ωd2/ν only.

When ωd2/ν is very small, the ratio approaches unity, which means that the bed shear
stress responds to the periodic flow as if it were steady at each moment. For approximately
ωd2/ν < 0.5 this is the case. This can also be written as d2/ν < 0.5 ·T/2π ≈ 0.08 ·T , where T is
the period of the oscillating flow. The quantity d2/ν can be interpreted as the time needed for
a viscous flow to adjust its velocity profile over a depth d. So, a quasi-steady bed shear stress
is expected when the adjustment time is less than 8% of the period.

In the case of homogeneous tidal flow vertical mixing is predominantly caused by turbulence
generated by bed shear stress. For turbulent flow in shallow water an estimate for the eddy
viscosity is ν = 1

6κdu? = 0.067du? (Fischer, 1979). Here, u? ≈
√
cf · ū, and with 0.0015 as an



Figure 2.2: Bed shear stress ratio in dynamic and steady flow.

estimate for cf it becomes ν = 0.0025dū. Now, for a homogeneous shelf sea such as the North
Sea, with an average water depth d ≈ 50 m and a depth mean amplitude of the current ū ≈ 0.5
m/s, an estimate for the eddy viscosity ν ≈ 0.063 m2/s. Then, the adjustment time becomes
89% of the tidal period, so the quasi-steady assumption breaks down (ωd2/ν = 5.6).

2.5 Concluding remarks

Shallow well-mixed continental shelf seas like the North Sea are dominated by strong currents
produced by tides and storm surges (O(1m/s)), combined with slowly varying residual currents.
These long waves have a characteristic horizontal length scale much greater than the depth,
which reduces the vertical momentum equation to the hydrostatic balance. Further analysis of
the horizontal momentum equations reveal important parameters for this research: the viscosity
ν, the wave frequency ω and the water depth d. The next chapter will confirm this importance
by presenting analytical solutions to a depth-averaged (1D) model and a model that does contain
information in the vertical (2DV).





Chapter 3

Analytical study

This chapter studies the basic equations obtained in the previous chapter in more detail, by
focusing on the difference between the depth-averaged velocities as computed by a 1D and a
2DV model respectively. This analytical approach determines the applicability of 1D and 2DV
mathematical models by analysing solutions to the basic equations of motion. As described
in the introductory chapter there are two main consequences of using a depth-averaged model
instead of a model that does contain information in the vertical direction:

1. A depth-averaged model does not give any vertical information (which is unfortunate
when the model user is interested in it);

2. The model output (i.e. the surface elevation and the depth-averaged velocity components)
may be affected by omitting the vertical dimension.

This chapter essentially deals with the second issue: it examines whether the reduction from
2DV to 1D (or from 3D to 2DH) has a significant effect on the model output in terms of the
surface elevation and depth-averaged current velocities. In order to do so, mathematical models
with (2DV) and without (1D) vertical information are compared. Section 3.1 further simplifies
the equations of motion that were introduced in the previous chapter. Sections 3.2 and3.3 study
the dynamic response of the vertical velocity profiles to pressure gradient with a 1D and a 2DV
mathematical model respectively. A comparison between the two requires more understanding
on the bottom shear stress, which is discussed in section 3.4. In section 3.5 the surface elevation
is discussed and in section 3.6 two examples are treated.

3.1 Governing equations

Analytical solutions may only be obtained for much simplified forms of the equations of motion.
Since the advection terms are non-linear, it is necessary to eliminate them from the momentum
equation for this chapter’s analytical approach. When the wave propagation speed is defined as
the wave length over the wave period (c = L/T ) the ratio between the advection term and the
inertia term leads to the Froude number, defined as Fr = u/c. When Fr � 1, this means that
the inertia term is much more important than the advection term and therefore the advection
term may be neglected. This is the case for long waves with small amplitudes with respect to
the water depth. The set of equations without advection terms reduces to:
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∂u

∂t
− νt

∂2u

∂z2
= −g ∂ζ

∂x
+ fv (3.1a)

∂v

∂t
− νt

∂2v

∂z2
= −g ∂ζ

∂y
− fu (3.1b)

∂p

∂z
= −ρg (3.1c)

These are the basic three-dimensional equations for this chapter. From here on periodic flow
confined to one horizontal dimension will be considered, given by equation 3.1a; the focus will be
on the influence of the variations in the (x, z)-plane. Although tidal vectors generally describe a
elliptical path due to the rotation of the earth, Coriolis is neglected in this analytical approach.
With these assumptions taken into account the basic 2DV equation for this chapter becomes:

∂u

∂t
− νt

∂2u

∂z2
= F (3.2)

where F is just a shorthand notation for the forcing pressure term:

F = −g ∂ζ
∂x

(3.3)

In x-direction this term is a scalar, but it may vary in time. With equation 3.2 and the boundary
conditions discussed in Chapter 2 analytical solutions are found for the current velocity u. First,
the one-dimensional case is considered, where there is no information in the vertical direction.

3.2 1D analytical solution

Equation 3.2 can be integrated over the water depth d in order to get to the one-dimensional
momentum equation in x-direction:

d
∂U

∂t
− νt

(
∂ũ

∂z (z=0)
− ∂ũ

∂z (z=−d)

)
= Fd (3.4)

where U is the depth-averaged velocity. At the sea surface (z = 0) the shear stress is zero, as
the free surface does not produce any friction (in absence of wind). At the bed (z = −d) it is
common to relate the shear stress term to the depth-averaged velocity with a friction coefficient
cf1 for the depth-averaged model. So, νt

∂u
∂z = τb ≈ cf1 |U |U and the basic one-dimensional

depth-averaged equation becomes:

∂U

∂t
+
cf1 |U |U

d
= F (3.5)

Here, the friction term is proportional to |U |U and therefore non-linear. Since linear equations
are much easier to solve analytically, it is convenient to apply a linearisation technique in this
matter. Lorentz (1926) proposed this linearisation of the bed shear stress which has been the
basis for simple solutions for many decades. Suppose that the flow velocity is varying sinusoidally
in time:

U(t) = Û cos(ωt) (3.6)

where only the real part is considered here from the expression for U that is used further on.
Figure 3.1 shows the corresponding |U |U/Û2 = | cos(ωt)| cos(ωt), which is the friction as a
function of time that is showing deviations from the pure cosine function.



Figure 3.1: Linearisation of the quadratic friction term (Battjes, 2002).

The reasoning behind the linearisation lies in the fact that it is accepted that it does not
reproduce the exact cosine function, as long as the damping effect of the friction stays conserved.
To this end, the energy that is lost per cycle by friction is set to be equal for both cases. This
approach works out to a suitable estimate of the linearisation constant κ:

κ1 =
8

3π
cf1

Û

d
≈ cf1

|U |
d

(3.7)

where the subscript “1” indicates the one-dimensional case. This expression contains a reference
velocity Û , which is unknown. Although iterative approaches for its determination have been
proposed, this linearisation constant is often assumed as a calibration parameter. With the
numerical modelling of schematized rectangular basins of chapter 4 it is done iteratively.

The linearised bed shear stress becomes:

τb = cf1 |U |U ≈ κ1dU (3.8)

Substituting this into equation 3.5 gives:

∂U

∂t
+ κ1U = F (3.9)

For dynamic flow in the one-dimensional situation this linearised equation is used, while sub-
stituting a complex representation of the flow velocity:

U(t) = Ũeiωt (3.10)

where Ũ is the complex amplitude and eiωt = cos(ωt) + i sin(ωt) with i is the imaginary unit
that satisfies the equation i =

√
−1. This factor eiωt actually causes a rotation in time with ω

as the angular frequency which equals 2π/T . Observe that the velocity defined in 3.6 equals the

real part of this expression: U(t) = Re
[
Ũeiωt

]
= Û cos(ωt). Substituting the complex periodic



solution 3.10 into equation 3.9 and eliminating the time variation eiωt in every term gives:

iωŨ + κ1Ũ = F̃ (3.11a)

(iω + κ1) Ũ = F̃ (3.11b)

=⇒ Ũ =
F̃

(iω + κ1)
(3.11c)

=
F̃

iω
· 1

1 + κ1/iω
= Ã · 1

1− iσ1
(3.11d)

where

Ã =
F̃

iω
= − g

iω

∂ζ̃

∂x
(3.12a)

σ1 =
κ1

ω
=

8

3π
cf1

Û

ωd
(3.12b)

So, the expression for the depth-averaged velocity in x-direction is:

U = Ã ·
(

1

1− iσ1

)
eiωt (3.13)

Now, an expression is found for the depth-averaged velocity U through solving a depth-averaged
momentum equation. For this research it is interesting to compare this expression with a similar
solution for the depth-averaged velocity computed by a model with vertical information (2DV).

3.3 2DV analytical solution

Recalling the momentum equation with vertical information (equation 3.2):

∂u

∂t
− νt

∂2u

∂z2
= F (3.14)

with a periodic solution u(z, t) = ũ(z)eiωt (now ũ is the complex amplitude as function of the
vertical coordinate), and eliminating eiωt this becomes:

iω ũ(z)− νt
∂2

∂z2
ũ(z) = F̃ (3.15)

which is a differential equation with a homogeneous and a particular solution:

ũ(z) = C1e
bz + C2e

−bz + Ã (3.16)

where b =
√

iω
νt

and Ã = F̃
iω .

At the sea surface (z = 0), the shear stress τ = 0, as the free surface does not produce any
friction (in absence of wind). So

∂ũ

∂z (z=0)
= 0 =⇒ C1 = C2 (3.17a)

=⇒ ũ(z) = C cosh (bz) + Ã (3.17b)

There are several options for the boundary condition at the bed in order to find an expression
for the integration constant C. The one discussed in this research is the partial-slip condition,



which means that the velocity at the bed ub 6= 0. At the bed (z = −d), the shear stress is
assumed to be described by the linearised quadratic friction law:

νt
∂ũ

∂z (z=−d)
= τb ≈ κ2 dũ, (3.18)

where

κ2 =
8

3π
cf2

ûb
d

(3.19)

The subscript “2” indicates the two-dimensional case. Substituting the expression for the flow
velocity (3.17b) in equation 3.18 gives:

νt · (C b sinh (−bd)) = κ2 d ·
(
C cosh (−bd) + Ã

)
(3.20a)

C · (−νtb sinh (bd)− κ2 d cosh (bd)) = κ2 dÃ (3.20b)

=⇒ C = −Ã ·
(
νtb

κ2d
sinh (bd) + cosh (bd)

)−1

(3.20c)

The solution for the velocity profile in the vertical now becomes:

ũ(z) = Ã

(
1− cosh(bz)

νtb
κ2d

sinh (bd) + cosh (bd)

)
(3.21a)

= Ã

(
1− γ̃ cosh(bz)

cosh (bd)

)
(3.21b)

where

γ̃ =

(
1 +

νtb

κ2d
tanh (bd)

)−1

=

(
1 +

i

σ2 bd
tanh (bd)

)−1

(3.22)

So, the velocity profile described by equation 3.21b is a function of the dimensionless parameter
bd:

bd =

√
iωd2

νt
(3.23)

and the dimensionless σ2 parameter defined as:

σ2 =
κ2

ω
=

8

3π
cf2

ûb
ωd

(3.24)

In chapter 2 a similar parameter as the one in equation 3.23 was already discussed in the con-
text of the bed shear stress, indicated as ωd2/νt by Vreugdenhil (1994). Figure 3.2 shows the
behaviour of the velocity profiles for an increase of this ωd2/νt-parameter by increasing the
water depth. The figures show screen shots of one tidal cycle for water depths of d = 30, 60, 85
and 110 m, which corresponds to a ωd2/νt = 1.26, 5.06, 10.16 and 17.10 respectively, where the
eddy viscosity νt = 0.1 m2/s and the tidal frequency ω = 1.4 · 10−4 rad/s are taken constant.
Concentrating on the propagation of one single predominant tidal constituent (M2), it is illus-
trated that an increase in water depth leads to an increase in vertical structure if the viscosity
remains constant.

For the depth-averaged velocity the following is derived:

ū =
1

d

0∫
−d

ũ(z) dz =
1

d

0∫
−d

(
Ã

(
1− γ̃ cosh(bz)

cosh (bd)

))
dz =

Ã

d

[
z − γ̃

b

sinh(bz)

cosh (bd)

] 0

−d
(3.25a)

ū = Ã ·
(

1− γ̃

bd
tanh(bd)

)
eiωt (3.25b)



Figure 3.2: Screen shots of the velocity profiles u(z) over water depths of a) d = 30 m, b) d = 60
m, c) d = 85 m and d) d = 110 m for the propagation of one semi-diurnal tidal constituent
(M2, ω = 1.4 · 10−4 rad/s) with a constant vertical eddy viscosity νt = 0.1 m2/s. The figures
illustrate one tidal cycle; in solid blue lines the profiles propagating to the left and in dashed red
lines to the right.

3.4 Bottom friction

The preceding sections presented analytical solutions for the depth-averaged flow velocities, as
computed by a 1D- and a 2DV-model, both with linearised bottom friction. The expressions
for the flow velocities contain two different bottom friction coefficients where κ1 6= κ2 since the
bed shear stress is defined differently in both cases. To enable the comparison between these
solutions 3.13 and 3.25b, an extra relation between the friction coefficients κ1 and κ2 is needed.
This relation is found in section 3.4.1 by assuming that for steady flow, which means ∂u/∂t = 0
the depth-averaged velocities computed by both models are equal: ū = U , which is just a matter
of choice. The same is done in section 3.4.2, but then for quadratic bottom friction.

3.4.1 Linearised bottom friction

One-dimensional model For steady flow with linearised bottom friction the equation for
the 1D-model (3.9) reduces to:

κ1U = F (3.26)

where κ1 ≈ cf1|U |/d is the linearised friction coefficient for depth-averaged flow (for steady flow
the factor 8/3π is left out), U is the depth-averaged horizontal velocity and F = −g∂ζ/∂x, a
shorthand notation for the water level gradient. The expression for the depth averaged velocity
U follows directly from equation 3.26:

U =
F

κ1
(3.27)



Two-dimensional model For steady flow with linearised bottom friction the 2DV-equation
(3.2) reduces to:

−νt
∂2u

∂z2
= F (3.28)

Since F is assumed to be independent of z, integration gives:

νt
∂u

∂z
= −Fz + C1 (3.29)

At the sea surface (z = 0) the shear stress τ0 = νt ∂u/∂z = 0, which means that the integration
constant C1 = 0 and therefore:

νt
∂u

∂z
= −Fz (3.30)

So, the shear stress is linearly distributed over the vertical with the maximum shear stress τb
at the bed (z = −d):

τb = Fd (3.31)

When assuming a constant vertical eddy viscosity the velocity profile is found by integrating
equation 3.30:

u(z) = C2 −
Fz2

2νt
(3.32)

This is a parabolic velocity profile where the integration constant C2 is equal to the maximum
velocity at the sea surface (z = 0). To find this constant C2 a boundary condition needs to be
imposed at the bed. Different approaches are possible for the implementation of the bottom
boundary condition. This chapter implements the linearised definition for the bottom friction
and the numerical modelling chapters 4 and 5 use also a quadratic bottom friction.

The combination of the linearised boundary condition (τb = κ2d ub, where κ2 ≈ cf2|ub|/d)
and equation 3.31 will result in an expression for the velocity at the bed. Substituting this into
equation 3.32 gives an expression for C2 and so the velocity profile becomes:

u(z) =
F

2νt

(
d2 − z2

)
+
F

κ2
(3.33)

Integrating over depth gives:

ū =
1

d

0∫
−d

u(z) dz =
1

d

0∫
−d

F

2νt

(
d2 − z2

)
+
F

κ2
dz =

Fd2

3νt
+
F

κ2
(3.34)

So, also in the steady case there are two solutions, 3.27 (1D) and 3.34 (2DV), with two different
bottom friction coefficients where κ1 6= κ2 since the bed shear stress is defined differently in
both cases. Suppose the depth-averaged velocities from both models are equal: ū = U (which
is the method chosen in this study). This results in the following relation between κ1 and κ2:

1

κ1
=

1

κ2
+
d2

3νt
(3.35)

Writing this in terms of σ (= κ/ω):

1

σ1
=

1

σ2
+
ωd2

3νt
(3.36)



Apparently, in the relation between σ1 and σ2 the dimensionless parameter ωd2/νt appears.
Now, choosing a certain range for σ1 will result in σ2 as a function of the dimensionless parameter
for every σ1 value. Typical estimates for ωd2/νt, σ1 and σ2 are given in table 3.1 for the physical
phenomena that are relevant for this study.

This σ-relation 3.36 enables a comparison between the amplitudes and phases of the depth-
averaged velocities, as computed by a one-dimensional and a two-dimensional model respec-
tively. In figures 3.3 and 3.4 this is done by means of the velocity amplitude and phase ratio for
several values for σ1 indicated in the legend. In these figures the amplitude and phase ratios
for the relevant physical phenomena are indicated by dots. Interestingly, in case of tidal motion
in the ocean the value of σ2 becomes negative because of the very large water depth and hence
there is no dot in the figure indicating the phenomenon. Since σ is the ratio of the friction
to the inertia term, a negative value is physically incorrect. Application of this σ-relation is
therefore limited to situations with ωd2/νt > 3/σ1, which is the case for tidal motion in shelf
seas and estuaries.

Concentrating on tides in shelf seas the velocity amplitude ratio is larger than 1 under
the condition that ωd2/νt < 65. This means that the velocity as computed by the depth-
averaged model is in much likely to be larger than the velocity amplitude that contains vertical
information than vice versa. Furthermore, it is noticed that for shelf seas (the green dot on
the line σ1 = 0.25) the figures show a velocity amplitude ratio of 1.06 and a phase ratio of
1.01. Apparently, already 6% deviation in amplitudes is expected for parameter values that are
very likely to occur in practice. For the same value of ωd2/νt but a higher value for σ1, the
differences increase (the red dot on the line σ1 = 0.50). The only cause for σ1 to increase when
ω, d and νt remain constant would be an increase of the reference velocity Û . So, the initial
reference velocity was estimated to be Û = 0.5 m/s for tides in shelf seas, but for Û = 1 m/s
the red dot indicates a velocity amplitude ratio of 1.23 and a phase ratio of 0.94.

For smaller values of σ1 the velocity amplitude ratio is practically always larger than 1
regardless of the value of ωd2/νt. In case of inertia dominating (σ1 � 1, i.e. for a seiche for
instance), there is hardly any difference to be expected between calculations with and without
vertical information. This is indicated by the green dot on the line σ1 = 0.02.

The outcome of the amplitude and phase ratios appear to be considerably sensitive to the
estimates of the velocity amplitudes Û presented in table 3.1 as well as to the bottom friction
coefficient cf . Appendix 6 elaborates further on this. Based on the figures above and on the
Appendix it can be concluded that the regions where extensive differences are to be expected,
e.g. at least 20% for instance, are hard to quantify in general sense. Concentrating on the
propagation of the M2-constituent with a constant vertical eddy viscosity and a certain bottom
friction coefficient, much rather it can be stated that there are certain combinations of flow
velocity and water depth that may cause the results to differ extremely. This will be tested in
the next chapters.

Table 3.1: Characteristic scales for the dimensionless parameters ωd2/νt, σ1 and σ2 for a con-
stant vertical eddy viscosity νt = 0.05 m2/s.

Type T [min] ω [rad/s] d [m] Û [m/s] ωd2/νt [−] σ1 [−] σ2 [−]

Tide in the ocean 745 1.4 · 10−4 4 · 103 0.3 4 · 104 2 · 10−3 −
Tide in shelf seas 745 1.4 · 10−4 50 0.5 7.0 0.25 0.34
Tide in estuaries 745 1.4 · 10−4 15 1.0 0.63 1.00 1.12
Seiches 20 5.2 · 10−3 20 0.5 42 0.02 0.02



Figure 3.3: Amplitude ratio between U and ū as a function of ωd2/νt and σ1.

Figure 3.4: Phase ratio between U and ū as a function of ωd2/νt and σ1.



3.4.2 Quadratic bottom friction

Analogous to the preceding section where the relation between κ1 and κ2 was derived for the
linearised 1D and 2DV-models, this section derives the relation between cf1 and cf2. These
expressions will be used in the numerical modelling chapter 4 and 5.

One-dimensional model For steady flow with quadratic bottom friction the one-dimensional
momentum equation reduces to:

cf1 |U |U
d

= F (3.37)

where cf1 is the friction coefficient for depth-averaged flow. Since U can be assumed positive
in steady flow, the expression for the depth averaged velocity becomes:

U =

√
Fd

cf1
(3.38)

Two-dimensional model Starting point for steady flow with quadratic bottom friction for
the two-dimensional model is equation 3.32. The integration constant C2 is again found by
imposing a boundary condition at the bed. The combination of the quadratic boundary con-
dition (τb = cf2|ub|ub) and equation 3.31 will result in an expression for the velocity at the
bed. Substituting this into equation 3.32 gives an expression for C2 and so the velocity profile
becomes:

u(z) =
F

2νt

(
d2 − z2

)
+

√
Fd

cf2
(3.39)

where cf2 is the friction coefficient for a model that contains information in the vertical direction.
Again, integrating over depth gives:

ū =
1

d

0∫
−d

u(z) dz =
1

d

0∫
−d

F

2νt

(
d2 − z2

)
+

√
Fd

cf2
dz =

Fd2

3νt
+

√
Fd

cf2
(3.40)

Similarly to the linearised case, when assuming ū = U a relation between cf1 and cf2 follows:

1
√
cf1

=
1
√
cf2

+

√
Fd3

3νt
(3.41)

with also cf1 6= cf2 since the bed shear stress is defined differently.

3.5 Surface elevation

In the preceding section the solutions for the depth-averaged flow velocities, as computed by a
one-dimensional and a two-dimensional model respectively, were found. This section discusses
the surface elevation as well, which can be included in this analysis via the continuity equation.
Recalling the continuity equation from chapter 2:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.42)

The depth-averaged version of the continuity equation is:

∂ζ

∂t
+ d

∂U

∂x
= 0 (3.43)

where ζ is the surface elevation at the free surface, d is the water depth and U is the depth-
averaged velocity. The surface elevation can be found by substituting the expression for the
depth-averaged velocity, as computed by the 1D or the 2DV model.



Solution for one-dimensional model

The one-dimensional depth-averaged velocity U previously derived is:

U = A

(
1

1− iσ1

)
eiωt (3.44)

where A = F/iω and F = −g ∂ζ/∂x. Substituting this into the depth-averaged continuity
equation (3.43) gives:

∂ζ

∂t
+ d

∂A

∂x

(
1

1− iσ1

)
eiωt =

∂ζ

∂t
− gd

iω

∂2ζ

∂x2

(
1

1− iσ1

)
eiωt = 0 (3.45)

Substituting ζ(x, t) = ζ̃(x) eiωt into equation 3.45 and dividing by eiωt gives:

iω ζ̃ − gd

iω

∂2ζ̃

∂x2

(
1

1− iσ1

)
= 0 (3.46)

This differential equation has the following homogeneous solution:

ζ̃(x) = C+e
−px + C−e

px (3.47)

where

±p1 = ±ik0

√
1− iσ1 (3.48a)

k0 = ω/c0 (= wave number without friction) (3.48b)

c0 =
√
gd (= wave speed without friction) (3.48c)

The general periodic solution given by equation 3.47 contains two exponentially damped waves
propagating in opposite direction. Here ±ik0 represents the propagation in absence of friction
and
√

1− iσ1 represents the influence of friction. Rewriting p as p = µ+ ik:

Im(p) = k1 =
k0√

1− tan2 δ
(3.49a)

Re(p) = µ1 = k1 tan δ (3.49b)

where tan 2δ ≡ σ1 = κ1/ω. Here, instead of working with σ (the ratio of friction to inertia),
the so-called ”friction angle” δ is defined, as this appears to be more convenient. The general
periodic solution of equation 3.47 can be written as:

ζ̃(x) = C+e
−p1x + C−e

p1x (3.50a)

ζ̃(x) = C+e
−µ1xe−ik1x + C−2eµ1xeik1x (3.50b)

ζ̃(x) = ζ̃+ + ζ̃− (3.50c)

which is just a short-hand notation for the two waves propagating in opposite direction.

Solution for two-dimensional (vertical) model

Similarly, ū is substituted into the continuity equation, which results in the following complex
root:

±p2 = ±ik0

(
1− γ̃

bd
tanh(bd)

)− 1
2

(3.51)



where

γ̃ =

(
1 +

i

σ2 bd
tanh (bd)

)−1

(3.52a)

σ2 = κ2/ω (3.52b)

bd =

√
iω

νt
d (3.52c)

In this case, rewriting p2 as p2 = µ2 + ik2 requires a tedious amount of algebra, so this is
done with the help of Matlab.

The next section illustrates some of the preceding elaborations for a singular progressive wave
and waves in a basin closed in one end, for both the one-dimensional and the two-dimensional
(vertical) case.

3.6 Examples

3.6.1 Singular progressive wave

For the interpretation of the solution for a singular progressive wave, the time factor is recalled:

ζ(x, t) = Re
{
ζ̃(x) eiωt

}
(3.53)

A singular travelling wave is considered, so ζ+ from equation 3.50c only:

ζ+(x, t) = Re
{
ζ̃+(x) eiωt

}
= Re

{
C+ e

−px eiωt
}

(3.54)

Substituting p = µ+ ik and writing out C1 in modulus and argument becomes:

ζ+(x, t) = Re
{
|C+| e−µx ei(ωt−kx+argC+)

}
(3.55)

or
ζ+(x, t) = ζ̂+(x) ei(ωt−kx+argC+), where ζ̂+(x) = |C+| e−µx (3.56)

This solution shows the surface elevation of a singular progressive wave with k (the imaginary
part of p) as the wave number (phase change per unit length). Because the phase varies with
x and t via ωt − kx, it concerns a progressive wave in positive x-direction, with phase speed
c = ω/k and argC+ is the initial phase (the phase when ωt = 0) of ζ+ in x = 0. The amplitude
of ζ+(x, t) in x = 0 is given by |C+| and it decreases exponentially in positive x-direction with
dampening rate µ.

Two numeric examples are given in table 3.2. Case 1 illustrates a situation in which friction is
not very important (σ1 = 0.05, d = 60 m); for case 2 friction is more important (σ1 = 0.5, d = 20
m). The amplitudes of the surface elevation reduces with a factor exp (−µ∆x). Over a distance
of ∆x = 10km the one-dimensional reduction factor for case 1 is exp (−0.015) ≈ 0.99 and the
two-dimensional is also exp (−0.015) ≈ 0.99. For case 2 the one-dimensional reduction factor is
exp (−0.24) ≈ 0.78 and the two-dimensional one is exp (−0.16) ≈ 0.86.

It can be concluded that in some cases there is hardly any difference to be expected between
one-dimensional and two-dimensional results. Namely, when friction is of no importance. When
friction is important, the model results might deviate strongly.



Table 3.2: Numeric examples for M2 with a constant viscosity νt = 0.05m2/s

Parameter Formula Case 1 Case 2

σ1 0.05 0.50
σ2 0.06 0.62
d 60 [m] 20 [m]
c0

√
gd 24.3 [m/s] 14.0 [m/s]

k0 ω/c0 5.8 · 10−6 1.0 · 10−5

k1 Im(p1) 5.80 · 10−6 1.03 · 10−5

k2 Im(p2) 5.81 · 10−6 8.79 · 10−6

µ1 Re(p1) 1.45 · 10−7 2.44 · 10−6

µ2 Re(p2) 1.50 · 10−7 1.56 · 10−6

3.6.2 Basin closed in one end

This section treats the case of a rectangular basin with length l that is closed in one end
(x = 0), see definition sketch in figure 3.5. Starting point is the general periodic solution given
by equation 3.47. To find the integration constants C+ and C− boundary conditions are needed.
At the closed end (x = 0) ũ = 0, which, via the continuity equation, implies that C+ = C−. So

ζ̃(x) = C cosh (px) (3.57)

where C is the new integration constant. At the entrance (x = l) a surface elevation is imposed
ζ̃ = ζ̃sea, so

ζ̃(l) = C cosh (pl) = ζ̃sea =⇒ C =
ζ̃sea

cosh(pl)
(3.58)

=⇒ ζ̃(x) = ζ̃sea
cosh(px)

cosh(pl)
(3.59)

Figure 3.5: Boundary definitions for basin closed in x = 0.

The ratio between the amplitudes at the closed end and the entrance, the amplification
factor, is:

r =
ζ̂(0)

ζ̂(l)
=

1

| cosh(pl)|
(3.60)



Because p is different in the one-dimensional case than in the two-dimensional case, the
amplification factor differs as well.

3.7 Discussion

In addition to the findings of the previous chapter, the preceding analytical approach confirmed
the importance of the eddy viscosity νt, the frequency ω and the water depth d. Analytical
solutions to a depth-averaged (1D) model and a model that does contain information in the
vertical (2DV) are:

1D: U = Ã ·
(

1

1− iσ1

)
eiωt

2DV: ū = Ã ·
(

1− γ̃

bd
tanh(bd)

)
eiωt

where γ̃ is a function of σ2 and bd only. So, the depth-averaged velocities in both models are
very similar-looking and may be described by a function of the dimensionless σ1-parameter or
the dimensionless σ2-parameter and the dimensionless bd-parameter, respectively, where

σ1 =
8

3π
cf1

Û

ωd

σ2 =
8

3π
cf2

ûb
ωd

and bd =

√
iωd2

νt

To connect the above solutions, the choice was made to assume the depth-averaged velocities
of both cases to be equal for steady flow. This assumption appears to be very effective for the
objective of this chapter.

Concentrating on the propagation of one single predominant tidal constituent (M2), the an-
alytical approach in this chapter shows that certain conditions may cause significant differences
between depth-averaged velocities, as computed by a two-dimensional and a three-dimensional
model respectively. However, thorough research resulted in the conclusion that it is reason-
ably hard to find such conditions in practice. Therefore, in combination with the uncertainties
around the connecting relation between the two models, the figures showing amplitude and
phase ratios should be treated with care. Roughly, the largest differences are to be expected
at locations with reasonable water depth (d > 60 m) and high velocities (Û > 1 m/s). Also, it
is noticed that the amplitude ratio is practically always > 1, and the phase ratio < 1 for shelf
seas.

The analytical solutions were found by linearising the equations, which has its limitations
obviously. Distinction is made between two sorts of non-linear effects:

1. Non-linearities caused by higher-order terms in the equations of motion, i.e. advective
acceleration and friction terms. The linearisation of the friction term κU is based on
optimal reproduction of the predominant tidal constituent. While effective for the objec-
tive of this research, such linearisation distorts propagation and generation of other tidal
constituents, including the residual current. Therefore, in the next chapter it should be
assured that advection plays no role.

2. Non-linear effects caused by geometrical non-linearities that are the results of the cross
section depending on the surface elevation ζ. This comes into play with varying water
depths and storage width for instance, which will be important when modelling a conti-
nental shelf sea (chapter 5).



Chapter 4

Numerical modelling: conceptual
simulations

In the previous chapter analytical solutions were found for strongly simplified equations of
motion neglecting Coriolis, advection, density differences and wind stress. While adopting
a linear approach to determine the bottom friction, this provided insight into the difference
between a depth-averaged model and one with vertical information (using a constant vertical
eddy viscosity). In order to find the effect of averaging over the water depth on numerical
results, this chapter tries to extend the analytical findings from the previous chapter by testing
the same approach for numerical modelling.

When simulating a shelf sea or estuary, generally many factors are incorporated, which
makes it ambiguous to isolate the processes that matter for this research. So, before studying
an actual case of modelling a continental shelf sea (which is done in the next chapter) this
chapter treats several test cases for schematized rectangular basins.

Section 4.1 gives a technical introduction of the used numerical flow models, FINEL2D and
FINEL3D. Section 4.2 presents the model set-up for this chapter. Section 4.3 treats a numerical
example for steady flow and section 4.4 for unsteady flow.

4.1 FINEL2D/3D

The computational models applied in this study are the implicit two-dimensional and implicit
three-dimensional version of the finite element model FINEL. These models, FINEL2D and
FINEL3D, solve the two-dimensional Shallow-Water Equations (section 4.1.1) and the complete
three-dimensional Navier-Stokes equations respectively, using an unstructured computational
mesh of triangles (2D) or tetrahedrons (3D). The use of an unstructured grid enables the user
to treat complex flow geometries in a relatively straightforward way.

The acronym FINEL stands for FINite ELements, referring to the solution method: the
finite element method (FEM). FEM is a discretization technique for partial differential equa-
tions. Many different discretization techniques exist. Some well-known classes are listed below
(Labeur, 2009).

� Finite difference methods use a mapping of the flow domain onto a regular grid of discrete
points. The flow variables are represented by point-wise values on an associated set of grid
points while the differential equations that determine the time evolution of these variables
are approximated from Taylor-series expansions between the discrete data points.

� Finite volume methods are based on a partitioning of the flow domain into a number of
control volumes or cells each representing a local flow state. Balance equations are used
to determine the rate of change of the flow state within each volume. This requires the
determination of fluxes between control volumes from the cell based data.
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� Spectral methods use a set of analytical global basis functions covering the entire domain to
represent the flow variables. Traditionally, goniometric or polynomial functions are used
for this purpose. Substitution into the differential equations directly yields analytical
expressions from which the evolution of the flow field is evaluated. In case of non-linear
problems this procedure requires an orthogonal projection of the analytical solution onto
the basis functions.

� Finite element methods finally, also use a set of basis functions to represent the flow
field. However, the basis functions are not defined globally but locally using partitions
of the domain called elements. The governing equations are approximated using weak
formulations. This only requires square integrability of functions and their derivatives
which allows rather simple classes of basis functions and elements of more or less arbitrary
size and shape.

The main advantage of the finite element method over the other methods is that it is well
suited to be applied on irregular domains. However, a drawback of the method is that the
matrix structure of finite element problems is not as nicely ordered as finite volume and finite
difference techniques do.

The numerical heart of FINEL3D is based on the three-dimensional implicit finite element
model FINLAB, which has been developed by Labeur (2009), see also Labeur and Wells (2012).
The code FINEL3D has been developed by Svašek Hydraulics, combining the mathematical
concepts of FINLAB with specific input-output routines for use within civil engineering projects.
The implicit model FINEL2D is basically a spin-off from FINEL3D, to which the numerical
concepts of FINLAB have been applied in a depth-averaged fashion. A brief overview of relevant
numerical aspects of the 2D and 3D model is given here.

4.1.1 Governing equations

The depth-integrated shallow water equations are the basis of the flow module of FINEL2D,
see for example Vreugdenhil (1994) for an overview. The continuity equation reads:

∂ζ

∂t
+
∂(HU)

∂x
+
∂(HV )

∂y
= 0 (4.1)

where H = ζ + d. In fact, this is equation 2.1 integrated over depth. The depth-integrated
momentum balances are derived from equations 2.2 a and b, which results in x-direction in:

∂ (HU)

∂t
+
∂(HU2)

∂x
+
∂(HUV )

∂y
−HfV + gH

∂ζ

∂x
− 1

ρ0
(τx,b + τx,w + τx,r) = 0 (4.2)

where τx,b is the bed shear stress, τx,w is the wind shear stress and τx,r is the radiation stress
due to surface waves. The momentum balance in y-direction reads:

∂ (HV )

∂t
+
∂(HUV )

∂x
+
∂(HU2)

∂y
+HfU + gH

∂ζ

∂y
− 1

ρ0
(τy,b + τy,w + τy,r) = 0 (4.3)

So, in addition to bottom shear stress and barotropic pressure gradients that were discussed in
the previous chapter, the effect of advection must also be considered. Moreover, external forces
like the Coriolis force, wind shear stress and radiation stress due to surface waves can be taken
into account. Though, this will not be used for this thesis.



4.1.2 Solution method

The discretization of FINEL2D/3D is based on a combination of the Continuous Galerkin
(CG) and Discontinuous Galerkin (DG) approaches within the finite element method. Linear
continuous elements are used for approximating the pressure (or the piezometric level), and
discontinuous linear elements are applied for the velocity components. These elements are
either triangles (2D) or tetrahedrons (3D); their degrees of freedom are located at element nodes.
Usually, DG methods have much more degrees of freedom than CG methods. Consequently,
DG problems do take much more computational time to be solved. Within FINEL, CG and
DG techniques have been blended into a new approach coined Galerkin Interface Stabilization
(GIS, (Labeur, 2009)), in order to obtain the accuracy of DG methods combined with the
computational speed of CG methods. The global system of linear equations has the same size
as that of a CG method (global degrees of freedom on the nodes only), which makes the model
rather compact and quick to solve.

Discretization in time is established with the well-known implicit θ-method (which can be
made fully implicit for θ = 1, or second-order accurate for θ = 0.5). For FINEL2D both an
explicit and an implicit version are available, but FINEL3D only comes in implicit version. To
accommodate an accurate comparison between FINEL2D and FINEL3D, the implicit version
of FINEL2D will be used for this thesis. An implicit scheme means that the equation for the
variable in the new time step un+1 is coupled to both the terms un+1 and un. Thus each new
time step requires the solution of a system of coupled equations. In FINEL2D/3D each global
system of linear equations is solved using the iterative matrix solver BiCGSTAB with efficient
pre-conditioning. The resulting numerical implementation has second-order accuracy in space
and first-order or second-order accuracy in time, dependent on the chosen value of θ. By the
GIS approach, the momentum advection terms are effectively stabilized without the need for
additional artificial diffusion.

4.1.3 Turbulence modelling

Turbulence modelling involves the computation of the net contribution of turbulent fluctuations
to the mean flow. To this end, the underlying momentum equations are averaged over a time
interval much larger than the turbulence time-scale to yield the Reynolds Averaged Navier-
Stokes (RANS) equations, as discussed in 2.2. This paragraph explained that the averaging
procedure leads to a closure problem which requires a turbulence model. The mean turbulent
stress can be modelled in terms of the gradient of the resolved velocities, analogous to the
representation of viscous stresses. The turbulent viscosity expresses the transport of momentum
in a turbulent flow. In FINEL3D several models for this turbulent viscosity are available:

� constant eddy viscosity (in m2/s);

� Prandtl mixing-length model;

� k − ε model;

� Large Eddy Simulation (Smagorinsky-subgrid model).

The constant eddy viscosity model is a simple model prescribing the eddy viscosity as the
product of a velocity and a length scale, as was used in chapter 2 and 3 (νt = 1

6κdu?). The
Prandtl mixing-length model uses the mixing length hypothesis in which the velocity that char-
acterizes the turbulent fluctuations is proportional to the velocity difference in the mean flow
over a distance lm over which the mixing or transport of momentum takes place, and is given
by: lm · ∂ū/∂z. By using lm again as the governing length scale, the eddy viscosity can be
written as the product of this length scale squared and the local velocity gradient and is de-
scribed by a so-called Bakhmetev -profile. The k − ε model relates the turbulence viscosity to



the turbulence kinetic energy k and the turbulence dissipation rate ε. The evolution of k and
ε in time is described by transport equations (Nieuwstadt, 1992). If large, coherent turbulent
structures are to be resolved, the Large Eddy Simulation (LES) approach should be used. In
LES models larger turbulent scales are directly resolved on the computational grid, whereas
smaller (sub-grid) scales are accounted for by a closure formulation.

The latter two turbulence models are beyond the scope of this thesis. The constant eddy
viscosity model will be the starting point for this chapter as a continuation of the preceding
chapters. This chapter is divided in two sections on steady and unsteady flow, respectively.
Both sections first treat simulations with the constant eddy viscosity model in combination
with linearised bottom friction. Next, when modelling with quadratic bottom friction, both
constant eddy viscosity model and the mixing-length model are studied.

4.1.4 Boundary conditions

FINEL2D/3D have a variety of boundary conditions to close and solve flow problems. The
simulations of this chapter are done with (a combination of) the following options:

� closed boundaries at the bottom, bank or wall (with or without wall friction);

� free surface boundary;

� constant water levels on open boundaries;

� harmonically varying water levels.

The bottom boundary condition will now be discussed in more detail.

Bottom boundary condition

In Chapter 3 section 3.4.2 it was found that the friction coefficient in a depth-averaged model
(cf1) was different from the one in the model with vertical information (cf2), while a constant
vertical eddy viscosity was used. Numerical modelling in practice commonly uses a viscosity
that is vertically varying in accordance with the turbulence mixing-length model (Bakhmetev-
model). Substitution of this definition of the eddy viscosity into equation 3.30 and integration
over the water depth delivers the well-known logarithmic velocity profile:

u(z) =
u?
κ

ln

(
z + d

z0

)
(4.4)

where u? is the shear stress velocity, κ is the Von Karman constant (not to be confused with the
bottom friction coefficients κ1 and κ2). The parameter z0 can be linked to the actual roughness;
for rough walls Nikuradse (1933) found:

z0 =
kN
30

(4.5)

where kN is known as the Nikuradse roughness height, which has been determined experimen-
tally.

Analogous to section 3.2 for a depth-averaged model the bed shear stress can be related to
the depth-averaged velocity via τb = cf1|U |U = u2

?. In combination with the logarithmic profile
of equation 4.4 an expression for the friction coefficient cf1 is found:

1
√
cf1

=
1

κ
ln

(
e−1 d

z0

)
(4.6)



Analogous to section 3.3 for a model with a vertical dimension the bed shear stress can
be related to the bottom current ub with a friction coefficient (cf2) via τb = cf2|ub|ub. The
velocity component ub is located in the first layer just above the bed. Yet, it is fairly arbitrary
which velocity is chosen to be ”the” bottom current. For a staggered grid, as is the case for
Delft3D, the Delft3D Flow Manual (Deltares, 2013) assumes the first grid point above the bed
to be situated in the logarithmic boundary layer. Let ∆zb be the distance to the computational
grid point closed to the bed, so ub is located half way of the computational bed layer. The
WAQUA/TRIWAQ Manual (Rijkswaterstaat, 2012) presents a similar method.

FINEL3D is based on a co-located grid, which means that all variables are located at the
same physical point. So, ub is located exactly at the bottom, which results in a problem.
Namely, according to the logarithmic profile ub at the bottom would be minus infinity, which
is practically impossible. Therefore, it seems impossible to determine the bed shear stress from
ub. The answer to this problem is found in the formulation of the bottom stress defined as:

τb = |u?|u? =⇒ ub =
u?√
cf2

(4.7)

This estimate for ub is used to determine the velocity gradient in the bed layer that, in combi-
nation with the Bakhmetev mixing-length hypothesis (see section 4.1.3) delivers a shear stress
that has to be equal to the bottom shear stress defined above. This will result in an expression
for the friction coefficient cf2:

1
√
cf2

=
1

κ
ln

(
e−2 ∆zb

z0

)
(4.8)

Often detailed 3D calculations are preceded by orienting depth-averaged calculations. Then,
the depth-averaged coefficient cf1 may be used for calibration of the 3D model and therefore
a relation between cf1 and cf2 is needed. The relation between cf1 and cf2 for a Bakhmetev
profile for the vertical eddy viscosity is found by equating 4.6 and 4.8:

1
√
cf1

=
1
√
cf2
− 1

κ
ln

(
e−1∆zb

d

)
(4.9)

Converting rule for constant vertical eddy viscosity

The relation between cf1 and cf2 for a constant vertical eddy viscosity is expressed in equation
3.41 and for a Bakhmetev viscosity profile equation 4.9 can be used. Equating these two ex-
pressions results in a calibration rule to accommodate similar numerical simulations with either
a constant vertical eddy viscosity or a Bakhmetev-profile. Solving:

√
Fd3

3νt
= −1

κ
ln

(
e−1∆zb

d

)
(4.10)

gives:

νt =
κu?d

3 + 3 ln (nz)
(4.11)

where nz is the number of layers in the vertical. Applying this rule will result in approximately
the depth-averaged velocity for a flow problem regardless of what turbulence model is used:
constant eddy viscosity or Bakhmetev.

4.2 Model set-up

Similarly to what is done to get to the analytical solutions of Chapter 3, the numerical examples
of this chapter solve equation 3.2 by forcing a water level gradient (which is notated as F , the
right hand side of this equation). The computations are performed for steady flow and unsteady,



periodic flow. In the steady case the water level gradient is constant in time (section 4.3). In
the unsteady case periodically varying flow is studied (section 4.4). In both cases, first, the
numerical simulations are done with linearised bottom friction corresponding to the analytical
approach. The numerical response of the (depth-averaged) horizontal velocities, should ideally
correspond to the analytical velocity profiles averaged over depth. The observed difference
can only be caused by the numerical approximations, i.e. time integration and (horizontal)
discretization. When it is checked that the numerical and analytical results match nicely, it is
desirable to bring back FINEL to its original settings: with the quadratic formulation of the
bottom friction term. Subsequently, more complex cases can be studied, which is a important
advantage of the computer model over the analytical approach. It enables the linearisation to
be dropped, which brings FINEL back to its original code used in civil engineering practice, to
see if the analytical approach still holds in that case.

Both FINEL2D and FINEL3D use the same grid, which is extended in vertical direction
with an arbitrary number of vertical grid points for FINEL3D. The computational mesh for
both models is commonly generated using Google Earth, various MATLAB routines and the
grid generator TRIANGLE.

For both flow cases (section 4.3 and 4.4) the model is set up as a rectangular basin with
two open boundaries at the short sides and a water depth of 60 m. The width of the basins
(200 m) is small compared to the length, since there is no interest in lateral variations in these
conceptual simulations. For the steady flow case (section 4.3) the basin is elongated to a length
of 100 km. This length Lbasin is relatively long because it is needed for the water level gradient
to fully develop. The purpose of the unsteady flow case (section 4.4) essentially is to study the
instantaneous response in the same way as was done in Chapter 3. Therefore Lbasin = 1000 m,
which is short to avoid phase lags within the model domain. Figure 4.1 shows the mesh for a
maximum surface area of the elements of 5000 m2 used for section 4.3 to simulate steady flow;
figure 4.2 shows the mesh for a maximum mesh size of 5000 m2 used for 4.4 simulating unsteady
flow. Unstructured grids are used in agreement with the case study of the next chapter because
it simulates normal circumstances that model user deal with in practice. Also, this way grid
dependencies are more easily observed, if present.

Figure 4.1: Mesh for a long channel used for section 4.3 Steady flow.



Figure 4.2: Mesh for a short rectangular basin used for section 4.4 Unsteady flow.

First, some testing was done in order to find a suitable time step, vertical discretization and
horizontal eddy viscosity. Next, it was checked that the solution for the 2DH and the 3D model
gave exactly the same output in a frictionless case.

4.3 Steady flow

The boundary conditions for the steady case specify a water level of 1 m on the inflow boundary
(left), a water level of 0 m on the outflow boundary (right), and a zero normal velocity on the
side-walls and the surface (upper boundary), see figure 4.3. In this way, the water level is fixed
at a gradient of iw = 10−5. Physically, it would have been better to give the bottom the same
slope, but for these simulations the bottom is flat.

Figure 4.3: Steady flow in a long channel.

When 3D results are averaged over depth, they can be straightforwardly compared to cor-
responding results from the 2D model. The question rises how to calibrate the models so that
they describe exactly the same steady flow problem. The formulations of the bottom friction
should be consistent with each other. As this study treats linear and quadratic formulations of
the bottom friction, is it easy to get lost in this matter. For this chapter, it is found reasonable
to choose the same value for the Nikuradse roughness kN in both models, since this parameter
has a dimension of length regardless of the model domain. The value of z0 = kN/30 will then
be constant as well.

In fact, cf1 was chosen to be 0.002 and with this value it was calculated that kN should be
0.086 m en therefore cf2 should be 0.0042. With these values the first simulation was performed
for the case with quadratic bottom friction. Subsequently, the linearised friction coefficients,
κ1 and κ2, can be determined with values for the velocity |U | and |ub| from the simulation (see



table 4.1 for their values):

κ1 = cf1
|U |
d

(4.12a)

κ2 = cf2
|ub|
d

(4.12b)

This is the input for the model with linearised bottom friction. So, the simulation with quadratic
bottom friction was actually performed in advance of the linearised case. This enables a com-
parison between all simulations (2D and 3D, linear and quadratic).

In combination with quadratic bottom friction two turbulence models are studied: the con-
stant eddy viscosity and the Prandtl mixing-length model. In the end, both computations will
result in the same depth-averaged velocity as long as a specific value is chosen for the vertical
eddy viscosity, corresponding with the specific bottom friction coefficients that were chosen.
This is guaranteed by using the calibration rule from equation 4.11 resulting in νt = 0.22 m2/s.

Table 4.1: Input parameters for the steady flow case.

Parameter Calculated value

cf1 0.002
cf1 0.004
κ1 5.7 · 10−5

κ2 8.3 · 10−5

νt 0.22 m2/s

4.3.1 Linearised bottom friction

Firstly, simulations are done for the long channel of figure 4.1 with linearised bottom friction.
The values of the input parameters used for these simulations are summarised in table 4.2.
The theoretical velocity profiles for steady flow with linearised bottom friction were derived in
chapter 3, given by equations 3.33 and 3.34. These profiles are used to compare the numerical
results with. Unlike the analytical solutions, do the numerical simulations have slight longitu-
dinal variation. The velocity profile at the end of the channel (y = 100 km, see figure 4.1) is
assumed to be fully developed, so this point is studied in more detail.

Table 4.2: Input parameters for the steady case with linearised bottom friction.

Fundamental parameters Derived parameters

g = 9.81 m/s2 z0 = kN/30 m
iw = 10−5 ∆zb = d/nz = 10 m
d = 60 m κ1 = 5.7 · 10−5

kN = 0.086 m κ2 = 8.3 · 10−5

nz = 6 νt = 0.22 m2/s



As expected, both the 2D and 3D numerical results are in agreement with the analytical
solutions. When plotting the FINEL3D velocity profile u(z) over the water depth, it shows
perfect correspondence with the theoretical parabolic profile (see figure 4.4, in red the FINEL3D
result and in black the analytical solution). Also, averaging the numerical 3D profile over depth
resulting in ū, has practically the same value as U from FINEL2D (blue dashed line).

Figure 4.4: Parabolic velocity profiles for steady flow with linearised bottom friction and constant
vertical eddy viscosity.

4.3.2 Quadratic bottom friction

Next, an example that investigates the influence of the linearisation on the numerical solution,
in comparison with analytical profiles, for the same long channel of figure 4.1. For this ex-
ample, the original FINEL models are used calculating the bottom friction with a quadratic
formulation. First, the simulations are done with a constant eddy viscosity and subsequently
another turbulence model is tested, the Bakhmetev mixing length model. The values of the
input parameters used for these simulations are summarised in table 4.3.

Table 4.3: Input parameters for the steady case with quadratic bottom friction.

Fundamental parameters Derived parameters

g = 9.81 m/s2 z0 = kN/30 m
iw = 10−5 ∆zb = d/nz = 10 m
d = 60 m cf1 = 0.002
kN = 0.086 m cf2 = 0.0042
nz = 6 νt = 0.22 m2/s
κ = 0.4 u? = 0.077 m/s



Analogous to the linearised case, the numerical results are compared to the theoretical
velocity profile. The theoretical velocity profile for steady flow with quadratic bottom friction
is described by equations 3.39 and 3.40.

Again, the numerical results completely agree with the analytical solution as is shown in
figure 4.5 for the case with constant eddy viscosity, and in figure 4.6 for the case with the
Bakhmetev mixing length model. The velocity profiles are reproduced correctly; in the case
of constant eddy viscosity a parabolic velocity profile and in case of the Bakhmetev model the
logarithmic profile. Both 2D and 3D simulations match the theory perfectly.

Figure 4.5: Parabolic velocity profiles for steady flow with quadratic bottom friction and constant
vertical eddy viscosity.



Figure 4.6: Logarithmic velocity profiles for steady flow with quadratic bottom friction and
viscosity defined by the Bakhmetev model.

4.3.3 Discussion

Both for a linearised and a quadratic formulation of the bottom friction it is shown that the
numerical results for this steady flow case show great similarity with the analytical solutions,
as expected. As the surface elevation is much smaller than the water depth advection can be
neglected so that the numerical response is reproduced in perfect agreement with the theory,
providing a good starting point for unsteady flow.

4.4 Unsteady flow

Real environmental flows are often unsteady, as for example the reversing flow in a tidal estuary
or the wind-driven flow in a lake caused by a passing storm. By imposing two water levels at the
open boundaries (y = 0 and y = 1000 m in figure 4.2) that are equal in amplitude but slightly
differ in phase, a periodically varying water level gradient is obtained (see figure 4.7). Then, this
water level gradient is the driving force in the basin in agreement with the analytical approach
of the previous chapter. This basin is chosen relatively short so that damping is insignificant.
The phase difference α is calculated in table 4.4.

Table 4.4: Unsteady flow parameters.

Fundamental parameters Derived parameters

g = 9.81 m/s2 c =
√
gd ≈ 24 m/s

d = 60 m Lwave = cT ≈ 106 m
T = 44700 s ∆Lwave = Lbasin/Lwave
Lbasin = 103 m α = ∆Lwave · 2π ≈ 0.0058 rad



Figure 4.7: Unsteady flow in a short basin.

Other than the analytical approach, do these simulations have some longitudinal variation.
The velocity profile in the middle of the channel (y = 500 m in figure 4.2) is very similar to the
mean velocity profile (in longitudinal direction), so this location is studied in more detail. The
time series of the flow velocity are plotted for both the analytical and the numerical results,
as computed by the linear and the quadratic version of FINEL2D and FINEL3D in figure 4.8.
This figure shows for two days (in which almost 4 tidal cycles fit) that both the 2D and 3D
numerical signals perfectly match with the theory. Moreover, it can be seen that the quadratic
bottom friction apparently has a limited effect on the flow velocity for this case.

Figure 4.8: Time series for unsteady flow (averaged over depth) calculated with a constant
vertical eddy viscosity and both linearised and quadratic bottom friction.

Likewise, plotting the FINEL3D velocity profile u(z) over the water depth shows good
correspondence with the analytical parabolic profile (see figure 4.9). Averaging the numerical
three-dimensional velocity profile over depth gives ū, which will be compared to U computed
by FINEL2D for the linearised and the quadratic case. In general, the velocity as computed by
the two-dimensional model is slightly higher than the depth-averaged velocity as computed by
the three-dimensional model. For the analytical profiles the observed amplitude ratio is:

U2D

U3D
=

0.714

0.699
≈ 1.02 (4.13)

Apparently, for the conditions that were chosen here the three-dimensional effects are not ex-
pected to be very important. The conditions were chosen because they correspond to realistic
shelf sea conditions.



Figure 4.9: Velocity profiles for unsteady flow calculated with a constant vertical eddy viscosity
and both linearised and quadratic bottom friction.

4.4.1 Linearised bottom friction

The velocity amplitude ratio for the numerical profiles with linearised bottom friction is:

U2D

U3D
=

0.701

0.691
≈ 1.01 (4.14)

4.4.2 Quadratic bottom friction

The velocity amplitude ratio for the numerical profiles with quadratic bottom friction is:

U2D

U3D
=

0.715

0.697
≈ 1.03 (4.15)

4.4.3 Discussion

The numerical results for unsteady flow show good correspondence with the theory. Analogous
to the findings of the previous chapter, where the importance of the eddy viscosity νt, the
frequency ω and the water depth d was discussed, the ωd2/νt-parameter and the σ-parameters
can be calculated. In this case, U ≈ 0.70 m/s and ub ≈ 0.59 m/s, so that

ωd2

νt
= 2.30

σ1 =
8

3π
cf1

Û

ωd
≈ 0.14

σ2 =
8

3π
cf2

ûb
ωd
≈ 0.25



While there is a significant difference between the two σ-values, the absolute values are reason-
ably low. Low σ-values confirm that bottom friction is rather unimportant compared to inertia,
which explains the linear behaviour in figure 4.8.

Also, the analytical approach revealed that the velocity as computed by the 2D model is
in more likely to be larger than the 3D velocity than vice versa. This behaviour is certainly
recognised in the above numerical examples as all the calculated ratio are > 1.

4.5 Conclusions

The numerical examples in this chapter show perfect correspondence to the analytical solutions
of the previous chapter. No significant differences between the 2D and 3D results were observed
because the conditions were chosen such that the bottom friction is of less importance compared
to inertia. In the previous chapter it was already concluded that it is reasonably hard to find
extreme conditions that are realistic in practice. However, the next chapter will show that they
certainly exist.



Chapter 5

Numerical modelling: in practice

To provide an example of the practical application of the previously found theoretical profiles
and numerical behaviour, this chapter studies an actual case. In the previous chapter it was
found that the numerical results as computed by a two-dimensional and a three-dimensional
flow model show excellent similarities for simple geometries; both with each other as with
analytical solutions. This was expected to be the case, since all input was equal and converted
similarly, so that the only differences could be caused by the numerical discretization in space
and time. For the schematized rectangular basins these differences were nihil. This chapter
will further examine the numerical behaviour for more complex and more realistic simulations.
As the development of this study is motivated by practical problems in the North Sea, its
implementation is tested using the European Continental Shelf Model.

Section 5.1 gives an overview of the model domain of this European Continental Shelf Model
and the computational grid applied. Section 5.2 will elaborate on the properties of the numer-
ical model for the specific case studied in this chapter, the applied boundary conditions and
other parameters that were put in. In 5.3 the analytical approach of Chapter 3 is applied onto
the ECSM as an example application in practice. Finally, section 5.4 discusses the numerical
model results.

5.1 European Continental Shelf Model (ECSM)

Shelf seas can conveniently be considered to extend from just below the low tide level at the
coastline (the baseline) out to the shelf break, as stated in Chapter 1. Most are bounded on one
side by land and on the other by open ocean, but some, such as the North Sea, are semi-enclosed.
The North Sea is located on the North-Western part of the European Continental Shelf. For
this chapter FINEL2D and FINEL3D are applied onto the so-called European Continental Shelf
Model (ECSM), of which the outlines are shown in figure 5.1. This model is an existing model
used and developed by Svašek Hydraulics.
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Figure 5.1: Outlines and history points for ECSM model.

The model domain of the ECSM model is fairly large. The model boundaries follow a large
part of the North-West European coasts, and the boundaries facing the ocean are all located
at the shelf break to the Atlantic Ocean. The computational mesh is shown in figure 5.2 where
the color illustrates the bathymetry. The southern part of the North Sea, off the coasts of The
Netherlands, Denmark and the southern part of the UK, typical water depth are ≈ 30− 50 m.
Shifting further offshore, towards Scotland and Norway, the water depth increases to values of
≈ 100 m. At the model boundaries, the shelf break, the water depth reaches typically a value of
≈ 200 m. An exceptional region in this matter is located off the coast of Norway where water
depths are > 600 m, the so-called Norwegian Trench. Figure 5.2 shows the computational grid
applied on the ECSM model; in color the bathymetry. This figure zooms in on the Orkney
Islands, an archipelago in Northern Scotland, to show the mesh in more detail.



Figure 5.2: Computational mesh for the Europian Continental Shelf Model.

5.2 Model set-up

Coriolis

Due to the rotation of the earth, the flow is deflected to the right on the Northern Hemisphere.
The influence of earth’s rotation on the flow direction, is in the momentum equations captured
by the Coriolis terms, were neglected in the preceding chapters. Since the Coriolis terms depend
on latitude, they are taken into account in this large-scale model. The Coriolis parameter is
given by:

f = 2Ω sin(φ) (5.1)



Here, φ represents latitude and Ω represents the rotation rate of the earth, which equals 7.27·105

rad/s. By implementing a latitude file, FINEL calculates the Coriolis parameter for the entire
model domain.

Boundary conditions

Boundary conditions in the form of water levels can be provided by the TPXO model1, which
provides the 13 principal harmonic constituents of the tide. The TPXO model is a global model
of ocean tides, which best-fits, in a least-squares sense, the Laplace Tidal Equations and along
track averaged data. The tides are provided as complex amplitudes of sea-surface elevation for
eight primary (M2, S2, N2, K2, K1, O1, P1, Q1), two long period (Mf , Mm) and 3 non-linear
(M4, MS4, MN4) harmonic constituents, at every quarter degree over the entire ocean. In figure
5.1 it can be seen that the outlines of the model domain follow the shelf break, where this
TPXO model is known to be reliable. In figure 5.3 examples are given of time series from this
TPXO data that were implemented along the ocean boundary of the ECSM. This figure shows
the time series for several points along the ocean boundary, that are indicated in figure 5.4.

Figure 5.3: TPXO tidal signals along the ECSM ocean boundary.

1http://volkov.oce.orst.edu/tides/global.html



Figure 5.4: Locations along the ECSM ocean boundary of which TPXO tidal signals are shown
in figure 5.3.

Wind

Since the wind stress is not taken into account in this study, wind data has been studied in
order to find a suitable simulation period where wind speeds were low. This data is collected
from the European Centre for Medium-Range Weather Forecasts (ECMWF2), but also from
measurements.

Bottom friction

For the formulation of the bottom friction term the original quadratic settings are used, spec-
ifying a Nikuradse roughness kN = 0.01 m, which is a rather low value. The summary of the
input used for the ECSM is shown in table 5.1.

Calibration

Despite the fact that the implicit FINEL models are not able to perform parallel calculations ,
i.e. several processors can be drawn on at the same time, yet, the calculation time for the ECSM
model is still limited. The accuracy of the solution depends on the chosen values of ∆x and ∆t
and in fact the stability of the scheme depends on these satisfying the Courant condition:

∆t c

∆x
< 1 (5.2)

2http://data-portal.ecmwf.int/



Table 5.1: Input for the ECSM.

Parameter Input

Water depth Bathymetry (see figure 5.2)
Number of layers Layer every 10 m
Coriolis Latitude
Turbulence model Bakhmetev model
Boundary conditions TPXO harmonic constituents
Wind None
Bottom friction kN = 0.01 m

When calculating with an implicit model, the time stepping is less bounded than with explicit.
Generally though, the Courant number is a measure for a time step which would not result in
an unstable simulation.

5.3 Analytical approach applied onto ECSM

In the preceding chapters the eddy viscosity νt, the frequency ω and the water depth d were
combined in the dimensionless parameter:

ωd2

νt

Concentrating on the dominant M2 constituent this parameter can be calculated for all elements
within the ECSM model, see figure 5.5. Here, for νt a representative constant value of 0.05 m2/s
was chosen. This figure gives insight into typical values of this parameter in practice. For tidal
propagation in depths greater than 150 m this parameter exceeds a value of 60, while the central
North Sea and English Channel contain values below the 20. Due to reasonable water depths
(≈ 100 m) the Irish Sea has pretty high values for ωd2/νt-parameter.

Also, the dimensionless σ-parameters were defined in the preceding chapters, containing not
only the water depth d and the frequency, also a reference velocity Û and the friction coefficient
cf . Recalling the formula for σ1 (derived in Chapter 3):

σ1 =
8

3π
cf1

Û

ωd

An orienting ECSM simulation was used to estimate this reference velocity Û , resulting in figure
5.6. This figure shows very low values for σ1, except for the Southern North Sea, the English
Channel, several location in the Irish Sea and around the Orkney Islands. Combining these two
plots the distribution of the amplitude ratio can be shown for the ECSM, see figure 5.7.



Figure 5.5: ωd2/νt for M2 with νt = 0.05 m2/s.

Figure 5.6: σ1 for M2 with cf1 = 0.002.



Figure 5.7: Amplitude ratio for M2 with νt = 0.05 m2/s and cf = 0.002.

As figure 5.7 shows, the interesting locations for this study are expected to be the English
Channel, the Irish Sea and the Orkney Islands (by applying the analytical approach onto the
model). To illustrate in more detail what is happening at those locations, the following figures
5.8 - 5.10 show exactly the same parameters as in figures 5.5 - 5.7, zoomed in on Orkney Islands
where the water depth is ≈ 60 m.

Figure 5.8: ωd2/νt for M2 with νt = 0.05 m2/s, zoomed in on Orkney Islands.



Figure 5.9: σ1 for M2 with cf1 = 0.002, zoomed in on Orkney Islands.

Figure 5.10: Amplitude ratio for M2 with νt = 0.05 m2/s and cf = 0.002, zoomed in on Orkney
Islands.

Even though the water is not even that deep at the Orkney Islands, differences of more
than 20% are expected here. The ωd2/νt-parameter is also not very high (≈ 10), but high flow
velocities at this location result in a high value for the σ1-parameter. The high flow velocities
are caused by the geometrical contraction.



5.4 Model results

5.4.1 Surface elevation

As a result of the preceding section the model results are studied for specific locations, shown in
figure 5.11. These locations include the English Channel, the Irish Sea and the Orkney Islands,
as well as 3 locations in the central North Sea.

Figure 5.11: Locations in the ECSM.

The figures 5.12 and 5.13 show the surface elevation amplitudes, as computed by FINEL2D
and FINEL3D respectively. These amplitudes are the maximum surface elevations for every
element in 1 day, after a simulation period of 4 days (so after the spin-up time). These plots
look very similar in both orders of magnitude as well as the spreading. A more extensive
comparison is made by means of timeseries of the FINEL2D and FINEL3D results, see figures
5.14 and 5.15.



Figure 5.12: Amplitudes of surface elevation calculated by FINEL2D.

Figure 5.13: Amplitudes of surface elevation calculated by FINEL3D.



Globally, the results from FINEL2D and FINEL3D show good correspondence with each
other for the surface elevations. Locally, the differences between the results from both models
are in the order of a few percentages with observed maxima between 5 − 10% of the surface
elevation amplitude, see table 5.2. In this table the results of the time series of figures 5.14 and
5.15 are summarised by means of the ratio between the amplitudes calculated by FINEL2D and
FINEL3D. These amplitudes are determined by taking half the distance between the mean high
water and the mean low water, indicated by the dashed lines in the time series plots. There is
no actual trend recognised, except for the observation that the 2D signal has larger amplitudes
than the 3D signal in most cases.

Table 5.2: Surface elevation ECSM. The ratio is the amplitude ratio of the maximum surface
elevation in time calculated by FINEL2D and FINEL3D respectively (dashed horizontal lines in
figures 5.14 and 5.15.)

Location Latitude Longitude Depth Ratio

Orkney Islands 1 58°46’N 3°47’W 88 m 1.00
English Channel 1 49°55’N 1°44’W 71 m 0.95
Strait of Dover 51°02’N 1°26’E 55 m 1.01
Lowestoft 52°27’N 1°51’E 31 m 1.04
ADCP 1 54°55’N 1°04’E 53 m 1.01
ADCP 2 55°30’N 0°55’E 81 m 1.02
ADCP 3 59°19’N 1°25’E 110 m 1.03
Irish Sea 2 53°21’N 5°02’W 114 m 1.07



Figure 5.14: Timeseries of surface elevation as computed by FINEL2D (blue) and FINEL3D (red).
The solid horizontal lines indicate the mean surface elevation (2D and 3D); the dashed lines indicate
the mean of the surface elevation amplitudes (2D and 3D).



Figure 5.15: Timeseries of surface elevation as computed by FINEL2D (blue) and FINEL3D (red).
The solid horizontal lines indicate the mean surface elevation (2D and 3D); the dashed lines indicate
the mean of the surface elevation amplitudes (2D and 3D).



5.4.2 Flow velocities

Figures 5.16 and 5.17 show the maximum amplitudes of the depth-averaged flow velocities, as
computed by FINEL2D and FINEL3D respectively. Although the general depth-averaged flow
patterns within the 2D and 3D results are very similar, considerable local differences between
the 2D and 3D depth-averaged horizontal velocities are found (figure 5.16 is slightly smoother
than figure 5.17). Post-processing these results, e.g. to obtain amplitude ratios, this behaviour
would be exaggerated. Based on the numerical experiments that have been performed, it can
be concluded that the observed behaviour is not caused by numerical instabilities; much rather
it is intrinsically linked to the spatial discretization of FINEL, in combination with the very
large aspect ratio (width/depth ratio) of the 3D tetrahedron elements within this 3D ECSM
model. An obvious solution to the problem is to decrease the aspect ratio of 3D elements,
which can be achieved by increasing the horizontal resolution. This however would imply
an unacceptable increase of computational effort. Another suggestion would be to implement
hydrostatic pressure, which is subject for further research.

Since the observed spurious behaviour is not caused by any bug, the general depth-averaged
flow patterns within the 2D and 3D results are assumed to be reliable. Ignoring the behaviour,
overall differences between 2D and 3D results are the result of the actual physical difference
between 2D and 3D models (for, after all, a 2D depth-averaged flow model is a simplification of
a 3D flow model in which not all 3D physical effects are present). Locations where differences
in 2D and 3D computational results are most likely to occur were indicated by figure 5.7 of
section 5.3. According to this figure interesting locations are: the English Channel, the Irish
Sea and Orkney Islands, since larger differences between 2D and 3D computational results are
to be expected in those regions. For these locations the timeseries are studied, see figures 5.19
and 5.18. The specific locations are indicated in figure 5.11.



Figure 5.16: Depth-averaged 2DH flow velocity amplitudes: Û2D calculated by FINEL2D.

Figure 5.17: Depth-averaged 3D flow velocity amplitudes: Û3D calculated by FINEL3D.



The time series of ADCP 1, 2 and 3, representing the central North Sea, show good cor-
respondence between the 2D and 3D results. As was expected from the analytical approach
the differences in these regions are within a few percentages. For the locations in the Irish Sea
larger differences were expected, which is certainly the case for Irish Sea 1, where the difference
reaches over a 50% and 2D and 3D results show very different signals. For Irish Sea 2 the 2D and
3D results correspond surprisingly well (the 3D results are even slightly higher the 2D results).
Within the results of Irish Sea 3 interesting behaviour is observed: the 2D signal is alternating
much stronger, which results in the 2D alternately peaking over and diving under the 3D signal.
Averaged in time it results in a substantial ratio of 1.09 but in reality the difference is even more
complex than just this number. The results at the locations in the English Channel also show
this behaviour, especially English Channel 1. The time-averaged differences are within a few
percentages, but actually the signals deviate strongly. In the Strait of Dover and off the coast of
Lowestoft 6− 7% deviation is observed. Around the Orkney Islands large differences are found,
as was expected, with an extremely high ratio of 1.53 at the location of Orkney Islands 1, so just
before the current is constricted by the islands. Apparently, strong differences between 2D and
3D are found in regions where the current is about to meet with complex horizontal geometry
and therefore higher flow velocities, which is in line with the expectations and conclusions from
the previous chapters.

Table 5.3: Results ECSM. The ratio is the velocity amplitude ratio of the time-averaged maxi-
mum flow velocities calculated by FINEL2D and FINEL3D respectively (dashed horizontal lines
in figures 5.19.)

Location Latitude Longitude Depth Ratio Ratio
(analytical) (numerical)

ADCP 1 54°55’N 1°04’E 53 m 1.01 0.98
ADCP 2 55°30’N 0°55’E 81 m 1.01 1.05
ADCP 3 59°19’N 1°25’E 110 m 1.01 1.05
Irish Sea 1 56°01’N 5°39’W 102 m 1.28 1.52
Irish Sea 2 53°21’N 5°02’W 114 m 1.25 0.99
Irish Sea 3 52°01’N 5°39’W 102 m 1.28 1.09
English Channel 1 49°55’N 1°44’W 71 m 1.29 1.01
English Channel 2 50°05’N 0°20’W 50 m 1.07 0.96
Strait of Dover 51°02’N 1°26’E 55 m 1.10 1.06
Lowestoft 52°27’N 1°51’E 31 m 1.05 1.07
Orkney Islands 1 58°46’N 3°47’W 88 m 1.30 1.53
Orkney Islands 2 58°33’N 2°34’W 73 m 1.39 1.13



Figure 5.18: Timeseries of depth-averaged flow velocities as computed by FINEL2D (blue) and FINEL3D
(red). The solid horizontal lines indicate the mean flow velocities (2D and 3D); the dashed lines indicate
the mean of the flow velocity amplitudes (2D and 3D).



Figure 5.19: Timeseries of depth-averaged flow velocities as computed by FINEL2D (blue) and FINEL3D
(red). The solid horizontal lines indicate the mean flow velocities (2D and 3D); the dashed lines indicate
the mean of the flow velocity amplitudes (2D and 3D).



5.5 Discussion

When 3D results are averaged over depth, they can be straightforwardly compared to corre-
sponding results from the 2D model. In general, we observe that 2D and 3D results for the
surface elevation are comparable (section 5.4.1), since 2D and 3D results show the approxi-
mately identical signals with a maximum difference of ≈ 5− 10%. However, this is not always
true for the horizontal velocity components (section 5.4.2), since the 2D simulation may show
entirely different signals than the 3D simulation in some cases resulting in differences up to
50%.

Good similarities with theoretical profiles were observed from 2D and 3D results within
the schematized rectangular basins of Chapter 4. Due to the very regular character of these
geometries and their boundary conditions, the velocity amplitude ratios all lay within a range of
a few percentages. For the shelf model of this chapter higher percentages were found. Globally,
2D and 3D ECSM results show great similarities as well. Locally though, differences in especially
flow velocities are present. Based on the numerical experiments that have been performed for
the ECSM, it can be concluded that the observed differences between 2D and 3D simulations
are caused by geometrical constraints in horizontal direction. This actually is in line with the
conclusions from the analytical approach, since geometrical constraints may cause relatively
high flow velocities. An increase in flow velocity results in an increase of σ, which means that
friction becomes more important.



Chapter 6

Conclusions and recommendations

The main objective of this research is to study in which particular instances a depth-averaged
model is sufficient to simulate flow processes in a continental shelf sea. In practice, two-
dimensional depth-averaged models have proven to be capable of simulating flow and transport
processes in for example rivers, lakes or tidal flats. For large-scale continental shelf models
though, 3D-behaviour of the flow may become important to take into account. In this chapter
conclusions with respect to this behaviour will be discussed and recommendations with respect
to further research will be given.

Conclusions

The research questions can be answered with the following conclusions:

� Which physical processes are relevant in well-mixed continental shelf seas?

Shallow well-mixed continental shelf seas like the North Sea are dominated by strong
currents produced by tides and storm surges, combined with slowly varying residual cur-
rents. This study concentrated on tidal flow neglecting the effects of wind and density
differences.

� Which simplifications are applied to a flow problem in order to allow the use of two-
dimensional depth-averaged rather than three-dimensional shallow-water equations?

The relevant physical phenomena are described by long waves in a shallow sea with char-
acteristic horizontal length scales much larger than the water depth, which reduces the
vertical momentum equation to the hydrostatic balance.

� Which parameters are important when a depth-averaged model is compared to a model that
contains vertical information.

Important parameters for processes in shelf seas are: the wave frequency ω, the water
depth d, the vertical eddy viscosity νt, the flow velocity U and the bottom friction coeffi-
cient cf .

� In which cases is a depth-averaged two-dimensional model still representative?

The answer to this question is found in the following general conclusions.

Based on the literature study, the analytical approach and the numerical experiments that have
been performed, the following general conclusions can be drawn:

� This study reveals that the modeller needs to be careful when it comes to two-dimensional
depth-averaged hydrodynamic modelling of large-scale domains like the European Conti-
nental Shelf Sea.
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� The analytical method developed in this study indicates that certain combinations of flow
velocities and water depths may cause extensive differences between the results from a
depth-averaged model and from a model that contains vertical information. Concentrating
on the propagation of the M2-constituent this method neglects wind, density differences
and Coriolis. With a constant vertical eddy viscosity and a certain bottom friction coef-
ficient, the combination of high flow velocities (Û > 1 m/s) and reasonable water depths
(d > 50 m) may cause substantial deviations. However, those two parameters interact, so
conclusions in general sense are hard to quantify.

� The analytical method gives rise to many opportunities and applications. A simple itera-
tion procedure is proposed to investigate what regions in the flow domain may be impor-
tant. After an orienting 2D calculation a reasonably simple post-processing step should
be carried out revealing interesting locations where 2D and 3D results are expected to
deviate strongly.

� The numerical simulations show that for tidal propagation in reasonable water depths
(d > 50 m) and rather low flow velocities (Û ≈ 0.2 m/s), bottom and internal friction
are of only secondary importance and hence two-dimensional (depth-averaged) models are
adequate to calculate flow velocities. This is the case in the central part of the North Sea,
which was also predicted by the analytical method.

� Regions where large differences were predicted and observed in the European Continental
Shelf Sea model are: the English channel, the Irish Sea and around the Orkneys Islands.

Recommendations

By deriving depth-averaged solutions for the propagation of a tidal constituent, a relationship
between the dynamics and bottom shear stress has been established. This relationship is qual-
ified by the omission of the advective, Coriolis and density gradient terms, the linearisation
of the friction term, and the absence of wind. However, the presence of significant density
gradients or wind stress may radically change the magnitude and vertical distribution of the
eddy viscosity and therefore, the current profile. Some recommendations with respect to the
analytical approach are given below:

� Coriolis could be implemented in the analytical study by solving the equations of motion
with the Coriolis terms taken into account.

� Density differences, caused by pressure, salinity and temperature gradients, can be in-
corporated in the analytical approach by dividing the system into multiple layers with
different densities.

� Wind is very important aspect when considering continental shelf seas like the North Sea.
It is therefore recommended to take this into account by either a theoretical study (adding
a velocity profile caused by the wind on top of the tidal velocity profile) or with numerical
tests.

For the conceptual numerical simulations in a schematized rectangular basin steady and un-
steady, periodic flow has been studied. The following case studies are recommended for future
research:

� Test the singular progressive wave, analogous to the analytical approach. It would be
interesting to study the dampening rate of this wave in the direction of propagation, as
computed by a 2D- and a 3D model and compare them to the analytical findings.



� It is recommended to study the amplification factor for a rectangular basin closed in one
end and compare them with the analytical findings.

The recommendations concerning the case study of a continental shelf sea model are:

� In order to accommodate the use of FINEL3D for large-scale models like the European
Continental Shelf Model it is recommended to implement hydrostatic pressure in the code.

� Apply the analytical method onto other continental shelf sea models to see whether the
theory will hold.
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Bottom friction coefficient

In Chapter 3 a comparison is made between the amplitudes and phases of depth-averaged
velocities, as computed by a one-dimensional and a two-dimensional model respectively. The
outcome of the amplitude and phase ratios appears to be very sensitive to the estimate of the
reference velocity Û as well as to the choice of the bottom friction coefficient cf . Therefore, the

amplitude and phase ratios are plotted again in this Appendix, but now as a function of Û for
two different values of cf .

Figures 1 and 2 show the velocity amplitude ratio and figures 3 and 4 show the velocity
phase ratio, both for a bottom friction coefficient of cf = 0.004 and cf = 0.002 respectively. For
certain combinations of tidal constituents (O1, M2 and M4) and water depths (25, 50, 75, 100 m)
rather diverse trends are recognised. Concentrating on the propagation of the M2-constituent
in figure 1, it can be seen that the amplitude ratio for the case with a water depth of 50 m is
1.06 (red dot), as was expected since this is exactly the case discussed in Chapter 3. For larger
water depths such a deviation would be the case for even lower velocities, and for lower water
depths this would be the case for higher velocities. For example, the amplitude ratio reaches
almost 45 % for a water depth of 75 m and Û = 1.15 m/s (green dot) while these conditions are
not unimaginable for shelf seas. Simirlarly, for a water depth of 100 m the maximum difference
of 34 % is reached at a velocity of Û = 0.73 m/s (black dot) which could easily occur in a shelf
sea as well. It can be concluded that differences can already be expected at flow velocities of 0.5
m/s, as long as the water depth is reasonably high enough too. Generally, differences are most
likely to occur in larger water depths (> 50 m) and higher flow velocities and high velocities
(> 0.8 m/s), keeping in mind that those two parameters interact.

Concentrating on the propagation of the M2-constituent in figure 2, it can be seen that the
same amplitude ratios as in the previous case are reached at velocities that are twice as high
(red and black dot) because the bottom friction coefficient cf is twice as low. Velocities that
are expected to cause at least a 20% deviation between the velocity amplitudes are given in the
table below.

Table 1: Velocities that are expected to cause at least a 20% deviation in amplitude for two
values of the bottom friction coefficient cf .

Water depth cf = 0.004 cf = 0.002

25 m − −
50 m Û > 0.9 m/s Û > 1.9 m/s

75 m 0.6 < Û < 2.1 m/s Û > 1.2 m/s

100 m 0.5 < Û < 1.2 m/s Û > 1.0 m/s
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Figure 1: Amplitude ratio between U and ū as a function of Û for cf = 0.004.

Figure 2: Amplitude ratio between U and ū as a function of Û for cf = 0.002.



Figure 3: Phase ratio between U and ū as a function of Û for cf = 0.004.

Figure 4: Phase ratio between U and ū as a function of Û for cf = 0.002.


