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Summary

In numerical modeling of water movement, wetting and drying is a well known problem. The
governing equations are not valid in the dry part of the computational domain which may
result in problems with mass conservation, negative water depths and artificially enlarged
gradients.

In this study a wetting and drying algorithm is implemented in a 2DH finite element flow
model based upon the wetting and drying algorithm proposed by Casulli [8]. It is investigated
whether this procedure is mass conservative, efficient and robust. To this end a simple finite
element discretization of the inviscid shallow water equations (SWE) is derived.

The assumption of inviscid flow enables the use of piecewise constant basis functions for
the velocity. The advantage of this is that the velocity at the new time level can be derived
directly from the momentum equation. In combination with the pressure correction method
an uncoupled system is established in which only one matrix vector system needs to be solved.

The proposed wetting and drying procedure introduces an extra non-linear term in the
system which needs to be solved iteratively.

Special attention is paid to the implementation of the advection term since its non-linearity
causes several problems and in addition momentum conservation over the wet/dry interface
is an important part of the wetting and drying procedure.

In order to solve the system additional measures should be taken to prevent the system
matrix of becoming singular. Several measures are investigated on convergence speed of the
wetting and drying iteration and mass conservation. The best working solution turned out
to be the use of a minimum cell averaged depth in the linear part of the system matrix, to
prevent singularities and enhance robustness, in combination with a lumped mass matrix in
the dry part of the domain, to guarantee mass conservation, and a velocity that is put to zero
for very small water depths.

The resulting procedure is validated with several one- and two-dimensional analytical
solutions for: 1) a one dimensional dam break, 2) flow over a long crested weir, 3) a one-
dimensional oscillating water surface in a parabolic basin, 4) the run-up of long waves on a
beach, 5) a two-dimensional standing wave in a parabolic basin and 6) the spreading of a
parabolic flood wave in two dimensions. In addition two laboratory experiments are used for
validation: one experiment with solitary wave runup on a conical island and one experiment
with a two dimensional dam break. The scheme is able to represent all the tests correctly
except for the two-dimensional dam break where the front celerity is slightly too low and the
lateral spreading is too large. However this is a severe test case and in the numerical model
some crude assumptions have been made that may have caused this. Since the spreading of a
parabolic flood wave, which exhibits comparable wetting and drying behavior, is represented
well by the model it is not likely that the problems with the two-dimensional dam break are
caused by the wetting and drying procedure.
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In general the methods performance is good. However in two-dimensions it can be ben-
eficial, in case of small gradients at the wet/dry interface, to use a lumped mass matrix at
partially dry elements too. The wetting and drying iteration converges on average in 2 to 3
iteration steps. In some cases bifurcations and mass errors can occur. However mass errors
are caused by rounding errors and can be resolved by using double precision. The occurrence
of bifurcations is much less frequent in case of calculations in double precision and can be
minimized by adjusting the BiCGSTAB settings.
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Chapter 1

Introduction

In civil engineering practice it is often desired to obtain insight in the governing hydrody-
namic conditions, in a certain area, for design, maintenance or construction purposes. Field
measurements can be used to gather this data but this is often costly and time consuming.
In addition to or even instead of measurements numerical models are widely used to define
the hydrodynamic conditions of interest.

Numerical models are basically a translation of a physical model that describes the gov-
erning processes into a problem that a computer is able to solve. The conversion of a physical
problem to a numerical problem comprises a number of steps:

� Describing the physical problem by a (set of) differential equation(s);

� Making assumptions regarding subjects still poorly understood or assumptions to reduce
the extent of the problem;

� Establishing the boundaries of the area of interest;

� Divide the area of interest into a finite number of sub-domains.

Several numerical methods are available for the translation of a set of differential equations
to a numerical model. The finite element method is a numerical method which makes it
possible to follow the outline of shorelines, complicated bathymetries and hydraulic structures
closely. Moreover a grid refinement in an area of interest can be applied locally. In this
way accurate estimation of the governing hydrodynamics close to the structure of interest is
enabled with relatively little extra computational efforts.

For a numerical model that describes the movement of water it is not hard to imagine that
problems will arise. In real life hydrodynamic modeling of coastlines, estuaries, lagoons and
other shallow areas, the shoreline is not continually at the same location in the model domain.
It can vary over several cells within one time step. The main problem is that the governing
equations are only valid in the wet part of the domain. Moreover problems are induced by
the finite dimensions of the grid cells. Near (large) bottom gradients in a cross-section for
example negative water depths can be induced. As a result mass conservation is not valid
anymore. On top of that water depths approaching zero can lead to numerical instabilities.

Over the years numerous methods have been developed to solve the problem of wetting
and drying. Each of them having their own advantages and disadvantages. Advantageous
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2 CHAPTER 1. INTRODUCTION

properties can be simplicity, calculation effort, physical background or strict mass conserva-
tion. Disadvantageous properties could be poor mass conservation, negative water depths,
artificially enlarged gradients and nonphysical wave reflection.

It is clear that wetting and drying is a nightmare (or a challenge) to many programmers,
engineers and mathematicians. The search for the perfect wetting and drying algorithm has
certainly not ended yet. Nevertheless it is hoped that this study can contribute somehow to
this search.

1.1 Objective

The objective of this study is to develop a wetting and drying algorithm for a 2DH finite
element flow model based upon the wetting and drying algorithm proposed by Casulli [8] and
to investigate whether this procedure is mass conservative, efficient and robust. To this end
three sub-objectives will be formulated:

� Develop a simple one-dimensional model that gives maximal insight into the occurring
physical and mathematical processes.

� Implement a wetting and drying procedure in this one-dimensional model and investi-
gate whether this procedure is mass-conservative, efficient and robust.

� Extend this model and wetting and drying procedure to two dimensions and investigate
whether this procedure is mass-conservative, efficient and robust.

1.2 Outline

In the remainder of this chapter a short explanation of the wetting and drying problem will
be given. Subsequently the governing equations will be given and several methods available in
literature will be discussed. In Chapter 2 the basic principles of the finite element method will
be presented. Accordingly, the SWE are discretized in space and time. In the end the wetting
and drying algorithm is discussed. After that special attention is paid to the discretization
of the advective terms in Chapter 3. Following this several ways of solving the system are
discussed extensively in Chapter 4. In Chapter 5.3 the mass conservation of the wetting and
drying procedure and of the scheme is discussed. Finally the resulting procedure will be
compared to several analytical solutions and some measurements and its performance with
respect to mass conservation, number of iterations and similarity to the analytical solution
will be investigated in Chapter 5.

1.3 Notation

The notation which is adopted in this report is explained below. A vector is denoted with a
bold lower-case letter.

u ∈ Rn, u =


u1

u2
...

un−1

un

 (1.1)
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A matrix is indicated with upper-case italics.

A ∈ Rm×n, A =


a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 a2,n
...

. . .
...

am−1,n am−1,n−1 am−1,n

am,1 am,2 . . . am,n−1 am,n

 (1.2)

1.4 The wetting and drying problem

The transition from wet to dry is a contact discontinuity. Contact discontinuities are surfaces
that separate zones of different density and temperature. A contact discontinuity is a tran-
sition layer across which there is no particle transport. The contact discontinuity separates
the wet state from the dry state (discontinuous density). A proper numerical representation
of a wetting and drying problem encompasses two things, positive water depths and mo-
mentum conservation in the vicinity of the contact discontinuity. In a numerical model for
water movement this should be translated in mass conservation and a momentum conserving
formulation of the nonlinear advective terms. The earlier mentioned wetting and drying pro-
cedure is applied to keep the water depths positive in a mass-conserving manner. To fulfill
the second aspect of wetting and drying special attention is paid to the formulation of the
advective terms.

1.4.1 Governing equations

The applications subject to this study are problems of which the horizontal length scales are
much larger than the vertical length scales. This assumption allows for a depth averaged
approach. The governing equations are the shallow water equations (SWE). The shallow
water equations are the depth averaged Navier Stokes equations, which can be derived from
conservation laws. Mass conservation and momentum conservation together give a set of
differential equations, which suffice to describe the motion of water. In combination with a
set of boundary conditions on the boundary of the domain of interest a problem is defined
with a unique solution.

A domain Ω in R1 or R2 is considered with a boundary Γ. The water depth is defined as
the distance between the free surface and the bottom level given by H = h − z as shown in
figure 1.1.

The depth averaged continuity equation is given by

∂h

∂t
+∇ · (Hu) = 0, in Ω (1.3)

and originates from mass conservation for incompressible flow
(
Dρ
Dt = 0

)
. It means that a

change in the water level of the water column is caused by a discharge gradient over the water
column. The depth averaged inviscid momentum equations are given by

H
∂u
∂t

+ gH∇h+ cf |u|u +Hu · ∇u = 0, in Ω. (1.4)

In equations (1.3) and (1.4) the velocity vector is denoted by u, which reduces to a scalar in
one dimension and the system of equations (1.4) reduces to a single equation.
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Figure 1.1: The bottom level and water surface level are measured positive above a certain
reference level.

Neglecting diffusion significantly simplifies computations (solving one system instead of
two as we will see later). Moreover the analytical solution of the test cases considered in
Chapter 5 do not include diffusion. In the laboratory experiments diffusion is not necessarily
negligible but that is a sacrifice we are willing to make for computational efficiency.

The boundary conditions needed to make the problem unique and well posed are given
by equation (1.5) and (1.6).

h = g1, on Γ1 (1.5)
u · n = g2, on Γ2 (1.6)

In two dimensions in addition to the above boundary conditions a tangential boundary con-
dition is required on inflow boundaries which is given by

u · s = g3, on Γ where (u · n) < 0 (1.7)

where n is the outside unit normal vector, s is the unit tangent vector and Γ1 ∪ Γ2 = Γ and
Γ1 ∩ Γ2 = ∅.

In sections 2.3.1 to 2.3.3 we will see how equations (1.3) and (1.4) will be discretized and
the boundary conditions (1.5) to (1.7) will be treated.

It should be noted that the form in which the momentum equation (1.4) is formulated, is
not strictly momentum conserving. The momentum conserving formulation of the momentum
equation is given in intermezzo 1.1. The choice for a non-conservative formulation does not
seem to be very straightforward since it was emphasized in paragraph 1.4 that momentum
conservation over the wet/dry interface is an important part of the wetting and drying prob-
lem. However the formulation in q exhibits its own problems with respect to wetting and
drying. The discharge is given as q = Hu. When the water depths H go to zero this impli-
cates that the velocities go to infinity near the wet/dry interface. Therefore the momentum
conserving solution can often generate instabilities around the wet/dry interface. For this
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reason the non-conserving formulation is chosen, in spite of of the fact that it will be more
difficult to obtain a momentum conserving scheme.

Intermezzo 1.1. The momentum conserving formulation is given by

∂q
∂t

+∇ ·
(

quT +
1
2
gH2I

)
+ gH∇z + cf |U |u = 0 (1.8)

where I denotes the unit matrix. It can be proven that this is strictly conservative by assuming
a domain Ω with a boundary Γ which is subdivided into several sub domains Ωi with internal
boundaries Γi. Integration over the domain and applying Gauss divergence theorem 2.1 results
in ∫

Ω
∇ ·
(

quT +
1
2
gH2I

)
dΩ =

∑
i

∫
Ωi

∇ ·
(

quT +
1
2
gH2I

)
dΩ

=
∑
i

∫
Γi

(
quT +

1
2
gH2I

)
· ndΓ. (1.9)

It is not hard to see that all internal boundary integrals cancel out and that only the boundary
integrals remain, resulting in∫

Ω
∇ ·
(

quT +
1
2
gH2I

)
dΩ =

∫
Γ

(
quT +

1
2
gH2I

)
· ndΓ. (1.10)

So the inflow in the domain must balance the outflow and no internal losses or production
can occur.

1.4.2 Wetting and drying methods

In literature numerous methods can be found which deal with wetting and drying in various
ways. In this section several methods are discussed to give an idea of various different methods
without the intention of being complete.

One of the first wetting and drying techniques was based on putting up screens between
cells. Today several well-known packages as Delft3D and ADCIRC still use screen-based
techniques. ADCIRC is a finite element model developed by the US Army Corps of Engineers
(USACE). Its wetting and drying technique turns on and of elements by putting removable
barriers in the model. Elements connected to a dry node have their barriers up. In this way
flow exchange between wet and dry elements is prevented. The time step is constraint since
the wetting and drying speed cannot exceed one node per time step. A detailed description
of the wetting and drying procedure of ADCIRC is given by Luettich and Westerink [18].

A more elegant way of implementing a wetting and drying procedure is to formulate the
governing equations in such a way that negative water depths can not occur. Stelling and
Zijlema [23] formulated a model in which the flow out of a control volume is based upon the
water available in this control volume. Hence the outflow can never be more than the water
available in this control volume thus preventing negative water depths in the control volume.

Van ’t Hof and Vollebregt [11] use an artificial porosity function to allow a more gradual
transition between dry and wet points. An artificial quantity is introduced, the pseudo-water
level, which is, contrary to the true water level, free to drop below the bottom. Mass is
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conserved, however an amount of water resides in the porous ground and as a result the
ground is no longer impermeable and leakage can occur.

Casulli [8] developed a method in which the water depth is strictly positive while the
surface elevation is allowed to attain negative values. In this way mass conservation is guar-
anteed and the propagation velocity of the wet/dry interface is not influenced by the positivity
demand on the water depths. However, the resulting system of equations becomes nonlinear
and has to be solved by an iteration procedure. Nevertheless Casulli’s method is not com-
pletely new, it is a variation to a thin slot method or Preismann slot method. Thin slot
methods assume a very thin water storing slot at the bottom of a cell that prevents the cell
from becoming dry. This method is used amongst others by van der Molen [20].

Other types of techniques are thin layer techniques. A thin layer of water is maintained
in dry elements but the velocities are set to zero. In this way mass is conserved, however
momentum is not. This method is applied by Bunya et al. [6] and a comparable approach
is applied by Luettich and Westerink [17]. Many other methods exist, some of them have a
more theoretical foundation and some less.

In this study Casulli’s method is chosen for further research. This is for its elegant
formulation, ability to wet and dry without constraints on the time step and guaranteed mass
conservation. In the next chapter the principle of Casulli’s method will be explained in detail
but first the finite element method will be introduced and the discretization of the SWE will
be given accordingly.



Chapter 2

The finite element method

This chapter starts with a general introduction into the finite element method. It will proceed
with the discretization of the SWE and conclude with an explanation of the wetting and drying
algorithm. For an extensive description of the finite element method in general one is referred
to Van Kan et al. [12]. For a more specific application to the SWE Pironneau [21] can be
particularly useful.

The finite element method is a discretization technique for partial differential equations.
Many different discretization techniques exist. Some of the most well known are listed below.

� Finite difference techniques use a Taylor series expansion to approximate the differen-
tial equation. The derivative expressions are replaced with approximately equivalent
difference quotients. The domain of interest is split in regular sub domains.

� Finite volume techniques convert volume integrals, in a partial differential equation
that contains a divergence term, to surface integrals. The states in control volumes
are updated according to the in and outgoing fluxes. The domain of interest is split in
regular sub domains: finite volumes.

� Finite element techniques can use any shape of sub domain and any order of discretiza-
tion in space. With a weak formulation a discretized form of the differential equations
is obtained.

The main advantage of the finite element method over the other methods is that it is well
suited to be applied on irregular domains. However a drawback of the method is that the
matrix structure of finite element problems is not as nicely organized as for finite volume and
finite difference problems. In the last case the matrix contains five non-zero diagonals (for
2D problems) while in finite element problems the matrix is unstructured and often has a
considerably larger bandwidth.

2.1 The weak form

In the finite element method the weak form of a partial differential equation (PDE) is con-
sidered. The problem is that derivatives have to be established of discrete functions. This
difficulty is bypassed by moving the derivatives from the (non-smooth) discrete functions onto
sufficiently smooth test functions. The discrete functions are then projected onto (sufficiently)
smooth basis functions. The weak formulation of a PDE is obtained by multiplication with
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8 CHAPTER 2. THE FINITE ELEMENT METHOD

a smooth (within certain bounds) test function, integration over the domain and the use of
integration by parts, intermezzo 2.1. The result is an equation involving lower order deriva-
tives, hence requiring less smoothness, LeVeque [15] p.27. The weak formulation is more
easy to be satisfied since only global satisfaction of the PDE is required instead of point-wise
satisfaction.

Intermezzo 2.1. The divergence theorem of Gauss is given by∫
Ω
∇ · b dΩ =

∫
Γ

b · n dΓ

where n is the outward unit normal and b is a differentiable vector field on Ω.
Integration by parts stems from the product rule of integration and is a rule that transforms

the integral of multiplied functions into other integrals. For a scalar vector product this is given
by ∫

Ω
∇ · (ab) dΩ =

∫
Ω
a∇ · b dΩ +

∫
Ω
∇a · b dΩ.

Together these rules can be combined into∫
Ω
a∇ · b dΩ =

∫
Γ
ab · n dΓ−

∫
Ω

b · ∇a dΩ.

The same can be derived for a matrix vector product, Ab instead of the scalar vector product
ab.

2.2 Galerkin methods

The problem can be further simplified by expressing the solution to the differential equation
in terms of the test function φ. For the Laplace equation{

∇2c = 0 on Ω
c|Γ = 0

(2.1)

the problem can be formulated as; find c|Γ = 0 such that∫
Ω
∇c · ∇φdΩ = 0 for allφ|Γ = 0 (2.2)

the solution can be represented by a linear combination of functions, the basis functions:

ch(x) =
n∑
j=1

cjφj(x) (2.3)

Where ch denotes an approximation to the solution of the weak formulation. It is required
that the basis functions φj(x) are linearly independent. The function c0 must be chosen such
that ch(x) satisfies the essential boundary conditions. It should be noted that ch → c(x) as
n → ∞. The basis functions φj(x) are as smooth as demanded by the weak formulation of
the differential equation. The resulting finite element representation of the weak form can be
formulated as: Find the set of constants {c1, ..., cn} such that

n∑
j=1

∫
Ω
cj∇φj(x) · ∇φi(x)dΩ = 0, ∀ i = 1, ..., n (2.4)
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Figure 2.1: The discrete values cj are represented piecewise linear by the basis functions φj
according to the CG method.

2.2.1 Continuous Galerkin

The Continuous Galerkin (CG) method assumes that ch is a continuous function. For ch =∑n
j=1 cjφj to continuously represent the nodal values cj the basis functions φj should have

the value of 1 on node j and a zero value at all other nodes. In between φ can be described by
a linear function, a quadratic function or even a higher order polynomial. This is graphically
shown for a linear description of the basis functions in figure 2.1. The CG method does
not allow for discontinuities as solution, while in an advection equation discontinuities are
allowed. For this reason it is necessary to use upwind schemes to stabilize the solution of
CG methods. A very common method is Streamline Upwind Petrov-Galerkin (SUPG). This
method introduces artificial diffusion to stabilize the solution. This is done by adding an
extra term to the test function, which may be discontinuous. For a more detailed description
of the SUPG method one is referred to Van Kan et al. [12].

2.2.2 Discontinuous Galerkin

The Discontinuous Galerkin (DG) method allows ch to be described by a discontinuous func-
tion and therefore discontinuous basis functions can be used. This results in multiple values
per node, ce,k, where e is the element index and k = 1, ..., nn with nn the number of nodes of
the element. Thus the approximate solution can be described by

ch =
ne∑
e=1

nn∑
k=1

ce,kφe,k. (2.5)
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Figure 2.2: The discrete values cj are represented piecewise linear by the basis functions φe,k
according to the DG method.

This is illustrated in figure 2.2. By allowing a discontinuity in c on the element interfaces an
extra degree of freedom is created in the gradient of c. For this reason the advective term
behaves much more stable than in CG methods. However, as can be seen from equation (2.5)
the total number of unknowns has changed from ne + 1 for CG methods to ne · nn for DG
methods. This is obviously a severe drawback of DG methods.

Recently a method has been developed which combines the best of both methods. Dis-
continuous basis functions are allowed; and the extra computational effort is reduced to a
minimum. For more information one is referred to Labeur [14].

2.3 Application of the finite element method to the instation-
ary SWE

In this section the finite element discretization as discussed in the previous chapter will be
applied to the SWE. First a semi-discretization in space will be derived and with the pressure
correction method an uncoupled system is created. Thanks to the assumption of inviscid flow,
it is allowed to use constant basis functions, resulting in an explicit velocity update. Next the
implementation of the boundary conditions will be discussed. In the end the fully-discrete
system is derived using the θ-method.
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2.3.1 Discretization

The derivation of the discrete equation will be done for the two-dimensional equations. In one
dimension the velocity vector u reduces to a scalar and the two dimensional discretization can
be easily derived from the derivation given here. Equations (1.3) and (1.4) are multiplied with
the test functions Nu respectively Nh. Subsequent integration over the domain Ω, application
of Gauss divergence theorem and integration by parts results in the weak formulation. The
problem can then be formulated as: find u ∈ R2 and H ∈ R with

h = g1, on Γ1 u · n = g2, on Γ2 and u · s = g3, on Γ (2.6)

such that ∫
Ω

∂H

∂t
NhdΩ +

∫
Γ
HuNh · ndΓ−

∫
Ω
Hu · ∇NhdΩ = 0 (2.7a)∫

Ω
H
∂u
∂t
NudΩ +

∫
Ω
gH∇hNudΩ +

∫
Ω
cf |u|uNudΩ

+
∫

Γ
Hu · uNun dΓ−

∫
Ω

u · ∇ (HuNu) dΩ = 0 (2.7b)

for all Nh, Nu such that Nh, Nu = 0 on Γ1. In which n is the outside unit normal vector on
an element boundary.

In equations (2.7) no derivatives of u and Nu are necessary, demanding u and Nu only to
be integrable. First derivatives of H and Nh are necessary, demanding integrable derivatives
too. This means that u and Nu can be taken piecewise constant while H and Nh have to be
piecewise linear. Thus using a CG method for h and a DG method for u. The result is that
both the favorable properties of CG and DG are combined. The discontinuous approach sta-
bilizes the advection term. Yet since u is taken piecewise constant the number of independent
variables is not increased in 1D and only slightly increased in 2D with respect to (pure) CG.
Note that in case the diffusion term is not disregarded in the momentum equation, piecewise
linear u and Nu would be necessary. As we will see later the use of piecewise constant u and
Nu results in some favorable properties of the discrete system. With this choice u and H can
be described by

1D : u(x) =
ne∑
ej=1

uejN
u
ej

(x) and h(x) =
nn∑
j=1

hjN
h
j (x) (2.8a)

2D : u(x, y) =
ne∑
ej=1

uejN
u
eju(x, y) + vejN

u
ejv(x, y) and h(x, y) =

nn∑
j=1

hjN
h
j (x, y) (2.8b)

with Nu
eju(x, y) =

(
Nu
ej

(x, y)
0

)
and Nu

ejv(x, y) =
(

0
Nu
ej

(x, y)

)
.

In which ne the number of elements and nn the number of nodes. The basis function Nu
ej

has value 1 on element ej and 0 everywhere else and Nh
j has value 1 at node j and 0 at all

other nodes, and varies linearly in between. The resulting values of u(x) and h(x) (1D case)
are schematically shown in figure 2.3.

On continuity grounds we demand q = uH to be equal on both sides of the element
boundaries and since Nh is continuous over the element boundary, the boundary integral in
equation (2.7a) cancels out on internal elements.
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Figure 2.3: Interpolations of the discrete values uj and hj on the element domains.
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By inserting the approximations of u and H given by equation (2.8b) and writing the
definition of u as u(x, y) =

∑ne
ej=1 uejN

u
ej

(x) for readability, the discrete problem can be
written as ∫

Ω

∂Hj

∂t
Nh
j N

h
i dΩ +

∫
Γ2

g2H̄ejN
h
i dΓ−

∫
Ω
H̄ejN

u
ej

uej · ∇Nh
i dΩ = 0, (2.9a)

∀ i, j = 1, ..., nn, and ej = 1, ..., ne∫
Ω
H̄ej

∂uej

∂t
Nu
ej
Nu
ei
dΩ +

∫
Ω
gH̄ejhj∇Nh

j N
u
ei
dΩ +

∫
Ω
cfuej

∣∣uej

∣∣Nu
ej
Nu
ei
dΩ

+
∫

Γ
(u · n)−Hg3 +ADV = 0, (2.9b)

∀ j = 1, ..., nn, and ej , ei = 1, ..., ne,

with H̄ej = Hj+Hj+1

2 . The last two terms of equation (2.7b) are denoted here by ADV and
will be elaborated further in Chapter 3. Equations (2.9) can be written as a semi-discrete
system of equations, equation (2.10)1.

MH ∂H
∂t
−DHu = 0

Mu∂u
∂t

+ gDuh + Fu +ADV = 0
(2.10)

In which the matrices are defined by

MH
ij =

∫
Ω
Nh
i N

h
j dΩ Mu

ij =
∫

Ω
Nu
ei
Nu
ej
dΩ

DH
ij =

∫
Ω
H̄ejN

u
ei

∂Nh
j

∂x
dΩ Du

ij =
∫

Ω
∇Nh

i N
u
ej
dΩ

Fij =
∫

Ω

cf
∣∣Uej

∣∣
H̄ej

Nu
ei
Nu
ej
dΩ

The boundary integral in equation (2.9a) is not considered in the matrix vector formulation
(2.10). Its treatment is discussed in the next paragraph. Equation (2.10) gives the semi-
discrete system of equations. To calculate the evolution of the solution in time the equations
still have to be discretized in time. The fully discrete equations will be presented at the end
of this chapter.

2.3.2 Boundary conditions

Two categories of boundary conditions can be distinguished: essential and natural boundary
conditions. Dirichlet boundary conditions belong to the first category, they prescribe the
value of a certain quantity at the boundary. Neumann boundary conditions belong to the
second category, they prescribe the value of a certain flux at the boundary. Dirichlet boundary
conditions are called essential, since they should be satisfied explicitly. Neumann boundary
conditions are called natural, since they are implicitly satisfied by the formulation of the

1This equation is now divided by H. For readability purposes this is taken into account for the advective
term in Chapter 3 and not denoted here as ADV

H
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equations. Dirichlet boundary conditions have to be imposed upon the solution. The first
boundary condition in equation (2.6) is a Dirichlet boundary condition and the other two are
Neumann boundary conditions.

In equation (2.9) the Neumann boundary conditions are substituted in the equations. The
Dirichlet boundary conditions have to be imposed on the system. This is done by putting
the row of the boundary element concerned in the system matrix to zero, the diagonal to one
and the corresponding entry of the RHS vector to g1.

2.3.3 Time discretization

The semi-discrete system of equations as derived earlier will be discretized in time. For
the discretization in time the θ-method and the pressure-correction method are used. The
θ-method is given by

Muun+θ − un

θ∆t
+ gDuhn+θ + Fnun+θ

+ ADV n+θ = 0, (2.11)

MH Hn+θ −Hn

θ∆t
+ Dhn

un+θ = 0 (2.12)

Where θ is an implicitness coefficient, 0 ≤ θ ≤ 1.
Mu and Fn are diagonal matrices2, however the advective term is not. Implicit time

stepping is often advantageous because of its unconditional stability. However, when the
advective term is taken explicit, θ = 0, un+1 can be solved directly from equation (2.12)
without matrix inversion. If all other terms are taken implicit, θ = 1, this results in

[Mu + ∆tFn] un+1 = Muun − g∆tDuhn+1

− ∆tADV n. (2.13)

The first and the last term of the RHS of equation (2.13) depend only on the known time
level tn. This means that a preliminary estimate of un+1 can be made based on these two
values. This value is denoted by u∗ and is expressed by equation (2.14).

u∗ = BnMuun −∆tBnADV n (2.14)

With
Bn = [Mu + ∆tFn]−1

which is easily calculated since Mu and Fn are diagonal matrices. The expression for un+1

is reduced to
un+1 = u∗ − g∆tBnDuhn+1. (2.15)

The fully discrete formulation of the continuity equation is given by

MHHn+1 = MHHn + ∆tDHn
un+1. (2.16)

Inserting equation (2.15) in equation (2.16) and using Hn = hn − z results in

MHHn+1 + g∆t2BnDHn
Duhn+1 = MHHn + ∆tDHn

u∗. (2.17)
2Using piecewise constant basis functions for u results in this favorable feature of Mu.
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Thereafter the velocity at time level tn+1 can be calculated by substitution of hn+1 and u∗

in equation (2.15). By inserting the definition for u∗ in equation (2.14) the complete system
of equations can be written as

MH︸︷︷︸
P

Hn+1 + g∆t2BnDHn
Du︸ ︷︷ ︸

T

hn+1 =

MHHn + ∆tDHnBnMuun −∆t2DHnBnADV n︸ ︷︷ ︸
b

.
(2.18)

The above equation still contains two unknowns at time level tn+1, Hn+1 and hn+1.
Although Hn+1 and hn+1 can be expressed into one another this is not done yet. This is one
of the main steps in the wetting and drying procedure as we will see in the next chapter.

2.4 Wetting and drying algorithm

The wetting and drying algorithm in this chapter follows the same reasoning as the algorithm
presented by Casulli in [8]. Casulli has successfully implemented his algorithm in a finite
volume discretization. He combines a mass conservative method for positive water depths
with a Lagrangian advection scheme. Here an implementation of his method for positive
water depths in a finite element discretization is derived. In the next chapter several flux
splitting methods for the advective terms will be discussed.

2.4.1 Nonlinear system

The wetting and drying procedure is based on the idea that the water depth cannot become
negative while the surface elevation on the other hand is able to become negative. Therefore it
should not be regarded as a surface elevation but as a mathematical multiplier that influences
the water level gradient. The positivity of the water depth means that the water depth can be
defined by equation (2.19), but it can also be implemented by using a function c(hj) described
by equation (2.20). This results in a definition of the water depth given by equation (2.21).

Hn
j = max

[
0, hnj − zj

]
(2.19)

c(hnj ) =

{
1 ifhj > zj

0 ifhj ≤ zj
(2.20)

Hn
j = c(hnj )

[
hnj − zj

]
(2.21)

When incorporating the first definition for Hn
j and the second definition for Hn+1

j in equation
(2.18) we obtain the following nonlinear equation:[

MHC(hn) + g∆t2BnDHn
Du
]
hn+1 = MHC(hn)z +MHHn

+ ∆tDHnBnMuun −∆t2DHnBnADV n
(2.22)

With C(hn) the diagonal matrix with entries cjj = c(hnj ) and Hn a vector with entries

Hn
j = max

[
0, hnj − zj

]
. Or in matrix vector notation as

[P (h) + T ] h = P (h)z + b, (2.23)

with P , T and b as defined in the previous chapter.
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2.4.2 Finite Elements vs. Finite Volumes

For finite volumes, as described by Casulli [8], P is a diagonal matrix with positive entries.
T has positive diagonal elements, negative off-diagonal elements and the sum of the elements
over the row is exactly zero. Comparing these properties to the properties described in
intermezzo 2.2 one can conclude that A = P (h) + T is a K-matrix. In combination with
the irreducibility demand Casulli points out, A is an M-matrix and the existence of A−1 is
guaranteed.

Intermezzo 2.2. A matrix is called an M-matrix if A is nonsingular,

A−1 ≥ 0, and

aij ≤ 0, ∀ i, j = 1, ..., n and i 6= j.

With A−1 ≥ 0 is meant that all entries of the inverse matrix of A are larger than or equal to
zero.

A matrix A is called a K-matrix if

aii > 0, i = 1, ..., n,
aij ≤ 0, i, j = 1, ..., n, j 6= i

and∑
j

aij ≥ 0, i = 1, ..., n.

with strict inequality for at least one i.
A matrix is called irreducible if the system does not consist of independent subsystems.

An irreducible K-matrix is an M-matrix, hence its inverse matrix exists [27]. Yet not all
M-matrices are K-matrices. Consequently these properties are sufficient to prove existence of
A−1, yet not necessary to prove existence of A−1.

For finite elements in 1D P is a tridiagonal matrix with strictly positive entries. T is a
tridiagonal matrix with positive diagonal elements and negative off-diagonal elements. It is
possible for A to fulfill the requirements described in intermezzo 2.2 however severe constraints
will be posed on the minimum value of H̄n

j . For the off-diagonal terms of A to be negative,
the following condition should be fulfilled:

1
6

∆x
∆t
≤ αnei

∆t
∆x

gH̄n
ej
∀ ej .

After some manipulations (and assuming the friction to be negligible) the Courant-number
can be recognized in this expression and this constraint transforms in

1
6
≤ CFL2.

Where the Courant-number is expressed as

CFL =
∆t
∆x

c, with c =
√
gH̄n

ej
.

For a grid size ∆x = 1 and a time step size ∆t = 0.1 this means that H̄n
ej
≥ 1.67∀ j which

is clearly impossible in case of wetting and drying. In general it is easily seen that when
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H̄ej → 0, ∆x
∆t has to become very small to fulfill the constraint above. This is a condition that

conflicts with accuracy and stability demands. However, this does not mean that A−1 does
not exist but that its existence is not guaranteed and there are cases in which problems can
arise with respect to this. This will be explained further in Chapter 4.
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Chapter 3

Discretization of the advective
terms

The advective terms can be discretized in many ways. The terms denoted with ADV in the
previous chapter will be elaborated further here. The discontinuous velocity approximation
makes it logical to use a Riemann type of method since Riemann solvers look at the prop-
agation of discontinuities. They poses the advantageous property of using the information
out of the direction that it travels from, even if there are multiple waves traveling in multiple
directions. Sections 3.2 to 3.4 encompass the one-dimensional advection. In two dimensions
another approach than for one dimension is because the one-dimensional approach would
result in very complicated cross terms. The two-dimensional approach will be discussed in
sections 3.6 and 3.7.

3.1 Discretization

The advective terms of the previous chapter are given by

ADV =
∫

Γ
u · uNun dΓ−

∫
Ω

u · ∇ (uNu) dΩ. (3.1)

It might not seem straightforward to apply integration by parts to this term since the resulting
integral still contains a derivative in u. However by choosing the basis function for u piecewise
constant the gradient of u would be zero and the advective term would disappear. By using
integration by parts a new term appears which describes the incoming and outgoing fluxes in
an element, making it possible to describe the velocity with piecewise constant basis functions.
Next the discrete values for the water level and the velocity will be written as

u(x) =
ne∑
ej=1

uejN
u
ej

(x) and h(x) =
nn∑
j=1

hjN
h
j (x)

and assuming piecewise constant basis functions for u the advective term becomes

ADV =
∫

Γ
Nu
ei
Nh
j u · nuj dΓ (3.2)

Or in matrix vector notation
ADV = Ãu (3.3)

19
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Figure 3.1: The different states of the solution to the Riemann problem.

with
Ãij =

∫
Γ

uNu
i N

h
j n dΓ. (3.4)

3.2 Riemann formulation

In one dimension the Riemann problem for the equations presented in section 1.4.1 is an
initial-value problem described by

∂h

∂t
+

∂

∂x
(F (u)) = 0 (3.5)

with initial condition

U(x, 0) =

{
UL, x < 0
UR, x > 0.

(3.6)

The solution consists of two waves separating three states: the left state, the right state and
the middle state. The last one is here denoted with a ∗, see figure 3.1.

If one looks at figure 3.2, the disturbance of the quantity U at the interface j− 1
2 propagates

with a speed aL at the left side of the interface and with a speed aR on the right side of the
interface. If we consider only the right side of the interface, the disturbance UR − U∗ travels
with speed aR where U∗ is the state at the interface. The same holds at the left side of the
interface. This results in

aR (UR − U∗) = FR − F∗
aL (U∗ − UL) = F∗ − FL. (3.7)
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Figure 3.2: The different states to the left and to the right side of interface j − 1
2

By multiplication of the first equation with aL and the second with aR and subtracting both,
the interface flux F∗ can be written as

F∗ =
aRaL (UR − UL)− FRaL + FLaR

aR − aL
(3.8)

With the non-conservative formulation of the equations as described in the previous chapter
the fluxes are given by FL = 1

2uLuL and FR = 1
2uRuR. The difference between different

Riemann solvers is the choice of an appropriate definition of the propagation speeds, aL and
aR.

In the next section more thought is given to different choices of the propagation speed a.

3.3 Choices of the propagation speed

The propagation speeds are given by the eigenvalues of the system (2.23). For a large matrix
it can be quite laborious to determine the eigenvalues of this system. Obviously it would
be convenient if it would not be necessary to calculate these eigenvalues. There is a range
of estimates that can be made for aL and aR. A straightforward choice for aL and aR is
aL = uej−1 and aR = uej . The eigenvalues of a simplified system could also serve as an
approximation. The eigenvalues of the system[

H
uH

]
t

+
[

Hu
Hu2 + 1

2gH
2

]
x

= 0 (3.9)

can be approximated by writing the system (3.9) in the quasi-linear form qt + f ′(q)qx = 0.
The eigenvalues of the quasi-linear system are given by λ1 = u −

√
gH and λ2 = u +

√
gH.
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This could be discretized as aL = uej−1 − cL and aR = uej + cR. Furthermore it is possible to
use a higher order estimate of the left and right interface velocities. This will be discussed in
section 3.5.

3.4 Roe Linearization

It is also possible to circumvent the need for finding the eigenvalues by solving the Riemann
problem approximately. Approximate Riemann solvers can give good results with much less
effort. That is, the nonlinear flux term f (u)x will be replaced by a linearized term Âj− 1

2
ûx

defined at each cell interface. The matrix Âj− 1
2

is an approximation if f ′ (u) at the cell

interface. Combining this linearization with an upwind scheme, the interface flux at j − 1
2

can be calculated as

F ∗ = FL + Â−
j− 1

2

(
uej − uej−1

)
F ∗ = FR − Â+

j− 1
2

(
uej − uej−1

)
.

(3.10)

Averaging these expressions results in

F ∗ =
1
2

[Fj−1 + Fj ]−
1
2

∣∣∣Âj− 1
2

∣∣∣ (uej − uej−1

)
(3.11)

which is often referred to as Roe’s method.

3.5 Second Order Advective terms

Instead of approximating the advective flux immediately to the left of the interface based on
the velocity left of the interface it is also possible to make an approximation of this velocity
using linear interpolation. In figure 3.3 this approach is visualized, the values of uR and uL
are indicated with black dots. A gradient in u is established, which is used to calculate an
interface value of u.

A drawback of this method is that it is possible to calculate an interface value that is
higher or lower than the velocities to the left and the right of the interface, as is uR at the
j− 1

2 interface in figure 3.3. In this way a new local extrema is created. For this reason second
order schemes always generate artificial wiggles. A simple solution to this problem is to say
that in case the extrapolated value is outside the range of uej−1 and uej a first order estimate
will be used. Several methods are illustrated in the remainder of this chapter based on this
principle.

It should be noted that the limiters described in this chapter are no standard finite ele-
ment method routines. However, the use of a piecewise constant basis function for the velocity
results in lots of similarities between this finite element discretization and finite volume meth-
ods. This enables the use of these type of limiters, which are very common in finite volume
computing, for finite element computations.
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Figure 3.3: Visualisation of second order advective flux terms.

Minmod limiter

The minmod limiter is given by equation (3.12).

minmod
(
∆+,∆−

)
=


∆+ if |∆+| < |∆−| and ∆+∆− > 0,
∆− if |∆−| < |∆+| and ∆+∆− > 0,
0 if ∆+∆− < 0.

With ∆+ = uej+1 − uej

∆− = uej − uej−1

(3.12)

The essence of the minmod limiter is sketched in figure 3.4. When the jump to the left and
the jump to the right of element ej are equal of sign, the gradient that results in a value
closest to uej is used for the higher order approximation, as indicated by the gray dots. In
this way it is not possible to use an estimate that is outside the range of uej and uej+1 . When
the jumps are unequal of sign the first order approximation is used to prevent a higher order
estimate that generates a local maximum, as shown in the lower part of figure 3.4.

Koren limiter

The limiter as described by Koren [13] is given in equation (3.13). By using this method the
interface velocities will always be given by a first order upwind velocity or a second order
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Figure 3.4: The basic principles of the minmod limiter.

interpolation which will be within the range of uej and uej+1 .

rj =
uej+1 − uej

uej − uej−1

φ(rj) = max
(

0,min
(

2r,min
(

1
3

+
2
3
r, 2
)))

uL,j+ 1
2

= uej +
1
2
φ (rj) (uej − uej−1)

uR,j+ 1
2

= uej+1 −
1
2
φ (rj+1) (uej+1 − uej )

(3.13)

3.6 Advective terms in two dimensions

The extension of the previously used methodology into two dimensions is not as straightfor-
ward as one might think. In two dimensions the advective fluxes contain cross terms, v ∂u∂y
and u ∂v∂x . The fluxes do not necessarily work in the direction perpendicular to the interface
anymore. For this reason another approach is chosen. In two dimensions we will look at flux
differences, here denoted by ∆F .

In figure 3.5 a cross-section is taken perpendicular to the cell interface. As can be seen
the flux differences can be split in the following manner:

∆FR = aR (uR − u∗)
∆FL = aL (u∗ − uL)
∆FM = ũ (uR − uL)
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Figure 3.5: Left traveling wave and right traveling wave.

With ∆FR + ∆FL = ∆FM this results in

aR (uR − u∗) + aL (u∗ − uL) = ũ (uR − uL) . (3.14)

This gives a formulation for the middle state u∗:

u∗ =
ũ (uR − uL)− aRuR + aLuL

aL − aR
(3.15)

Inserting this in the equations for the left and right flux differences ∆FL and ∆FR gives:

∆FR = aR

(
ũ− aL
aR − aL

)
(uR − uL)

∆FL = aL

(
ũ− aR
aL − aR

)
(uR − uL)

(3.16)

Opposed to the one-dimensional formulation this advective scheme is not strictly con-
servative. In one dimension all contributions to the advective term were canceled out on
internal elements. This formulation directly calculates the difference between the inflow and
outflow, although for ∆x→ 0 this is conservative, due to the finite size of the elements small
differences can occur. Nevertheless no problems regarding the non-strict conservation of the
advection will be encountered.
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Figure 3.6: Establishing of velocity gradients in two dimensions.

3.7 Second order advective term in two dimensions

Following the same approach as in one dimension it is possible to derive a second order
advective scheme in two dimensions. A gradient in the velocity is established by looking at
the interface velocities of an element. For this purpose, the interface velocity is assumed to be
the average velocity of the two adjacent elements. For an element i with its neighbor elements
e, k with k = 1, 2, 3 as shown in figure 3.6. The interface velocity becomes

ug,k =
ui + ue,k

2
. (3.17)

If we consider interface 1 the forward difference is easily established as the difference between
the element velocity and the velocity at interface 1. The backward difference is a little less
straightforward. However, if an average is taken of the two remaining interface velocities, a
velocity on the same line as the element velocity and the velocity at interface 1 is established.
This is indicated with the red dot in figure 3.6. This velocity can then be used to establish
the backward difference. It should be noted that the backward difference is taken over 1

6
of the element height in that direction whilst the forward difference is taken over 1

3 of the
element height in that direction. With these backward and forward differences the minmod
limiter can be applied in the same way as described in section 3.5, resulting in a (limited)
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Figure 3.7: The difference between first order advection and second order advection in two
dimensions (visualized on a one-dimensional grid).

second order estimation at the interface, u∗. Here the interface velocity is denoted with a *
but should not be confused with the velocity estimate in the pressure correction method.

The next step is to add this to the equations. With respect to the first order terms we
discussed before now a gradient over the element is established, see figure 3.7. This means
that we cannot simply take the flux difference at the boundary to describe the advection but
we need to consider the gradient over the element too. This results in an extra term in the
advective flux: ∫

Ω
ui · ∇u∗,kdΩ +

∫
Γ
(ũ · n)− · [u∗,ek − u∗,k] dΓ (3.18)

Where in first order only the second term was applied, since the first term was zero because
of the constant velocity over an element. The above can be discretized as

− ui · 2Du∗,k +
k∑
e=1

min (Bũ · n, 0) · [u∗,ek − u∗,k] . (3.19)

The number two appears in the first term because u∗ is a value in the middle of the interface
and not at the nodes.



28 CHAPTER 3. DISCRETIZATION OF THE ADVECTIVE TERMS



Chapter 4

Solution procedure

4.1 Nonlinear iteration procedure

Because of the nonlinear time derivative of the water level, the system derived in Chapter
2.4 must be solved with an iteration procedure. Casulli [8] uses a Newton iteration to solve
the system. In [5] he proves that this iteration procedure converges. A Newton iteration
procedure is based on the derivative of the system by

xn+1 = xn − f(x)
f ′(x)

. (4.1)

In finite volumes, where matrix P is a diagonal matrix it could be argued that its derivative
is a point-wise derivative. However, in finite elements, where P also contains non-zero off-
diagonal entries determining a derivative is difficult. It is possible to establish a derivative
with a type of method as proposed by Broyden [3]. However it is questionable whether a
derivative does even exist at the contact discontinuity of the wet/dry interface. Therefore a
Picard Iteration procedure is described in this chapter.

4.1.1 Picard iteration

Picard Iteration is a fixed point method. A fixed point p of a function g is defined as g(p) = p.
With this the iteration method is defined as g(pn) = pn+1 and for the right starting value
this method will converge.

In our case the equation to be solved, equation (2.23) can be written as

[P (h) + T ]−1 [P (h)z + b] = h (4.2)

which is a function of the shape g(h) = h. The iteration procedure is subsequently written as

[P (hm) + T ]−1 [P (hm)z + b] = hm+1 (4.3)

or with the definitions for P , T and b as given in Chapter 2[
MHC(hm) + g∆t2BnDHn

Du
]
hm+1 = MHC(hm)z +MHHn

+ ∆tDHnBnMuun + ∆t2DHnBnAnqn
(4.4)

where the index m indicates the iteration step. The starting condition that is used to calculate
hn+1 is h0 = hn.

29
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4.2 Matrix solvers

After the complete discretization of the system of equations described in sections 2.3, 2.4 and
4.1 the result is a matrix vector system given by

Amhm+1 = Bm. (4.5)

With

A = P (hm) + T

B = P (hm)z + b

This system can be solved directly or with an iterative matrix solver. In this chapter several
ways of solving this system are explored. It will be explained in detail what the difficulties
are for each method, why a certain method does or does not work or what extra measures
have to be taken to make a certain method work or perform better. In the end it becomes
clear that the system is solved best using a lumped mass matrix at dry nodes and a consistent
mass matrix at wet nodes. For larger matrices it can be decided to use the iterative matrix
solver BiCGSTAB instead of a direct method. The various options that are considered are
summarized in table 4.1. In the first column the category of the method is given. In the
second column the main method to prohibit singularities is described. In the last column
extra measures taken to enhance the performance of the methods are explained.

4.2.1 Direct matrix solvers

The system can be solved with a direct matrix solver. The most common is Gaussian-
elimination. This is a very robust way of solving the matrix vector system. Moreover the
exact solution is obtained. However, for large systems it can be very time consuming. In
addition, it is unable to find the solution when the matrix is singular, thus when the inverse
matrix does not exist. Gaussian-elimination is roughly the same as h = A−1b, it is then
easily seen that when A is singular there is no solution to the system. This might seem
trivial, however, when a matrix contains a row of zeros the determinant is zero hence the
matrix is singular. In case of wetting and drying the matrix A will contain zero rows for
elements of which all nodes are zero. Solving the system is therefore not straightforward.
There are several ways to by-pass this difficulty. They will be discussed in the sections below.

Minimum cell averaged depth

The matrix A is constructed from a part P , that is only added to the system for wet nodes,
and a part T , which contains the implicit pressure gradient which is zero for elements with
H̄n
j = 0. To prevent singularity of A it is possible to guarantee a contribution of T to A

by using a minimum cell averaged depth, dmin. In case of negligible friction and a value of
dmin = 10−4, at dry locations the following value of T is contributed to A

Te,min = αni
∆x
∆t

gdmin

[
1 −1
−1 1

]
.

The results obtained in this way can be very promising, they are however very sensitive to
the value of dmin. The best results are obtained for dmin = 10−4. For values of dmin = 10−5
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Category Method Extra Measures
Direct 1. Using a minimum -
Matrix value of the average
Solvers water depth in T

2. Remove dry Reconstruct T every
nodes from iteration step
the system Limit uj for small Hj

3. Element-wise -
wetting and

drying
4. Manipulating Reconstruct T every

matrix entries (set iteration step
h = z at dry nodes) Limit uj for small Hj

5. Lumping the mass -
matrix for dry elements

Iterative 6. Preconditioned In combination with
Matrix Conjugate Gradient the lumped mass matrix
Solvers method at dry nodes

7. Bi-Conjugate Gradient In combination with
Stabilization Method the lumped mass matrix

at dry nodes
Limit uj for small Hj

Table 4.1: Overview of methods, to prohibit matrix A from becoming singular, to be explored
in 1D.
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and smaller the matrix becomes too close to singular and the solution becomes instable. For
values larger than dmin = 10−4 the propagation speed of the wet/dry interface can be slowed
down considerably which results in a bore at the wet/dry interface. The value of dmin has
a considerable influence on the number of iterations needed. Since the number of iterations
depends on the speed of wetting or drying and the wetness of the domain it is not surprising
that the number of iterations depends on the value chosen for dmin.

Removal of dry points from the system

Another way of prohibiting matrix A from becoming singular is to solve the system only for
the wet nodes. If this is done no minimum depth is needed to prevent matrix A from becoming
singular, since the zero rows are omitted from the system. If k is the array containing the
row numbers of non-zero diagonals of A, the system A(k, k)h(k) = b(k) is solved.

Some of the problems encountered are the existence of multiple wet domains and poor
mass conservation. In many applications the layer thickness of the waterfront goes to zero.
Therefore it is not a surprise that numerical difficulties arise with the physical correct rep-
resentation of the solution. Whenever the computational domain consists of multiple wet
sub-domains the matrix A is not irreducible anymore. Nonetheless this problem is quickly
solved by solving all wet sub-domains separately. That mass is not conserved in this way is
caused by the shape of matrix A and the construction of matrix A. When the system is only
solved for wet nodes it is sufficient to determine which locations on the diagonal of A have
a value larger than zero and remove the corresponding rows and columns from the system.
Since the contribution of matrix P is zero for dry nodes and the contribution of matrix T is
zero for elements connected to only dry nodes (H̄n

j is the element averaged water level).
In figure 4.1 the structure of matrix A is given. The dots indicate the non-zero values of

matrix A for a partially wet domain in one dimension. The dashed line indicates the wet/dry
interface. The part of the matrix that is solved is shaded. There are two possible situations.
The first situation always concerns the first iteration step. At that moment it is impossible
to have a contribution of P to A and no contribution of T . However, it is possible to have a
contribution of T at locations where the domain is dry. Whether or not T is larger than zero
is determined by the element depth. The element depth is the average of the depths at the
nodes of the element. If one node is dry (at that location there is no contribution of P ) and
the other node is wet there is a contribution of T to A for that element. This is indicated in
figure 4.1(a) with the gray dots.

In case of flooding the wet/dry interface is proceeding to the right during the iteration
procedure. It is possible to have the situation shown in figure 4.1(b), where the black dot
indicates a contribution to A by P alone. It is clear that this entry of A is not used to solve
the system, since its corresponding diagonal entry is zero. This causes a mass error.

The solution to this problem seems obvious. When the matrix T is reconstructed in every
wetting and drying iteration step, the contributions of T and P to system A will be consistent.
So only situations as shown by figure 4.1(a) can occur. It is important to notice that this
difficulty cannot occur in finite volumes since in that case P is a diagonal matrix.

In 2D the structure of matrix A will be slightly different however exactly the same problem
can occur. For a completely wet element the corresponding diagonal entry will be non-zero.
The surrounding wet elements will give an off-diagonal contribution, but not necessarily the
off-diagonals next to the diagonal. After an iteration step it is possible that an off-diagonal
contribution of P appears while the corresponding diagonal entry is still zero. Hence this
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(a) (b)

Figure 4.1: Structure of matrix A in case of removal of the dry nodes from the system, the
shaded area indicates the part of the matrix that is solved. (a) The initial situation at the
start of the iteration procedure. (b) A situation that can occur after the wet/dry interface
has proceeded to the right.

(a) (b)

Figure 4.2: Structure of matrix A, possible causes of trouble by very small entries (indicated
by the gray dots). (a) Only one node is dry resulting in one column of very small entries. (b)
Two adjacent nodes are dry resulting in a semi-uncoupled system.
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contribution of P is not considered in the calculation, resulting in a mass error.
While reconstructing T every iteration step it is still possible to have very small diagonal

entries that contain very small values, which can cause trouble. In figure 4.2 two examples
are given of such cases. In figure 4.2(a) only one node is dry surrounded by wet nodes. The
values of A marked gray are very small; they consist of a contribution of T only. However
they are larger than zero, therefore the entire system is solved and no problems arise.

In figure 4.2(b) only two adjacent nodes are dry. Now problems do arise. This system
consists of two parts, however neither solving the entire system nor solving the two individual
parts results in a mass conserving solution. In fact both methods result in the same (non-
conservative) solution with a very high peak at a node adjacent to the dry element. Some
sort of semi-uncoupled system is composed that introduces mass errors. The essence of the
problem is that the water depths become really small at the tip of the front while the velocities
become very large. Bounding the velocity seems to resolve te problem. The best results are
obtained by using unj = 0, ∀ H̄n

j < 10−3, which will be denoted as du=0 = 10−3 from now
on. For smaller threshold values mass is not always conserved. For larger threshold values
the velocity is limited so much that a bore is created. It must be noted that the iteration
behavior is much better compared to the situation in which a dmin is used, as discussed in
the previous chapter. Where the average number of iterations was at first of O(10) it is here
of O(1).

Another way of solving this problem of inconsistent contributions of P and T could be
by turning the contribution of P on and off element-wise instead of node-wise. This will be
discussed further in the next paragraph.

Element-wise contribution of matrix P

The matrix P is added to matrix A based on whether the entire element is dry or wet. The
thought behind this approach is that it is never possible for a problem to occur as shown in
figure 4.1. Since both contributions of P and T are established element-wise there will never
be any non-zero entries of A that lay outside the solved part of matrix A.

The problem of this method is that it is not mass conservative. This problem is caused
by partially wet elements. If a partially wet element has one node with a value of hj > 0 and
hj+1 < 0, its mass contribution is also based on the value hj+1 < 0. This means that there is
negative mass added to the system. This can be visualized when we look at the core of the
finite element method, the basis functions, as shown in figure 4.3. For elements 1 and 2 no
difficulties arise since for all nodes of these elements H = h − z. The volume of water in an
element is given by

V =
∫

Ω
Nh
j hj +Nh

j+1hj+1dx =
1
2
hj∆x+

1
2
hj+1∆x.

Which corresponds to the volume that is found by looking at the mass matrix,

V = ∆x
[

1
3
hj +

1
6
hj+1 +

1
6
hj +

1
3
hj+1

]
=

1
2
hj∆x+

1
2
hj+1∆x.

For element 3 it can be seen that the volume of water is

V3 =
1
2

∆xh3
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Figure 4.3: Determination of mass in the system, the shaded area indicates the negative
volume that would be added if the mass matrix would be established element-wise.

which is not the same as the volume corresponding to the mass matrix,

V3 =
∫

Ω
(N3h3 +N4h4) dx =

1
2

∆xh3 +
1
2

∆xh4.

However it is the same as the volume that corresponds to a mass matrix with only entries in
the column that correspond to the wet node,

M = ∆
[

1
3 0
1
6 0

]
.

The corresponding volume is thus

V3 =
1
3

∆xh3 +
1
6

∆xh3 =
1
2

∆xh3.

This corresponds to a mass matrix which is switched on and off based on whether a node is
dry or wet. So mass conservation requires a node-wise wetting and drying approach.

Matrix manipulations

Another way to avoid matrix singularities is to manipulate the matrix. This is based on the
principle that at dry nodes the water surface is equal to the bottom level. Only the dry
nodes adjacent to the wet/dry interface are important in the establishment of the gradient at
the interface. All nodes that are only connected to wet nodes can be assumed equal to the
bottom level without consequences for the propagation of the waterfront. For these nodes the
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equations reduce to hn+1
j = zj . When substituting this in the system matrix exactly all zero

diagonal entries are filled and the result is a non-singular matrix A. For the same reason as
for the case in which only the wet nodes where solved, it is necessary to reconstruct matrix
T in every iteration step for this method to be mass conservative. For the same reason as we
have seen by removing dry points from the system problems arise when the matrix A is not
irreducible anymore, increasing the number of iterations per time step and the mass error.

It seems to be possible to reduce the mass error to O(10−14) however bifurcations can
occur. That is, it is possible to have an iteration in which the solution varies between multiple
solutions. In some cases one of these solutions is mass conserving while the others are not,
it is then clear which one should be chosen. However in some cases none of the solutions is
mass conserving. Again the solution can be found in limiting the velocity for small values
of H̄n

j . The best results (considering the average number of iterations per time step and the
resemblance to the analytical solution) are obtained for du=0 = 10−3 however smaller values
are still mass conserving (as opposed to the case in which only the wet system is solved). The
iteration behavior is as favorable as in the case the matrix is only solved for the wet part of
the domain.

Manipulating the matrix leads to roughly the same results as solving only the wet part
of the computational domain. Since a smaller system has to be solved when only the wet
part of the computational domain is considered, the last seems to be the more favorable
choice of the two. Yet, in two dimensions solving only the wet computational domain is
not as straightforward as in one dimension. In one dimension a tridiagonal matrix has to
be considered but for two dimensions a large sparse matrix has to be solved which severely
complicates the matter. Thus in 2D it can be preferable to manipulate the matrix as described
above.

Lumping the mass matrix

Instead of reconstructing the matrix T in every iteration step it is also possible to guar-
antee mass conservation, in combination with solving only the wet part of the system or
manipulation of the matrix, by lumping the mass matrix. When the mass matrix is lumped,
the contribution of P to the system outside the solved part of the matrix is zero (as in the
right drawing of figure 4.1). Hence no mass error is introduced. The mass matrix for a
one-dimensional element is given by equation (4.6). The lumped mass matrix is derived by
summing the values of the consistent mass matrix over the rows and inserting these on the
diagonals. This can be interpreted as assigning the value of the half of the volume of water
in an element to one node and the other half to the other node instead of spreading it more
smoothly over the element. The result is given by equation (4.7).

MC = ∆x
6

[
2 1
1 2

]
(4.6)

ML = ∆x
2

[
1 0
0 1

]
(4.7)

It is possible to write the consistent mass matrix as a contribution of the lumped mass
matrix and another matrix, which is quickly recognized as the diffusion matrix, see equation
(4.8). Since the lumped mass matrix is a diagonal matrix the method using a lumped mass
matrix bears more resemblance to Casulli’s finite volume problem. As discussed in Chapter
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2.4 in case of a diagonal matrix P , as for instance when the lumped mass matrix is used,
the existence of A−1 is guaranteed. Using the lumped mass matrix adds diffusion to the
system. Diffusion is a stabilizing term, for its ability to smoothen irregularities, which can
be a desirable property. However the lumped mass matrix gives less accurate results. Hence,
aimed is at minimum use of the lumped mass matrix. Since problems arise only at the wet/dry
interface it is possible to use the consistent mass matrix at wet or partially wet elements and
the lumped mass matrix at dry elements.

MC = ML −
∆x
6∆t

[
1 −1
−1 1

]
(4.8)

All possible non-zero entries of matrix A are shown in figure 4.4 where the initial wet/dry
front is indicated by the dashed line (this means that the values of the mass matrices are put
to zero to the right of the dashed line). With possible non-zero values the shape of matrix
A is meant that would result if after a couple of iteration steps the entire domain would be
wet. In case of flooding the dashed line will progress to the right, while doing this there
cannot occur a situation in which an off-diagonal term is non-zero while the corresponding
diagonal term in the same row is zero as a result of lumping the mass matrix at dry elements.
Consequently mass is conserved in case only the wet domain is solved or when ones are placed
in case of zero diagonals and the RHS is set equal to the bottom. In 2D the same holds. Again
lumping of the mass matrix at initially dry nodes prohibits non-zero off-diagonal terms with
a corresponding diagonal entry that is zero.

An advantage of this method over reconstruction of matrix T is that whenever A contains
multiple adjacent wet domains it does not result in a non-conservative solution. This seems
rather arbitrary since in this case there does occur again a large extreme value however this
value is negative this time. Thanks to the definition of the water depth this does not influence
the solution. Although this seems to be random, this extreme value is never positive when
a lumped mass matrix is used and very often positive when it is not. Another advantage of
this method is that it takes less computational effort since it is not necessary to reconstruct
T every iteration step.

This method has again very favorable iteration behavior. Moreover it behaves very robust,
no extra measures are necessary for smooth behavior or unconditional mass conservation.

4.2.2 Iterative matrix solvers

For large computational domains the matrix A rapidly expands, having a size of n×n, where
n is the number of nodes, while its non-zero entries are only ≈ 3n. In two dimensions this
difference is even more pronounced having a total number of 4n2 entries in the matrix with
≈ 7n non-zero entries. Iterative matrix solvers are able to use this property and find an
approximate solution with less computational effort than a direct solver.

Preconditioned Conjugate Gradient Solver, PCG

This method is applicable to symmetric positive definite matrices. The number of iterations
required is proportional to

√
cond(A). To make cond(A) smaller the matrix A is precondi-

tioned.

Intermezzo 4.1. A matrix is symmetric if it holds that A = AT .
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Figure 4.4: All possible non-zero entries matrix A in case the mass matrix is lumped for
completely dry elements. The initial wet/dry interface is indicated with the dashed line.

A matrix is positive definite if xTAx > 0. The determinant of a positive definite matrix
is always positive and therefore a positive definite matrix is always nonsingular.

The condition number of a symmetric matrix A is given by cond(A) = max|λ(A)|
min|λ(A)| .

The main problem of this method is that matrix A has to be symmetric, which it is not in
case of wetting and drying. The element matrices P and T are symmetric but when the global
matrix P is added per wet node its contribution to the global matrix A can be asymmetric.
There are several ways to obtain a symmetric matrix A.

It is possible to establish a symmetric matrix A by adding matrix P and T element-wise.
Yet we have seen in Chapter 4.2.1 that this is not mass-conservative. Another way of obtaining
a symmetric matrix A is to add

(
P Tdiag (c)

)T
diag (c) instead of Pdiag (c). The effect of this

can be seen in figure 4.5. In figure 4.5(a) matrix A is sketched where the contribution of
P is canceled for all dry nodes, resulting in an asymmetric matrix. In figure 4.5(b) the
contributions of dry nodes to wet nodes are canceled too. Consequently a symmetric matrix
is created. The drawback of this way of creating a symmetric matrix is that it is not mass
conserving. A preconditioned conjugate gradient solver is not a suitable solution algorithm
because the symmetry requirement makes it impossible for the scheme to be mass conserving.

Bi-conjugate Gradient Stabilization Solver, BiCGSTAB

BiCGSTAB does not require a symmetric matrix, it takes slightly more computational effort
than PCG and convergence is not proven. However the convergence behavior often resembles
that of PCG.

For mass conservation and to prevent the matrix from becoming singular, BiCGSTAB is
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(a) (b)

Figure 4.5: Structure of matrix A. (a) The asymmetric original structure of matrix A. (b)
The structure of matrix A after symmetrization. The gray circles indicate the turned off
contributions of P .

used in combination with a lumped mass matrix at dry elements and manipulation of the
matrix. BiCGSTAB is preconditioned with the Jacobi preconditioner, here denoted by Rij .
The Jacobi preconditioner is given by

Rij =

{
Aij if i = j

0 otherwise.
(4.9)

In combination with limited velocities for very small water depths, so that the thin front does
not shoot ahead too fast, becoming thinner and thinner, this method gives quite good results.
This value at which the velocities are put to zero is taken du=0 = 10−4. For smaller values
mass conservation becomes less, O(10−7), and the robustness of the solution is compromised.
Iteration behavior is slightly less than for the previously discussed methods, but can be
considerably improved by adjusting the BICGSTAB settings.

A difficulty that arises in some cases is that there can occur bifurcations in the iteration
procedure (that do give mass conserving solutions). The right solution could then be chosen
on mass conservation grounds. However the bifurcation can contain many different solutions.
To establish the occurrence of a bifurcation and choose the best solution it is necessary to
store all solutions temporarily and go trough all bifurcation steps, increasing the number of
iterations and the amount of storage space required. The occurrence of these bifurcations
can be diminished by adjusting the BICGSTAB settings (lowering its tolerance and enlarging
its maximum number of iterations), however this is more costly in terms of calculation time.
Using dmin instead of lumping to prevent the system from becoming singular solves the
bifurcation problem completely. The extra iterations needed in this case are unfavorable but
can probably level with the costs of adjusting BiCGSTAB settings. The fact that it resolves
the problem instead of diminishing only is of course decisive here.

Another solution to the bifurcation problem could be to use a stopping criterion in case
of a bifurcation loop. Such a procedure is described in section 4.3.3.
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4.2.3 Overview

From table 4.2 it becomes clear that several of these methods give good results. Method
2 and 4 give the best results with respect to iterations and mass conservation. However,
the velocity must be limited for robustness reasons and the results are very sensitive to the
value of the water depth where u is limited for. The use of the lumped mass matrix requires
only slightly more iterations and the method seems to be much more robust. These methods
can be combined with BiCGSTAB to speed up the calculations. However the robustness is
compromised as it is possible for bifurcations to occur and mass conservation is slightly less.
These bifurcations can be resolved by using BiCGSTAB in combination with a minimum cell
averaged depth.

4.3 Extension to two dimensions

In this section all findings of the previous sections will be discussed for two dimensions.
Although there are direct matrix solvers that are able to solve large systems with comparable
computational effort to indirect matrix solvers it is felt that that is outside the scope of this
research and only the iterative solver BiCGSTAB will be considered. As discussed earlier on
in this chapter element-wise contributions to the mass matrix are very hard to implement in
a mass conserving manner and will therefore not be discussed here either.

This section starts with the idea that the most robust and reliable method in combination
with BiCGSTAB to solve the system in one dimension was using the lumped mass matrix at
dry elements, limiting the velocity for small depths and working with a cell averaged minimum
depth to enhance the robustness. Implementing this combination of measures results indeed in
a working two-dimensional model. This section will therefore concentrate on this combination
of measures and the influence of varying certain factors on the performance. In table 4.3 the
different variations on this combination of measures are summarized. It should be noted that
the Jacobi preconditioner as used in one dimension does not perform well in two dimensions.
Therefore an incomplete LU (ILU) preconditioner will be used here.

In general it can be said that the performance of the algorithm is not very robust and
mass conservation is severely compromised by the increase in scales of the two-dimensional
tests, which will be further explained in chapter 5.3. What in one dimension seemed to be
an algorithm with some difficulties that could be bypassed has turned into an algorithm that
needs to be steered and molded into the right shape and direction. Most problems can be
resolved, although the robustness of the one-dimensional model cannot be matched.

4.3.1 Working with a minimum cell averaged depth

The use of a threshold depth is in two dimensions compulsory, while in one dimension it was
possible to obtain a nonsingular system by manipulation of the matrix or removal of dry
nodes from the system. In two dimensions the removal of dry nodes from the system is not as
straightforward as in one dimension since every element is linked to approximately six other
elements instead of two in one dimension. Moreover the matrix is not as well organized as in
one dimension which complicates matters as well.

Manipulation of the matrix is just as straightforward as in one dimension. If a diagonal
entry is zero a one should be placed on the diagonal, all other values in that row to zero
and the RHS equal to the bottom level. Despite its simplicity it does not work in two
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Category Method Extra Mass Iter- Advan- Disadvan-
Measures Conser- ations tages tages

vation
Direct 1. Using a - O(10−14) O(10) Behaves Needs many
Matrix minimum value very iterations
Solvers of the average robust per time

water depth step
2. Remove dry Reconstruct O(10−14) O(1) Solving Sensitive

nodes from T every smaller to value Hj ,
the system iteration system uj is set

Limit uj for to 0 for
small Hj

3. Element-wise - O(10−1) O(1) Sym- Never mass
wetting and metric conservative

drying matrix
4. Manipulating Reconstruct O(10−14) O(1) Easily Sensitive
matrix entries T every Extended to value Hj ,

iteration to 2 D uj is set
Limit uj for to 0 for

small Hj

5. Lumping the - O(10−14) O(1) Behaves Inconsis-
mass matrix for Very tent

dry elements Robust scheme
Iterative 6. Preconditioned 2 O(101) O(1) Never
Matrix Conjugate mass-
Solvers Gradient conser-

Method vative
7. Bi-Conjugate 2Limit uj for O(10−11) O(1) Suitable Poor mass

Gradient small Hj for large conservation
Stabilization systems Not very

Method robust

Table 4.2: Summary of the different measures used and their performance in 1D.

2 In combination with the lumped mass matrix at dry nodes
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Basic measures Variations on the basic measures
BiCGSTAB -

Lumping the mass Lumping the mass Lumping the mass No lumping
matrix at dry matrix everywhere matrix at dry and

elements partially dry elements
dmin Matrix manipulations Solve only the wet part of the domain
du=0 Different values

Table 4.3: Overview of methods, to prohibit matrix A from becoming singular, to be explored
in 2D.

dimensions and after a few time steps the solution explodes. When trying this on an almost
one-dimensional test with only one element in the lateral direction the performance of the
two-dimensional model is just as good as that of the one-dimensional model. So most probably
the matrix becomes close to singular because of many small entries in the matrix. Nonetheless
BiCGSTAB does not experience any trouble with this, since it does not use the inverse of
a matrix but only matrix vector products. In case of an almost one-dimensional problem
small values appear only around the wet/dry interface, only at one location in the matrix.
However for a fully two-dimensional problem very small values will appear in the matrix at
many locations and BiCGSTAB will explode eventually. This implicates that the use of a
threshold depth is necessary to limit the occurrence of too many small entries in the matrix
and thus prevents BiCGSTAB from exploding. This theory is also supported by the fact that
bifurcations occur more frequently and the convergence speed of BiCGSTAB is much lower
for a fully two dimensional problem.

The influence of different values for dmin is not as pronounced as in one dimension. How-
ever for values of dmin > 10−3 m a bore develops at the wet/dry interface. The number of
iterations is not completely indifferent to the value of dmin, but a trend as clear as in one
dimension is not to be observed.

4.3.2 Lumping the mass matrix

The influence of four different ways of lumping the mass matrix are investigated.

� Lumping the mass matrix nowhere,

� lumping the mass matrix everywhere,

� lumping the mass matrix only for dry or partially dry elements, and

� lumping the mass matrix only for dry elements.

Using the consistent mass matrix everywhere leads to a considerable increase in the number
of iterations necessary and in some cases even to an explosion of the solution. Lumping the
mass matrix everywhere decreases the accuracy of the solution. The schemes loses its ability
to perfectly follow the analytical solution. An artificial bore is generated at the wet/dry
interface. In some cases the amount of iterations is reduced, but not in all. In some cases
lumping even causes the system to blow up. Only partly lumping seems to be a solution.
However it is case dependent whether the mass matrix should be lumped only for completely
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dry elements or also for partially dry elements. On the contrary in cases with small gradients
at the wet/dry interface complete lumping or lumping when at least one node of an element
is dry can improve the iteration behavior. Positively, friction is a stabilizing term in this
respect. In cases with friction it does not considerably influence the solution whether the
mass matrix is lumped on dry elements only or at partially dry elements aswell.

It may be concluded that the solution and robustness depend to a large extent on when
the mass matrix is lumped. What criterion should be used for lumping is again highly case
dependent. This is a highly undesirable feature in civil engineering practice. A model should
be able to represent a wave on a sloping beach and a dam break at the same time. Luckily
friction plays a stabilizing role here. For civil engineering applications, friction can rarely be
neglected, making this method still practically applicable.

4.3.3 Occurrence of bifurcations

Bifurcations in the solution of BiCGSTAB were resolved in one dimension by using a minimum
value for the cell averaged depth. In spite of using this dmin in two dimensions bifurcations
still occur. These bifurcation loops can consist of more than 10 different solutions. It is
necessary to implement a routine that establishes the occurrence of a loop and selects the
best solution. As a stopping criterion the minimization of the mass difference between two
subsequent time steps is taken. This procedure is perfectly able to exit bifurcation loops and
reduce the number of iteration steps.

When this stopping criterion is used the occurrence and the size of bifurcations is signif-
icantly reduced. It seems that choosing the wrong answer once causes a chain reaction of
bifurcations and more wrong choices until the system explodes.

Using double precision significantly reduces the occurrence of bifurcations. Using dou-
ble precision does reduce the occurrence of bifurcations but does not resolve the problem
completely. However it does reduce the number of iterations and storage space required.

A sloping bottom has a negative influence on the occurrence of bifurcations. Even for cal-
culations performed with double precision. The stopping criterion does reduce the occurrence
of bifurcations however a difference in iteration behavior can be noticed between sloping and
flat bottoms.

The exit criterion discussed here is only a solution to cure the symptoms, not to the cause.
It works in obtaining a mass conservative solution but unnecessary iteration steps have to
be performed and all solutions to these steps have to be stored in order to be able to choose
the right one. A solution might be found in choosing a formulation for H that is continuous
instead of discontinuous. Thus instead of an abrupt change from H = 0 whereh < 0 to
H = hwhereh ≥ 0 there could be a formulation which changes gradually.

4.3.4 Overview

In table 4.4 the different measures discussed in the last section are summarized. As a method
to prevent matrix A of becoming singular only the use of a minimum cell averaged depth
worked. Moreover the performance with a threshold depth for limiting the velocity was
best for du=0 = 10−4. The methods perform similar with respect to mass conservation and
iteration behavior. Nevertheless if the mass matrix is lumped at dry elements only for large
interface gradients or if the mass matrix is lumped at dry and partially dry elements in cases
with small interface gradients the number of iterations will increase to O(10).
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Method Performance Mass conservation Iterations
% of the initial
water volume

1

Lumping the mass matrix -Decrease in accuracy O(10−6) O(1)
everywhere -Increase in robustness

Lumping the mass matrix Works only for small gradients O(10−6) O(1)
at dry and partially at the wet/dry interface

dry elements
Lumping the mass Works only for large gradients O(10−6) O(1)

matrix at dry elements at the wet/dry interface
Lumping the mass - Increase in the number O(10−6) O(1)

matrix nowhere of iterations
- Occurrence of instabilities

2

Matrix manipulations Unstable - -
Solve only the Not straightforward to - -

wet part of the domain implement in 2D
dmin Works best for O(10−6) O(1)

dmin = 10−3

3
du=0 Works best for O(10−6) O(1)

du=0 = 10−4

Table 4.4: Performance of different solution procedures in two dimensions. In every case
dmin = 10−4, du=0 = 10−4 and BiCGSTAB is used to solve the matrix.



Chapter 5

Validation and discussion

To test the performance of the wetting and drying procedure with respect to its solution,
stability properties, mass conservation and iteration convergence the numerical solutions of
different tests are compared to several corresponding analytical solutions and measurements
from literature.

In the first part of this chapter one-dimensional cases are discussed. These are compared
to analytical solutions and we will see that the results are very satisfying. In the second
part of this chapter several two-dimensional test are discussed. Some tests are compared
to analytical results and some are compared to laboratory measurements. Despite of the
difficulties encountered upon in the two-dimensional model the results look quite well. It
should be noted that the results of the tests appeared to be very sensitive to the numerical
settings. The last part of this chapter is devoted to mass conservation since this is one of the
main aspects of wetting and drying.

5.1 1D Test Cases

In this section several one-dimensional test cases will be considered of which the numerical
results will be compared to the analytical solution. At first a classical one-dimensional dam
break problem will be considered. This test will be performed with a dry bed to test the
wetting and drying procedure, and with a wet bed to assess the performance of the advective
scheme. This is quite a severe test case because of the large initial gradient at the wet/dry
interface. Secondly a test with flow over a long crested weir will be done. This is again not to
assess the performance of the wetting and drying algorithm but to assess the performance of
the advective schemes. As explained in section 1.4 the wetting and drying problem comprises
both positivity of water depths (mass conservation) and momentum conservation over a con-
tact discontinuity. So it is just as important to assess the momentum conservation properties
of the advective terms. After this a parabolic basin with an oscillating plane surface will be
assessed. In the end a test with non-breaking waves on a sloping beach will be looked at.

All results are given for a second order Riemann advection scheme with a minmod limiter.
The mass matrix will be lumped at dry elements. All results are calculated both for Gaussian-
elimination and for BiCGSTAB unless stated otherwise.

45
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Figure 5.1: Initial state (solid line) and solution at time t (dashed line) for the dam break
problem.

5.1.1 Dam Break test

The dam break test is a classical test widely used to validate the performance of wetting and
drying procedures. Examples in literature are Stelling and Duinmeijer [22], Fraccarollo and
Toro [9], LeVeque [15] and Toro [26].

Two regions with different water levels, initially separated by a vertical wall, are con-
sidered. At t = 0 s the wall is suddenly removed and a flood wave enters the downstream
domain.

This test case is used to assess the performance of the advective discretization and the
ability of the model to handle the flooding of several cells per time step. The difficulties that
arise for the dry dam break problem are

� the thickness of the water layer at the front becomes infinitely small in the analytical
solution. This is of course difficult in a numerical representation,

� the gradient of the water front is very large, flooding the dry part of the domain at a
very high speed.

Analytical description dry bed case

The analytical solution to the dam break problem is derived in Stoker [24] for the inviscid
shallow water equations in which friction is neglected. For an upstream water mass that
is initially at rest and a downstream water level equal to zero, as shown in figure 5.1, the
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solution between x = −c0t and x = 2c0t is described by

h =
1
g

(
2
3
c0 −

x

t

)2

,

u =
2
3

(
c0 +

x

t

)
, with

c0 =
√
gh0

(5.1)

Numerical setup

This test is performed three times. First the system is solved direct, secondly the system is
solved iteratively with BiCGSTAB. For these cases the mass matrix is lumped at fully dry
elements. The velocity is set to zero for du=0 = 10−3 m. The resolution is set to ∆x = 1 m
and ∆t = 0.05 s.

In the third test grid refinement is applied, resulting in ∆x = 0.1 m and ∆t = 0.001
s. The system is solved direct and the velocity is set to zero for du=0 = 10−3 again. The
upstream water level, h0 is set to 1 m. All nodes with xi ≤ 20 are initially wet; the others
are dry.

Results and discussion dry bed case

The results obtained with Gaussian-elimination are presented in figure 5.2. The average
number of iterations per time step is 1.65, figure 5.3. In figure 5.4 and 5.5 the results are
shown using BiCGSTAB. The results with respect to the analytical solution and the number
of iterations are quite similar in both cases.

The scheme is able to represent the analytical solution disregarding some wiggles in the
velocity profile. These wiggles in the velocity profile can be suppressed with grid refinement
as is clearly visible in figure 5.15(a). However the lag in velocity that was visible in figure 5.2
and 5.4 does not vanish for increasing resolution. Apparently the velocity does not converge
completely to the analytical solution. The use of an explicit advective term could be causing
this lag in the velocity profile. When there is such a large discontinuity in velocity it is not
hard to imagine that using the velocity from the old time step causes the lagging propagation
of the shock wave. Since this is not of major importance for the testing of the wetting and
drying algorithm no implicit advective formulation is tested in this study.

No artificial bore is created at the wet/dry interface. This means on the one hand that
the model does not experience any trouble with the flooding of more than one element per
time step. That does not mean that the time step can be taken any size. The Courant
condition still has to be fulfilled due to the explicit advective term. On the other hand the
advective term performs well, since the advective term is largely responsible for the correct
representation of the shape of the wet/dry interface.

If one looks at the mass conservation in figures 5.2 and 5.4 a strange thing occurs which
is most apparent in figure 5.2. If a mass error occurs, the difference with respect to the
preceding time step is of the same size or a multiple of it, in case of Gaussian-elimination,
3.5527 · 10−15 m2. Here this does not seem to be very disturbing, however we see later on
that the size of this error increases significantly for larger scales in two dimensions. In section
5.3 special attention is paid to this phenomenon.
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Figure 5.2: Results for the dam break problem at t = 3 s, with ML used at the dry nodes,
solved direct and du=0 = 10−3 m.
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Figure 5.3: Number of iterations for the dam break problem at t = 3 s, with ML used at the
dry nodes, solved direct and du=0 = 10−3 m, the average number of iterations is 1.65.
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Figure 5.4: Results for the dam break problem at t = 3 s, with ML used at the dry nodes,
solved iteratively with BiCGSTAB and du=0 = 10−3 m.
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Figure 5.5: Number of iterations for the dam break problem at t = 3 s, with ML used at the
dry nodes, solved iteratively with BiCGSTAB and du=0 = 10−3 m, the average number of
iterations is 1.65.

Figure 5.6: Results for the dam break problem at t = 3 s, with ML used at the dry nodes,
solved direct and du=0 = 10−3 m, with ∆t = 0.001 s and ∆x = 0.1 m.
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Analytical description wet bed case

The solution with a wet bed downstream is slightly different. Now four separate zones can
be recognized. The upstream area that has not been affected by the dam break, a parabolic
shaped area, a constant state shock wave area and an unaffected downstream area. These
four zones are indicated in figure 5.7. The solution for region I is equal to the solution for the
wet bed case. The solution in area II is

hII = 1
g

[
−1

3 (uII − cII) + 2
3c0

]2 (5.2)

uII = ξ
(

1− dIII
dII

)
.

The propagation velocity of the front is given by

ξ =
√
g
hII
hIII

hII + hIII
2

. (5.3)

The solutions in region 0 and III are equal to the left and right initial conditions.
This test case does not verify the solution with respect to wetting and drying. However

the correct representation of the height of the hydraulic jump indicates whether the scheme
is momentum conservative.

Figure 5.7: Initial state (solid line) and solution (dashed line) for the dam break problem
with a non-zero water depth at both sides of the dam.

Numerical setup

The numerical parameters for this test are set to ∆x = 0.5 m and ∆t = 0.05 s. The mass
matrix is lumped at completely dry elements and solved with Gaussian-elimination. The
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upstream water depth was set to h0 = 1 m at all nodes with xi ≤ 20. The downstream water
depth was set to hIII = 0.1 m at nodes with xi > 20.

Results and discussion wet bed case

As can be seen in figure 5.8 the height of the jump is not represented correct. It is too high
therefore the particle velocity of the water behind the front is too low and the propagation
speed of the front of the numerical solution is considerably lower than of the analytical
solution. This test indicates that momentum is not conserved properly. This is most probably
caused by the approximations for the advective velocities. However since in the previous test
the scheme was able to model the dry-bed dam break test without a bore being generated it
is assumed that these losses are not of too much importance.

Figure 5.8: Results for the dam break problem at t = 5 s with a non-zero water depth at
both sides of the dam, with ML used at the dry nodes, solved direct.

5.1.2 Long crested weir

This test case is used to verify the ability of the method to correctly represent the water levels
and energy head for flow over a long crested weir. The downstream flow is supercritical, the
flow at the crest of the weir is critical, and upstream the flow is subcritical. For a good
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[!htp]

Figure 5.9: Different solution zones for a Long-crested weir. The water level is indicated by
the solid line and the energy head by the dashed line.

representation of different flow regimes it is assessed whether the height of the hydraulic
jump and the energy head loss over the hydraulic jump is represented correctly and whether
the Froude number is exactly one at the head of a “perfect” weir.

Analytical description

The solution can be split in four regions as indicated in figure 5.9. The solution is determined
by the boundary conditions qin and hout. In zones 1 to 3 energy conservation applies, in the
transition from zone 3 to 4 only momentum conservation is applicable because energy is lost
in the hydraulic jump.

The Froude number is given by
Fr =

u√
gh
. (5.4)

The water level at the crest is critical, this means that Fr = 1 and can be calculated with

d2 =
(
q2
in

g

) 1
3

. (5.5)

The water depth in zone 1 can be related to the water depth in zone 2 by energy head
conservation,

d1 +
u2

1

2g
= d2 + a+

(
qin
d2

)2

2g
. (5.6)

The water depth in zone 3 is related to the water depth in zone 4 by momentum conservation
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which is written as
d3 + d4

2
d3d4 =

q2
in

g
. (5.7)

Numerical setup

In this test the lumped mass matrix is used at dry elements and the system was solved with
Gaussian-elimination. The grid size was set to ∆x = 0.5 m except for some refinement at the
steps of the weir to ∆x = 0.1 m. The time step was set to ∆t = 0.05 s. The height of the
weir was a = 0.4 m, the incoming discharge was set to qin = 8 m3

s (/m) and the downstream
water depth was set to hout = 2.5 m.

Results and discussion

The numerical results are shown in figure 5.10. In table 5.1 the analytical results are compared
to the numerical results in the four different zones. The analytical and numerical depths do
not differ much. At the top of the weir where the flow gently changes from subcritical to
supercritical the Froude number goes through 1, as is shown in figure 5.11. It is clear that
the scheme is able to represent the height of the hydraulic jump, the energy head and the
critical water depth very well.

Figure 5.10: Results for flow over a long crested weir.
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Zone Analytical solution Numerical solution Absolute difference (%)
1 d1 = 2.78 d1 = 2.81 1.08

E1 = 3.20 E1 = 3.23 0.94
2 d2 = 1.87 d2 = 1.94 3.74

E2 = 3.20 E2 = 3.23 0.94
3 d3 = 1.35 d3 = 1.33 1.48

E3 = 3.20 E3 = 3.22 0.63
4 d4 = 2.50 d4 = 2.50 0.00

E4 = 3.09 E4 = 3.10 0.32

Table 5.1: Comparison of numerical results to analytical results.

Figure 5.11: The Froude number for the flow over a long crested weir. The flow changes
slowly from subcritical to supercritical.
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5.1.3 Parabolic Basin

The analytical solution that describes the oscillating movement of an initially tilted plane in
a parabolic basin is derived by Thacker [25]. For an example of this test, used to verify a
wetting and drying algorithm in a finite element method, one can take a look at Bokhove [1].
Again the inviscid SWE in which friction is neglected are considered.

This test case is used to assess the ability of the model to handle sloping bottoms and the
amount of numerical diffusion in the model. The difficulties that arise with this test case are

� that flooding and drying occurs at the same time, and

� that oscillations of the water surface are easily generated while the surface should remain
planar.

Analytical description

The bottom level, water level and velocity are given respectively by equations (5.8), (5.9) and
(5.10).

z(x) = −D0

(
1− x2

L2

)
(5.8)

h(x, t) = 2ηD0cos(ωt)
(
x− η

2L
cos(ωt)

)
(5.9)

u(x, t) = −ηωsin(ωt) (5.10)

With

ω =
(

2gD0

L2

) 1
2

D0, the maximum depth of the basin
2L, the length of the water surface when horizontal
η, a coefficient that determines the initial amplitude

Numerical setup

This test is performed three times, twice solved directly and once using BiCGSTAB. In each
case the mass matrix was lumped at dry elements and du=0 = 10−3 m. The third test was
with a higher resolution. The test case related parameters are set to D0 = 50 m, L = 10
m and η = 0.1. Two grids are used for this test, a uniform grid with ∆x = 0.5 m and one
nonuniform grid for the last test where ∆x = 0.1 m for −11 ≤ xi ≤ −9 and 9 ≤ xi ≤ 11 and
∆x = 0.5 m everywhere else. The time step was set to ∆t = 0.05 s.

Results and discussion

In figure 5.12 the numerical solution compared to the analytical solution is shown at t = 2T .
It can be seen that the solution suffers a lot from numerical damping. The numerical damping
in the system is proportional to ∆t and by reducing the time step size a solution with less
damping is obtained. The damping in the system is not (solely) caused by the wetting and
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Figure 5.13: The mass error as a function of the time step and the number of iterations
needed per time step for the parabolic basin test, the average number of iterations is 1.41.
The computational parameters were set to ∆t = 0.05 s, ML used at the dry nodes, solved
directly and du=0 = 10−3 m.

Figure 5.14: The analytical solution for the parabolic basin compared to the numerical solu-
tion at t = 2T s with ∆t = 0.005 s, ML used at the dry nodes, solved directly and du=0 = 10−3

m.
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(a)

(b)

Figure 5.15: The analytical solution for the parabolic basin compared to the numerical solu-
tion with ∆t = 0.005 s, ∆x = 0.1 m in wetting and drying region, ML used at the dry nodes,
solved directly and du=0 = 10−3 m. (a) The surface elevation for the basin at t = 2T s. (b)
The surface elevation at x = 7 m.
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drying procedure since for a standing wave in a basin with vertical walls the motion is damped
quite fast as well.

In figure 5.14 the solution is given, at t = 2T , with a time step of ∆t = 0.005 s. The
performance of the numerical wetting and drying algorithm is good. The mass error is at
machine accuracy and the average number of iterations per time step is only 1.41, see figure
5.13. The scheme is able to handle the sloping bottom, however some wiggles may be gener-
ated near the dry wet interface. Near the shoreline there can be a kink in the water surface.
When an element becomes dry this kink suddenly changes shape and this sudden movement
translates through the domain. The remedy is found in grid refinement near the shore. In
figure 5.15(a) it can be seen that no wiggles occur. In figure 5.15(b) the water level variation
at x = 7 m is plotted. Although visually in figure 5.15(a) the reduction of the time step has
resolved the damping problem it can be seen in figure 5.15(b) that there is still some damping
in the system.

Figure 5.12: The analytical solution for the parabolic basin compared to the numerical solu-
tion at t = 2T s with ∆t = 0.05 s, ML used at the dry nodes, solved directly and du=0 = 10−3

m.

BiCGSTAB does not perform well on this test case. The occurrence of bifurcations makes
the calculation slow. Moreover, bifurcations occur in which none of the found solutions
are mass conservative. The performance can be improved by using a smaller tolerance and
increasing the maximum number of iterations, yet bifurcations can still occur. In fact using
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dmin instead of lumping the mass matrix against matrix singularities results in the most
improvements. No bifurcations occur and mass conservation is improved. The results are
given in figure 5.16. The average number of iterations per time step might seem to be more
than in figure 5.12, but it is only 1.52. In case of a large matrix this will probably be
compensated by the use of BiCGSTAB.

Figure 5.16: The analytical solution for the parabolic basin compared to the numerical solu-
tion at t = 2T s with ∆t = 0.005 s with dmin = 10−4 m, BiCGSTAB to solve the system and
du=0 = 10−3 m, the average number of iterations is 1.52.
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5.1.4 Waves on a sloping beach

In this test a sinusoidal wave climbs up a sloping beach without breaking. The initial shape
and velocity distribution determine whether a given wave will break. The analytical solution
to this problem is derived by Carrier and Greenspan [7]. While Carrier and Greenspan derive
their solution to determine a breaking criterion in the first place, their solution has been
used numerous times to verify wetting and drying problems, amongst others by Stelling and
Zijlema [23] and Bokhove [1].

This test case is particularly suited to verify the accuracy of the calculated shoreline
movement and the correct representation of the location of the nodes of the standing wave.

Analytical description

Carrier and Greenspan come to their solution by using dimensionless quantities and writing
the solution in terms of the independent variables λ and σ.

λ = 2 (v + t)
σ = 4c

(5.11)

Where v, t and c are respectively the dimensionless velocity, time and propagation speed.
The solution is based on the inviscid shallow-water equations in which friction is neglected.
The velocity, water surface elevation, distance and time with respect to these variables are
then written as (in dimensionless form)

v = σ−1φσ (σ, λ) ,

x =
φλ
4
− σ2

16
− v2

2
,

η =
φλ
4
− v2

2
,

t =
λ

2
− v, with

φ = AJ0 (σ) cos (λ) .

(5.12)

Where J0 is the Bessel function of the first kind.

Numerical setup

In this case all the solution methods discussed in Chapter 4.2 do not give a proper solution
except for the solution with a minimum value for the cell averaged water depth in combination
with a direct matrix solver. The value of a minimum element averaged depth is set to
dmin = 10−5 m. The parameters used are the same as used by Stelling and Zijlema [23] and
Madsen et al. [19]. A sinusoidal wave with a wave period 10 s and a wave height of 0.006 m
propagates onto a beach with a slope of 1 : 25, the maximum water depth is 0.5 m. The step
size is ∆x = 0.04 m and the time step is ∆t = 0.01 s.

Results and discussion

The results for this test are presented in figure 5.17, 5.18 and 5.19. The average number of
iterations is surprisingly low, 1.15, considering that using dmin usually results in a relatively
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Figure 5.18: The analytical velocity compared to the numerical velocity for the Carrier and
Greenspan test with dmin = 10−5 m, solved direct and du=0 = 10−5 m.

Figure 5.19: The iteration behavior for the Carrier and Greenspan test, the average number
of iterations is 1.15.
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high number of iterations. The model is quite well able to represent the wave shape, the
location of the node and the wave velocity, but only for a relatively small grid size. For the
parameters considered some irregularities at the shoreline are already observed for ∆x > 0.1
m. The value of dmin also influences the solution considerably. For larger values than dmin =
10−5 m a small bore develops at the wet/dry interface. However, if the velocity is not limited
for small water depths, large and irregular velocity peaks occur at the dry wet interface.

Figure 5.17: The analytical water level compared to the numerical water level for the Carrier
and Greenspan test with dmin = 10−5 m, solved direct and du=0 = 10−5 m.

5.2 2D Test Cases

In this section several two-dimensional numerical test results are compared to analytical
solutions as well as to measurements. First a standing wave in a parabolic basin is compared
to an analytical solution. It is a test with relatively small gradients at the wet/dry interface
and the dry area is relatively small compared to the wet area. Second a parabolic water mass
is released on a horizontal plane which is again compared to an analytical solution. In this
case the gradient at the wet/dry interface is significantly larger than in the first test and the
ratio wet area to dry area is approximately one.

After that the model is compared to measurements by a test in which a solitary wave runs
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upon a conical island. This test bears quite some resemblance to the parabolic basin test. It
also has relatively small gradients at the wet/dry interface and the wet area is large compared
to the dry area. The only difference is that in this test friction is included. It can be seen as
a logical next step after a good performance on the parabolic basin test. At last the models
performance is compared to the measurements of a two dimensional dam break. In this case
large gradients at the wet/dry interface exist as well as a large dry area.

All tests are performed with the use of a minimum element averaged depth, dmin, the
velocity will be limited for a depth du=0, the system will be solved with BiCGSTAB, the
mass matrix will be lumped for all elements which are partially dry or fully dry (depending
on the test case), and an exit mode to prevent unnecessary iterations will be adopted.

5.2.1 Standing wave in a parabolic basin

In this test a parabolic shaped water surface is released in a parabolic basin inducing a
standing wave pattern. Because friction is neglected this wave does not damp out. The
analytical solution to this test was derived by Thacker [25]. This test is amongst others used
by Casulli [8] and by Fuhrman and Madsen [10] to verify their wetting and drying procedures.

The difficulties of this test case encompass

� the generation of wiggles by the sudden transition of an element from dry to wet and
vice versa,

� the occurrence of flooding and drying at the same time.

Analytical description

The bottom of the basin is described by

z(x, y) = −h0

(
1−

√
x2 + y2

L2

)
(5.13)

where h0 denotes the maximum depth of the basin measured from the zero level and L is the
radius of the basin measured from the zero level. The water depth is given by

H = h0

[ √
1−A2

1−A cos (ωt)
− r2(1−A2)
L2(1−A cos (ωt)2)

]
(5.14)

where A is given by

A =
(h0 + n0)2 − h2

0

(h0 + n0)2 + h2
0

(5.15)

and n0 is the initial surface elevation at x, y = 0.

Numerical setup

This test is performed with a minimum element averaged value of dmin = 10−4 m, the
mass matrix is lumped for dry and partially dry elements and the velocity is set to zero for
du=0 = 10−4 m. For this test the test constants are taken h0 = 50 m, n0 = 5 and L = 500 m.
The total number of elements used is 11686, the approximate area of an element is 625 m2.
In the wetting and drying region, a refinement was applied up to an approximate element size
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of 125 m2. The resulting mesh is shown in figure 5.20. The time step was set to ∆t = 0.5 s.
In the end a comparison is made to a case in which the mass matrix is lumped everywhere,
all other settings are the same as described above.

Figure 5.20: Computational grid for the two-dimensional parabolic basin test

Results and discussion

In figure 5.21 the numerical results are compared to the analytical results. The results are
quite similar. Grid refinement in the wetting and drying region is necessary to minimize the
occurrence of wiggles. However it is obvious that the scheme suffers from numerical damping.
At first the analytical solution and the numerical solution lay nicely on top of each other,
while after already less than a half period a little difference is visible between the numerical
and the analytical solution. The average number of iterations per time step is 2.46.

The periodic character of the solution is nicely visible by the iteration behavior, figure
5.22. T = 50.15 s, which is approximately 100 time steps. The moments at which the
velocity is zero are at time step 50, 100, 150, 200, 250 and 300 become visible by multiple
subsequent time steps of only 2 iterations or even 1. The maximum speed of flooding occurs
approximately at time steps 25, 125 and 225. Around these time steps 3 to 4 iterations are
needed. The maximum speed of drying is approximately at time steps 75, 175 and 275, and
results in several time steps in which 3 iterations are necessary. It is clear that the speed
of flooding and drying does influence the iteration behavior and apparently flooding is more
difficult than drying.

When the mass matrix is lumped only for fully dry elements the system blows up after
a few time steps. When the mass matrix is lumped everywhere the results are pretty much
the same as for the case of lumping at dry elements and partially dry elements. However
the occurrence of a mass error is less frequent, see figure 5.23, and the average number of
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Figure 5.21: Numerical solution compared to the analytical solution at t ≈
0, 1

10T,
2
10T,

3
10T,

4
10T and 5

10T s for the cross-section y = 0.

Figure 5.22: Iterations per time step for the standing wave in a parabolic basin, the average
number of iterations per time step is 2.46.



68 CHAPTER 5. VALIDATION AND DISCUSSION

Figure 5.23: Mass conservation for the standing wave in a parabolic basin in case the mass
matrix is lumped everywhere. Left: the total mass error as a function of the time step. Right:
the mass difference with respect to the previous time step.
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iterations per time step is slightly reduced to 2.15. So in this case lumping everywhere does
lead to computational improvements.

Mass conservation is not very satisfactory for this test as can be seen in figure 5.24. If
one takes a close look at the mass conservation figures in section 5.1, figures 5.2 and 5.12
it is visible that at every time step the same absolute mass jump in the mass error occurs.
In one dimension this was not very disturbing because these jumps were of O(10−14) to
O(10−7), whereas the mass differences in this test are of O(1). However the percentage of
the total water volume is only 10−5%. Nevertheless a trend is clearly visible and in case of
long computations this can lead to severe mass errors. In section 5.3 it is shown that this
phenomenon is not a feature of the wetting and drying procedure.

Figure 5.24: Mass conservation for the standing wave in a parabolic basin in case the mass
matrix is lumped for dry and partially dry elements. Left: the total mass error as a function
of the time step. Right: the mass difference with respect to the previous time step.

5.2.2 Parabolic flood wave

A water mass with a parabolic shape which is initially at rest is released on a flat bed without
friction. The analytical solution to this test was derived by Thacker [25].

The difficulty of this test case is that the interface gradient is very strong, causing the
flooding process to go very fast. Moreover the water level at the dry nodes can become very
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negative. As seen earlier on this could lead to many iterations per time step.

Analytical description

The initial shape of the water mass is described by

h0 = η

(
1− x2 + y2

R2
0

)
. (5.16)

In which R0 is the initial radius of the water mass and η is the initial height of the mount.
The development in time of the mount is described by

h = η

[
T 2

t2 + T 2
− x2 + y2

R2
0

(
T 2

t2 + T 2

)2
]
. (5.17)

In which T is the time after which the initial height η has been halved and is given by

T =
R0√
2gη

. (5.18)

Numerical setup

This test is performed with a minimum element averaged value of dmin = 10−4 m, the mass
matrix is lumped whenever an element is completely dry and the velocity is set to zero for
Hn
j < 10−4 m. The test parameters are set to η = 0.5 m, R0 =

√
10 m resulting in a half-

period T = 1.0096 s. The time step is taken 0.025 s, the total number of elements used is
1681 and the area of an element is ∆t = 0.125 m2. The mesh used is shown in figure 5.25.
In the end a comparison is made to the performance of the model for complete lumping and
for lumping the mass matrix for dry and partially dry elements. The remaining settings are
kept the same.

Figure 5.25: Computational grid for the parabolic water mass test.



5.2. 2D TEST CASES 71

Figure 5.26: Numerical solution compared to the analytical solution at t =
0, 0.75, 1.5, 2.25 and 3 s, when lumping the mass matrix for dry elements only.
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Figure 5.27: Iterations per time step for the spreading of a parabolic water mass when lumping
the mass matrix for dry elements only, the average number of iterations per time step is 2.17.

Figure 5.28: Mass conservation for the spreading of a parabolic water mass. Left: the total
mass error as a function of the time step. Right: the mass difference with respect to the
previous time step.
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Figure 5.29: Numerical solution compared to the analytical solution at t =
0, 0.75, 1.5, 2.25 and 3 s in case of a lumped mass matrix.

(a) (b)

Figure 5.30: Iterations per time step for the spreading of a parabolic water mass. (a) Lumping
at dry and partially dry elements, the average number of iterations is 7.47. (b) Lumping
everywhere, the average number of iterations is 1.73.
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Results and discussion

In figure 5.26 the results are shown for t = 0, 0.75, 1.5, 2.25 and 3 s. The models ability to
represent this analytical solution is very good. The spreading of the numerical solution is a
little bit larger than that of the analytical solution, as shown by the slightly lower top and
the wider toe. This is not quite unexpected since the advection scheme is only first order
accurate. The iteration behavior as shown in figure 5.27 is also very good, with an average
of 2.17 iterations per time step it does not perform worse than the one-dimensional tests.
What is clearly visible is the decreasing number of iterations with a decreasing gradient at
the wet/dry interface or decreasing flooding velocity. However figure 5.28 shows that mass
conservation is not quite as good as it was for one-dimensional tests. Again the error, if any,
is of the same size. There is a clear trend visible and for long computations this could result
in a serious mass error.

It is possible to lump the mass matrix for partially dry elements too. No instabilities
occur, but the iteration behavior is seriously compromised as can be seen in figure 5.30(a),
resulting in an average number of iterations per time step of 7.46. When using the lumped
mass matrix everywhere a bore is created at the wet/dry interface as can be seen from figure
5.29. The average number of iterations per time step is slightly decreased to 1.73 when
lumping the mass matrix everywhere, see figure 5.30(b). In these two figures the decreasing
number of iterations for a decreasing flooding velocity is visualized. The mass conservation
is practically the same for complete lumping of the mass matrix as for lumping only at fully
dry elements. Here again lumping might be preferred with respect to computational effort.
However, one should realize that the accuracy of the solution is seriously compromised.

5.2.3 Solitary wave runup on a conical island

In this test a solitary wave is generated by a wave maker and sent into a water basin in which
a conical shaped island is located. This laboratory test is performed by the Coastal and
Hydraulics Laboratory of the USACE. The results have been used as a source for multiple
publications, amongst others Liu et al. [16], Briggs et al. [2] and Fuhrman and Madsen [10].
The tests were performed as a result of two tsunami events where unexpectedly large runup
heights in the lee of small islands were observed. As it was felt that more knowledge was
necessary on the parameters that influenced the runup process three different tests were
carried out. In this study a comparison is made to only one of these measurements since the
other two tests fall outside the application range of the shallow water equations.

Experimental setup

The test was performed in a rectangular basin of 30 m by 25 m as shown schematically in
figure 5.31. The center of the island was located at x, y = (15m, 13m). The slope of the island
was 1 : 4 and the diameter of the basis of the island was 7.2 m. A wave maker was installed
along the x-axis. Twenty seven gauges were installed to measure the surface elevation. Of
eight of these gauges the data series were available, which are shown in figure 5.32. The still
water level is indicated by the dashed line.

Gauges 1 to 4 measure the incoming generated solitary wave and are placed at a distance
of a half wavelength from the foot of the island. Gauge 6 was placed at the foot of the island
at the 270◦ transect. Gauges 9, 16 and 22 were all placed at 0.08 m depth at the 0, 90 and 270◦
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Figure 5.31: Experimental setup of the solitary wave runup on a conical island test. (a) Top
view. (b) Cross-section A-A’. [16].
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Figure 5.32: Location of the wave gauges.
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transect. The still water depth was 0.32 m. The height to depth ratio of the solitary wave
was ε = 0.05, resulting in a (solitary) wavelength of 6.55 m.

Numerical setup

Only part of the basin was modeled for the numerical computations. The lower boundary in
x-direction was chosen at the line of gauges 1 to 4 such that the measured incoming wave
could function as a boundary condition. A total width of the computational domain of 14.4
m was chosen as it was felt that the fully reflecting lateral boundaries would not have a
significant influence on the solution at that distance from the island. This while assuming
that the wave is perpendicular again to the sides of the basin at that distance. The time step
used was 0.02 s. The grid consisted of 60126 elements of which the approximate area was
0.04 m2 which changed gradually to an area of 2.25 · 10−5 m2 around the still water level as
shown in figure 5.33. Mannings friction parameter is set to n = 0.01 m−

1
3 s. The incoming

wave that was measured was set to zero after 15 s since after that the signal was disturbed by
the wave reflection on the island. The resulting boundary condition is shown in figure 5.34.

Figure 5.33: Computational grid for the solitary wave runup.
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Figure 5.34: Boundary condition for the solitary wave.

Results and discussion

When approaching the island the solitary wave starts to shoal, thus becoming steeper and
shorter, as can be nicely seen in figure 5.35(a). Next refraction and diffraction cause the wave
to bend around the island, see figure 5.35(b). The wave is (partially) reflected at the front
of the island causing a depression, see figure 5.35(c). Where the two bent sides of the wave
meet at the back of the island a larger runup is induced by wave-wave interference, see figure
5.35(d).

In figure 5.36 the numerical results compared to the measurements at the wave gauges
are plotted. It can be seen that the model represents the arrival time and the height of the
incoming wave very well. The wave is slightly steeper than measured which is not unexpected.
Because the waves in the SWE travel with wave speed c =

√
gH the top of the wave will

travel faster than the lower part of the wave. In reality the applicability of the SWE comes
to an end close to the island. With decreasing depth the vertical accelerations are no longer
negligible, which causes the deviation in the steepness of the wave top. The reflected wave
is not represented well by the numerical model, since the trough is not as deep as it should
be according to the measurements. Nevertheless the shape is followed quite well only not
reaching the same extrema. This is probably caused by the numerical damping that we have
seen before in the test of the standing wave in the parabolic basin.

In figure 5.37 the number of iteration per time step are given. The average number of
iterations per time step is 1.95.

The results with respect to runup are not as good as for the gauges. In figure 5.38(a) the
horizontal runup is given. The gray dots indicate the initially dry nodes and the black dots
indicate the nodes which remain dry throughout the entire simulation. The solitary wave
is coming in from the left side of the figure. In the southwest area of the island the runup
is much higher than at the north west side. On further investigation it is discovered that
the water depth in this area is really small, O(10−3), and can be caused by a bias in the
grid. In one dimension the problem of a thin layer shooting ahead of the wet/dry interface
was already encountered. In one dimension it was solved by limiting the velocity for too
small water depths. If we change the value of the water depth where we apply this for from
du=0 = 10−4 m to du=0 = 10−3 m this does indeed solve the problem, figure 5.38(b). If
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(a) (b)

(c) (d)

Figure 5.35: Numerical solution at times t = 10.8 (a) , t = 12 (b), t = 13.8 (c) and t = 16.8
(d) s.
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Figure 5.36: Numerical solution compared to the analytical solution at gauges 6,9,16 and 22
for the solitary wave runup on a conical island test.

Figure 5.37: Iterations per time step for the solitary wave runup on a conical island, the
average number of iterations is 1.95.
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(a)

(b)

Figure 5.38: The horizontal runup for (a) The velocity is limited for du=0 = 10−4. Due to
a thin layer of water the calculated horizontal runup shows large (artificial) peaks (b) The
velocity is limited for du=0 = 10−3 the runup shows a more physical realistic image.
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Figure 5.39: The vertical runup while lumping the mass matrix at dry and partially dry
elements.
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the horizontal runup is plotted together with the measured runup some resemblance can be
observed. The shape of the shoreline and the enhanced runup at the lee side of the island is
represented well, see figure 5.39. However, this result is highly dependent of du=0. In figure
5.39 du=0 = 5 · 10−3, for smaller values the runup is larger and for larger values the runup is
smaller than the measured runup.

5.2.4 Two-dimensional dam break

As a last test to the wetting and drying procedure presented in this study a two-dimensional
dam break is simulated. Dam break problems have been the subject of many research studies.
Brufau and Garcia-Navarro [4] developed a model based on multi dimensional upwind schemes
that is suited to model a dam break into a bent channel. Stelling and Duijnmeijer [22] also
use an upwind scheme to simulate a two-dimensional dam break which they compare to
measurements with good results. The same measurements will be used here to compare the
simulation to.

Experimental setup

This test is performed with a large basin of which a relatively small compartment contains
water. At t = 0 s a gate is lifted with 16 cm/s and the dry area is flooded. The water
containing part has a width of approximately 8 m by 2.4 m and has 0.6 m water in it. The
dry basin is 8 m wide and almost 30 m long. The opening between the two basins has a width
of 0.40 m. The experimental setup is shown in figure 5.40. The propagation and shape of the
water front was measured with a video camera. The thickness of the water layer is measured
with wave gauges which were positioned at the symmetry axis of the basin.

Numerical setup

To perform this test with minimum calculation capacity a symmetry axis is chosen in the
middle of the basin in the long direction and only half of the basin is modeled. The numerical
layout is shown in figure 5.41. The approximate area of the grid cells in the outflow basin
is 0.04 m2 and the approximate area of the elements in the water basin is 0.1 m2. In the
outflow opening mesh refinement is applied to an approximate area of 0.01 m2. The mesh
consists in total of 18268 elements. The time step is set to ∆t = 0.0004 s and the computed
time is 6 s, dmin = 10−4 m, du=0 = 10−4 m and the mass matrix is lumped for completely
dry elements. The nodes with yi ≤ 0 have an initial water depth of 0.6 m. The slow opening
of the gate is not taken into account and the water is released at once at t = 0 s. Mannings
friction parameter is set to n = 0.01 m−

1
3 s.

Results and discussion

In figure 5.42 and 5.43 the numerical solution to the dam break problem at times t =
1, 2, 3, 4, 5 and 6 s is shown. The model is able to model such a severe test case without
any numerical artificialities. Just as in the one-dimensional dam break two types of waves
can be observed. One wave traveling into the water basin and one wave traveling into the
outflow basin. The water accelerates mainly in the y-direction from the pressure out of the
basin. When flowing further out of the basin it slowly starts to spread in lateral direction
too.
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Figure 5.40: Experimental setup of the two-dimensional dam break experiment.
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Figure 5.41: Computational meshes for the dam break test case.

In figure 5.44 the numerical results for the location of the front is shown at t = 1, 2, 3 and 4
s compared to the measured values and the numerical results of Stelling and Zijlema [22]. It
is obvious that the propagation of the front and the measured values in y-direction is very
well initially however after a few seconds a slight lag becomes visible. This lag can also be
observed in 5.45 for the gauges at a distance of 6 and 9 m from the aperture. This is not a
surprising observation since we have seen this phenomenon already in several one-dimensional
test cases.

The lateral movement of the front is not as satisfying as the longitudinal movement. The
spreading of the front in lateral direction is too large. The cause lays within the assumption
of the instantaneous opening of the gate instead of an opening speed of 16 cm/s and in the
assumption of hydrostatic flow in the outflow opening.

The average number of iterations per time step is 1.32, the iterations per time step are
shown in figure 5.46. The calculation time is relatively high compared to the previous tests due
to poor convergence of BiCGSTAB. For other tests BiCGSTAB needed around 40 iterations
and for this test it could even be up to 400.

The mass error is again of O(10−6)% of the total amount of water, as is visible in figure
5.47.
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(a)

(b)

(c)

Figure 5.42: The numerical solution for the two-dimensional dam break problems at (a) t = 1
s, (b) t = 2 s and (c) t = 3 s.
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(a)

(b)

(c)

Figure 5.43: The numerical solution for the two-dimensional dam break problems at (a) t = 4
s, (b) t = 5 s, and (c) t = 6 s.
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Figure 5.44: The length and width of the front for the two-dimensional dam break test at
t = 1, 2, 3, 4 s the gray line indicates the measured values, the dashed line indicates the
numerical results of Stelling and Duinmeijer and the red line indicates the results obtained
with the model presented here. In the numerical results n = 0.01 m−

1
3 s is used.
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(a) (b)

(c) (d)

Figure 5.45: Water levels at (a) gauge 0, at y = −1 m, (b) gauge 1 at y = 1 m, (c) gauge 2
at y = 6 m and (d) gauge 3 at y = 9 m. The red line represents the experimental results,
the green and the blue line represent the numerical results of Stelling and Duinmeijer with
respectively n = 0.01 m−

1
3 /s and n = 0.012 m−

1
3 /s and the black line are the numerical

results obtained with the model presented here and n = 0.01 m−
1
3 /s.
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Figure 5.46: Iterations per time step for the two-dimensional dam break problem. The average
number of iterations per time step is 1.32.
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Figure 5.47: Mass conservation for the two-dimensional dam break problem. Left: the total
mass error as a function of the time step. Right: the mass difference with respect to the
previous time step.
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Figure 5.48: Mass error for a still water test in a two-dimensional parabolic basin. The total
amount of water in the basin is 1.96 · 107 m3.

5.3 Mass conservation

When considering the examples in sections 5.1 and 5.2 mass conservation of the wetting and
drying procedure appears to be good in general, of O(10−6%. Mass errors for completely wet
tests are of the same order as for tests that include wetting and drying. In fact, in case of
a still water test the occurring mass errors are of the same order as in case of wetting and
drying.

Nevertheless after a few cases it becomes apparent that a rather strange phenomenon
with respect to mass conservation can be observed. In every test, if an error occurs between
two subsequent time steps, it is of exactly the same size. In one dimension this was not
considered as troublesome since the error was of O(10−14) m2 however in two dimensions this
error becomes considerably larger. For large domains with a total mass of O(107) m3 this
error can even grow to O(1) m3.

To illustrate this phenomenon a still water test is used. A two dimensional parabolic basin
with a horizontal water level is assumed without external forcing. At t = 0 s the simulation
is started. Since no external forcing is applied all fluctuations will be numerical artificialities
and rounding errors. Moreover since the wet area is constant in time the system reduces to
a linear system. The total amount of water in the system is 1.96 · 107 m3.
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Figure 5.49: Absolute value of the relative mass error plotted against the initial volume of
water in the system for a still water test in a cubic basin with different water depths.

In figure 5.48 the mass error is shown. In the left plot the cumulative mass error is given
and in the right plot the mass error between two subsequent time steps can be seen. The mass
error in this test does not differ significantly from a mass error plot with water movement or
shoreline movement as we have seen in section 5.2.

This mass error is not influenced in size and only slightly in occurrence by using a dmin
or not, or different values for dmin. It does not matter whether the mass matrix is lumped
completely, at dry elements or at dry elements and partially dry elements. Moreover there
is no connection between the occurrence of bifurcation and the occurrence of the mass error.
Furthermore the mass error is indifferent to the mesh used. It does not matter how many
elements the mesh consists of or whether the mesh is structured or unstructured. The only
relation that is to be found is with the amount of mass in the system.

To visualize this a new still water test is performed. The tests is performed on a cubic
basin with four closed walls. The water level in the basin is horizontal and no external forcing
is applied. The test is performed several times with different water volumes. The volume in
the basin is adjusted by adjusting the water depth. The total area of the basin is 100 m2.

In figure 5.49 the absolute value of the mass error between two subsequent time steps
is plotted against the total amount of mass in the system. The occurring mass error per
time step is constant until a certain threshold mass is reached. Then the relative mass error
becomes twice its size for a certain range in mass again until it exceeds another threshold
and the error is doubled once more. In table 5.2 the values that are plotted are given with
the enlargement factor with respect to the previous value. As can be seen the enlargement
factors are always multiples of 2. However in terms of percentage the mass errors might not
be so disturbing after all, since these are always of O(10−5). Even in the case shown in figure
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Mass Absolute value of the Enlargement factor with Percentage of mass
relative mass error respect to previous error

2 1.1921e-07 - 5.9605e-06
7.8375 4.7684e-07 4 6.0840e-06

20 1.9073e-06 4 9.5367e-06
50 3.8147e-06 2 7.6294e-06
100 7.6294e-06 2 7.6294e-06
150 1.5259e-05 2 1.0173e-05
200 1.5259e-05 7.6294e-06
250 1.5259e-05 6.1035e-06
300 3.0518e-05 2 1.0173e-05
400 3.0518e-05 7.6294e-06
500 3.0518e-05 6.1035e-06
600 6.1035e-05 2 1.0173e-05
800 6.1035e-05 7.6294e-06
1000 6.1035e-05 6.1035e-06
1004 6.1035e-05 6.0792e-06
1100 1.2207e-4 2 1.1097e-05
1200 1.2207e-4 1.0173e-05
1600 1.2207e-4 7.6294e-06
2000 2.4414e-4 2 1.2207e-05

Table 5.2: Mass in the system and relative mass error for a still water test in a cubic basin
with different water depths.
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Figure 5.50: Long term mass loss for a still water test in a two-dimensional parabolic basin
after 15000 s.

5.48 where the total amount of mass is 1.96 · 107 m3, the loss in terms of percentage is still of
O(10−5). Nevertheless a distinct trend is visible in the mass errors and for long computations
problems will most certainly arise. In figure 5.50 the mass loss for the still water test in a
parabolic basin is shown with a calculated period of 15000 s in 30000 time steps. It can be
seen that the loss per time step is equal in absolute value. For the cumulative mass error, a
pronounced trend can be observed which does not differ from the short term trend. Indeed
it can be concluded that this mass loss can cause some serious problems.

The fact that the occurrence is indifferent to so many parameters and even to water
movement does point in the direction of an error at system accuracy that is enlarged by the
scheme. Moreover the fact that the occurrence is indifferent to water movement indicates
that the problem is not caused by the wetting and drying procedure.

To support this assertion a two tests will be done with double precision. The first test
will be the same as discussed above. A two dimensional parabolic basin with a horizontal
water level is assumed without external forcing. At t = 0 s the simulation is started. The
second test is performed to show that double precision also diminishes the mass error in case
of wetting and drying and is the same test only now a parabolic shaped initial water level is
released.

In figure 5.51 the mass error for the still water test is presented which is now of O(10−9)
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Figure 5.51: Still water test in a parabolic basin performed with double precision. Left: the
total mass error as a function of the time step. Right: the mass difference with respect to the
previous time step.

per time step what means that it is reduced to O(10−14) % which is system accuracy. In
figure 5.52 the mass error for the parabolic basin with the parabolic shaped initial water level
is shown. Now mass conservation is a little less however it is still of O(10−12) % which is still
not more than system accuracy. Moreover the cumulative mass error is in both cases of the
same order. It is obvious that the usage of double precision resolves the mass error problem.
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Figure 5.52: Test of a standing wave in a parabolic basin performed with double precision.
Left: the total mass error as a function of the time step. Right: the mass difference with
respect to the previous time step.



98 CHAPTER 5. VALIDATION AND DISCUSSION



Chapter 6

Conclusions and recommendations

The objective of this study was to develop a wetting and drying algorithm for a 2DH finite
element method based upon the wetting and drying algorithm proposed by Casulli [8] and
investigate whether this procedure is a mass conservative, efficient and robust method to
include wetting and drying. In this chapter conclusions with respect to its performance will
be discussed and recommendations with respect to further research will be given.

6.1 Conclusions

The wetting and drying procedure is mass conservative. Occurring mass errors were caused by
rounding errors and not necessarily by the wetting and drying procedure. However mistreated
bifurcations can lead to mass errors which are a consequence of the wetting and drying
procedure. The occurrence of bifurcations is a serious problem in practical applications.
Their occurrence can be minimized, but not resolved, by using double precision and use a
small tolerance and a large maximum number of iterations as BiCGSTAB settings.

The procedure costs in general 2 to 3 iterations in case of wetting and drying, except for
some peaks in case of seriously large gradients at the wetting and drying interface or large
flooding or drying velocities. The model is very robust in one dimension and slightly less
in two dimensions. However using double precision has a considerable positive influence on
robustness and on the iteration behavior of the wetting and drying iteration.

The main problems encountered with the model were numerical damping, mass conser-
vation errors and wrong velocity estimations near large discontinuities in velocity. The first
two problems are not properties of the wetting and drying procedure or of the momentum
conservation over the contact discontinuity, but of discretization of the SWE. This implicates
that the wetting and drying procedure itself does not suffer from these problems. The prob-
lem in the estimation of the velocity near the contact discontinuity is, of course, a problem
of the wetting and drying algorithm. However this can most probably be solved by using an
improved formulation for the advective terms.

6.1.1 Conclusions with respect to one-dimensional modeling

The wetting and drying algorithm presented by Casulli for finite volumes transformed to finite
elements gives quite reasonable results. Compared to the finite volume case there are several
difficulties that arise. The main problem is that the matrix properties are less favorable in case

99



100 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

of finite elements. To prevent the matrix A from becoming singular in a mass conservative
way several measures can be taken:

� use a minimum cell averaged depth;

� manipulation of the matrix in combination with a lumped mass matrix at dry elements;

� removal of the dry nodes from the system in combination with a lumped mass matrix
at dry elements;

� manipulation of the matrix in combination with updating the linear (T ) and the non-
linear part (P ) of the system matrix every iteration step;

� removal of the dry nodes from the system in combination with reconstruction of matrix
T every iteration step.

To be mass conservative there are three options:

� make use of a minimum water depth dmin in T to guarantee non-zero diagonal entries
in the system matrix;

� use the lumped mass matrix at dry elements;

� reconstruct T every iteration step.

The use of the lumped mass matrix costs slightly less iterations than using the consistent
mass matrix and the method seems to behave much more robust. BiCGSTAB can be used
to speed up the calculations. However the solution behaves not as robust as with a direct
solver; it is possible for bifurcations to occur and mass conservation is compromised a little.

The most general applicable and robust method is using dmin. It performs best on sloping
topographies and it improves the robustness of BiCGSTAB significantly.

6.1.2 Conclusions with respect to two-dimensional modeling

In two dimensions all the above mentioned notions for prohibiting matrix singularities and
for mass conservation hold. However for a robust model some more care should be taken.
The use of dmin is necessary to obtain a robust model.

Lumping the mass matrix is also something that should be done for robustness, however
not necessarily in the entire domain. The criterion for lumping depends on the type of
problem. In case of large gradients lumping should be done for entirely dry elements, in case
of gentle gradients the mass matrix should also be lumped for partly dry elements. Using
a lumped mass matrix in the entire domain can result in some improvements with respect
to computational costs, less wetting and drying iterations and better mass conservation (in
some cases), however the model is not able anymore to produce the exact solution.

Including friction in the calculations diminishes the sensitivity to lumping of the mass
matrix for partially dry elements. Still the convergence of the wetting and drying iteration
and of BiCGSTAB is very sensitive to this however no instabilities are generated.
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6.2 Recommendations

The wetting and drying algorithm performance is reasonably well on the testcases presented
here. However only analytical solutions and measurement data from laboratory experiments
are used. To obtain a complete picture of the performance of the wetting and drying algorithm
it is recommended to do a simulation from civil engineering practice to assess its performance
in non-ideal situations.

If computation time is a very important factor in the calculation this method is probably
not the best option, since it introduces a nonlinearity which has to be solved iteratively. This
means that the solution procedure to solve the system has to be done twice as often (on
average). Since this part is often the most expensive part of the calculation it will increase
the computational effort considerably. On the other hand many other methods impose time
step limitations on the solution procedure increasing the computational effort in another way.
Therefore this method is absolutely not inferior to other methods available.

Many problems encountered upon in this study seem to be related to the finite element
method. Off course it is not possible to draw conclusions with respect to finite volume
modeling from this study but this method seems to be a more elegant fit for a finite volume
method. Nevertheless it is possible to implement it in a finite element method but it will not
behave robust in all circumstances.

For practical applications the occurrence of bifurcations is a serious problem since it
increases the number of iteration steps and the amount of storage space required. It is
advised to perform more research with respect to this phenomenon. For example test whether
a continuous formulation of H would solve this problem. Moreover it is important to find out
why sloping bottoms induce bifurcations or at least enhance the occurrence of bifurcations

The criterion stated here whether to lump the mass matrix only for dry elements or also
for partially dry elements is only based on four tests. Founding such a conclusion on only four
observations is rather simplistic inductive reasoning. It is therefore recommended to perform
more research on why lumping the mass matrix for partially dry elements is in some cases
necessary to obtain results and in some cases the cause that no results are obtained.

If one is determined to use the entire schematization presented in this study and not only
the wetting and drying algorithm, it is advised to implement the advective term implicit and
to use double precision in all the calculations to diminish the mass error. However taking
the advective term implicit will cancel the biggest advantage of the scheme presented here,
namely that only one system needs to be solved instead of two coupled systems.
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