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Als met water zelf, met de gedachte
spelen dat je ooit en eindelijk
zult weten wat het is.

Het is regen geweest, een rivier, een zee,
hier was het, hier heb ik het gezien

en zie ik water en weet niet wat het is.

rutger kopland

Voor de artsen en verpleegkundigen van
Intensive Care Chirurgie,

Sophia Kinderziekenhuis, Rotterdam.
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Chapter 1

General introduction

1.1 Numerical hydraulics

1.1.1 A short history

Numerical fluid mechanics was virtually initiated by Blaise Pascal (1623-
1662), who founded hydrostatics and developed a mechanical calculator.
In the ‘Age of Reason’ Newton (1643-1727) formulated the fundamental
laws of motion which were specialized later to the case of inviscid fluid flow
by Euler (1707-1783). The extension to laminar flow of viscous fluids is
due to Navier (1785-1836) with the correct derivation and basic solutions
being given by Stokes (1819-1903). Their Navier-Stokes equations (1822)
are now generally accepted as the mathematical starting point for fluid flow
problems, although it remains to be proven that these equations possess
unique solutions in three dimensions1.

While theoretical fluid mechanics attained a high level of sophistica-
tion, its purely mathematical results found limited application in enginee-
ring, mainly due to the natural role of turbulence which was not very well
understood until Prandtl (1875-1953). More relevant in practice were the
results of Torricelli (1608-1647), who studied the motion of fluids through
apertures, the energy conservation law formulated by Bernoulli (1700-1782)
and the expressions derived by de Borda (1733-1799) to calculate the energy
losses in contractions and mouthpieces. To describe flows in one-dimensional
open channels de Saint-Venant (1797-1886), assuming hydrostatic pressure,
derived the shallow-water equations (swe) while de Chézy (1718-1798) and
Darcy (1803-1858) established empirical relations for the energy loss by bot-
tom friction. Supported with these empirical results, the scientific method
gradually gained importance in the design of drainage, irrigation systems
[22] and flood defence2.

1The existence and smoothness of the Navier-Stokes problem is one of the seven Mil-
lennium Problems posed by The Clay Mathematics Institute.

2Some artists of the ‘Romantic Era’ also criticized the scientific approach. In the novel

1
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(a) (b)

Figure 1.1: Zuiderzee flood, 1916, the Netherlands: (a) inundation of the
island of Marken and (b) computational network for tidal predictions as
employed by Lorentz [58].

One of the first numerical models applied in civil engineering hydrau-
lics is the harmonic method, conceived by Lorentz [58] in the aftermath of
the Zuiderzee flood in 1916, which was developed to calculate tidal-wave
propagation in a network of one-dimensional tidal channels, see Figure 1.1.
Interestingly, this approach would nowadays be classified as a ‘residual free’
sub-grid method as the underlying linearized swe are solved exactly on each
element of the network and coupled via a continuity condition in the nodes.
During 1930-1950 the harmonic method was extended and refined by Dron-
kers [20] but computations were still performed manually. To relieve this
computational effort van Veen [91] exploited the equivalence of the linearized
swe with the ‘telegraph equation’ by using alternating currents in electri-
cal circuits to simulate tidal flow problems. This ultimately resulted in the
deltar [96], an electrical analogon which provided tidal forecasts for the
Dutch delta region between 1964 and 1982.

On the digital front, the first computer models became operational du-
ring the 1950’s and are thriving nowadays’s engineering practice. The de-
velopments started with one-dimensional network models which permitted
to abandon the linearization procedures needed in the analytical methods,
see Dronkers [20]. With increasing computer capacity, the 1960’s saw the
first practical two-dimensional shallow-water flow models which successfully
used the alternating direction implicit method (adi) where the shallow-
water equations are solved sequentially in the x- and in the y-direction. In
computational hydraulics this method was introduced by Leendertse [53]
and refined later by Stelling [83]. The underlying Cartesian grids are gene-
rally inconvenient to capture complicated geometries which motivated the

Der Schimmelreiter by Theodor Storm [85] the rational dike warden Hauke Haijen opposes
the superstition of his neighbours which leads to a catastrophic flood.
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development of methods using boundary fitted, curvi-linear grids or un-
structured grids [70]. Modelling the vertical structure of the flow in strati-
fied estuaries was introduced by Vreugdenhil [94]. The extension to truly
three-dimensional hydrostatic models followed in the 1990’s [27] where the
unstructured models mainly adopted the philosophy of being unstructured
in the horizontal but structured in the vertical [12, 59].

More recently, it became feasible to include non-hydrostatic effects as
well, which are neglected in the shallow-water approach, to model short
waves, buoyant flows or small-scale flows around hydraulic structures. Many
of these models somehow employ an approximation to the non-hydrostatic
equations, splitting the solution procedure into a hydrostatic and a non-
hydrostatic part [43, 82]. In a similar vein, finite element models can be
extended with non-hydrostatic components using a vertical stack of prisms
[41]. This approach is however problematic if intrinsically three-dimensional
problems are to be considered. An early, fully three-dimensional flow model
was developed by Versteegh [92], using a Cartesian grid and artificial com-
pressibility in combination with the adi method to by-pass the continuity
constraint, where the pressure is treated in an equal manner in all three
directions. In Tezduyar [87] a non-hydrostatic finite element flow model on
arbitrary grids is presented taking into account free-surface deformation.

From these historical notes, one can only speculate about future direc-
tions of numerical model development in environmental fluid mechanics.
This thesis continues by considering a fully unstructured, finite element mo-
del for transport and incompressible flow problems in environmental fluid
mechanics without a priori assumptions concerning the pressure distribution
nor the geometrical orientation of the flow. The main reasons for pursuing
this approach is that it allows intrinsically three-dimensional objects to be
accurately resolved while it would also enable the modelling of domains
having a partial free surface.

1.1.2 Model equations

The motion of water and the associated transport of dissolved or suspended
matter in systems that hydraulic engineers have to deal with are basically
gouverned by conservation laws. To this end the water is modelled by its
velocity u (x, t) and its density ρ (x, t) at the point x and time t. Letting
Ω ⊂ R

3 denote the domain of interest and I = (t0, tN ) the considered time
interval, the flow problem is solved if we know all relevant variables in Ω× I
to a sufficient degree of accuracy3. To this end, an Eulerian control volume
V ⊂ Ω is considered having a boundary ∂V to which n is the unit outward
normal vector, see Figure 1.2.

3From an engineering point of view this means that the model results allow to discri-
minate between different management strategies or design options [95].
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n

V
u

V�

u�
�

Figure 1.2: Schematic of Eulerian control volume V .

Conservation of mass requires that the change of the total mass contained
in V equals the net inward transport of mass through the boundary ∂V
during a time interval I, ∫

V
Δρ = −

∫
I

∫
∂V

ρu · n, (1.1)

where Δρ denotes the increment of the density ρ in the time interval I and
n is the unit outward normal vector on ∂V . For differentiable u and ρ,
applying Green’s divergence theorem leads to the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.2)

in which ∂ρ/∂t denotes the time derivative of the density and ∇ denotes the
spatial gradient operator. Using the chain rule Equation (1.2) may also be
written as

∂ρ

∂t
+ u · ∇ρ ≡ Dρ

Dt
= −ρ∇ · u. (1.3)

The left hand side constitutes the total or material derivative giving the
density variations of a moving fluid particle caused by changing pressure,
temperature and salinity. In environmental water systems these density
variations are usually considered negligible with respect to the reference
density (Boussinesq-approximation). This reduces Equation (1.3) to the
incompressibility condition

∇ · u = 0, (1.4)

which can be regarded as a constraint for the flow velocity field.
Considering conservation of linear momentum in V leads to∫

V
Δ (ρu) =

∫
I

∫
V

f −
∫

I

∫
∂V

(pn − σn) , (1.5)
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in which f are the external forces acting on the fluid per unit volume (such
as gravity), p is the fluid pressure and σ is the flux tensor resulting from
the advective and viscous momentum transfer. The advective part of this
tensor is given by the dyadic product ρu ⊗ u, where (u ⊗ u)ij = uiuj . The
diffusive part is related to the deformation rate of the fluid. For Newtonian,
incompressible fluids the diffusive flux is given by −2μ∇su, where μ is the
fluid viscosity and ∇s = 1

2∇ (·)+ 1
2∇ (·)T is the symmetric gradient operator.

Applying the divergence theorem, and combining the previous expressions
for the flux σ, leads to the momentum equation

∂(ρu)
∂t

+ ∇ · (ρu ⊗ u) + ∇p −∇ · (2μ∇su) = f . (1.6)

The pressure is directly related to the density by an equation of state but
as the fluid has been assumed incompressible the pressure is in this case
implicitly determined by Equation (1.4) instead. The molecular viscosity of
water is only small (μ ≈ 10−3 kg/ms) and can be neglected at the time and
length scales typically encountered in civil engineering hydraulics. At the
same time this small viscosity renders the water motion turbulent in most
of these cases.

Turbulent fluctuations of velocities and pressure are usually not fully
resolved in a computational model and Equation (1.6) has to be averaged in
some way to describe the resulting net fluid motion in terms of the modelled
average velocities. The averaging procedure introduces additional transport
terms representing the mean turbulent advection of momentum by the unre-
solved velocity fluctuations. These turbulent ’stresses’ are usually modelled
in terms of the gradient of the resolved velocities, analogous to the represen-
tation of viscous stresses. In this way the averaged equation for the resolved
velocity becomes essentially similar to Equation (1.6) with μ being repla-
ced by a turbulence viscosity μt which has to be calculated by a turbulence
closure model [68].

Finally, the transport of dissolved or suspended matter (such as salinity
or sediment) is considered. As the mass of each transported constituent is
conserved, the mass balance equation also holds individually for the density
ρi of component i. When the concentration of a transported substance is
described in terms of its mass fraction φi = ρi/ρ the divergence theorem
gives, after elimination of the incompressibility constraint Equation (1.4)
the following transport equation for φi

∂φi

∂t
+ u · ∇φi −∇ · (κt∇φi) = fi, (1.7)

where fi is the densimetric source term of constituent i and κt is the turbu-
lence diffusivity whose magnitude may differ from the turbulent kinematic
viscosity νt = μt/ρ. If the transport of matter involves changes in den-
sity the flow and the advected density field will interact. Density changes
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caused by natural variations of salinity and temperature are usually small
enough to use the Boussinesq- approximation and the flow virtually remains
incompressible as expressed by Equation (1.4). However, even small den-
sity variations can have a huge impact on the flow field. This is modelled
by coupling the momentum equation to the transport equation through the
volumetric forcing term f which will amongst others depend on the local
density.

In all cases, the interaction with flow and transport processes outside
the domain of interest is imposed by supplying boundary conditions on the
boundary of Ω. In time dependent cases also the initial condition at time
t = 0 must be provided.

1.1.3 Discretization principles

Model discretization comprises the transformation of the continuous pro-
blems given by Equations (1.4), (1.6) and (1.7) into an algebraic system
of equations that can be solved by a computer. Firstly, this involves the
representation of the continuous flow field in terms of a discrete set of num-
bers. Secondly, the gouverning differential equations must be approximated
in some way to give the evolution of the discrete variables in time. A myriad
of discretization techniques has been devised while new methods are conti-
nuously being developed. Apparently, the ultimate method has not yet been
found. Without trying to be complete, some well-known classes are briefly
described here to mark some distinguishing features of the finite element
method as compared to other modelling principles. A schematic of these
principles is depicted in Figure 1.3.

• Finite difference methods use a mapping of the flow domain onto a
regular grid of discrete points. The flow variables are represented
by point-wise values f i on an associated set of grid points xi while
the differential equations that determine the time evolution of these
variables are approximated from Taylor-series expansions between the
discrete data points.

• Finite volume methods are based on a partitioning of the flow domain
into a number of control volumes or cells each representing a local flow
state. Balance equations are used to determine the rate of change of
the flow state within each volume. This requires the determination of
fluxes F i± 1

2 between control volumes from the cell based data.

• Spectral methods use a set of analytical global basis functions cove-
ring the entire domain to represent the flow variables. Traditionally,
goniometric or polynomial functions are used for this purpose. Substi-
tution into the differential equations directly yields analytical expres-
sions from which the evolution of the flow field is evaluated. In case of
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if
x
�
�

x1ix � 1ix �ix

� �xf

1if �

if
1if �

(a) finite difference method

x1ix � 1ix �ix

� �xf

1if �

if
1if �

1
2iF �1

2iF �

(b) finite volume method

xjxix

� �xf

� �j jf N x
� �iN x

jf

(c) finite element method

Figure 1.3: Schematic illustration of discretization principles.
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(a) (b)

Figure 1.4: Example river optimization study (Lek - the Netherlands): finite
difference shallow-water flow model (a) and finite element model (b) used to
compute the horizontal circulation in modified lay-out of junction [55].

non-linear problems this procedure requires an orthogonal projection
of the analytical solution onto the basis functions.

• Finite element methods finally, also use a set of basis functions to re-
present the flow field. However, the basis functions N i (x) are not defi-
ned globally but locally using partitions of the domain called elements.
The gouverning equations are approximated using weak formulations.
This only requires square integrability of functions and their deriva-
tives which allows rather simple classes of basis functions and elements
of more or less arbitrary size and shape.

Each of the previous methods may have its own merits but, in general, there
are no objective reasons to prefer one method over the other. Moreover, for
most standard problems exactly the same algebraic equations result if the
same configuration of grid points is used, the only difference being the way
the problem is visualized in the modellers mind. More decisive for choosing a
certain method is therefore the type of grid structure that can be employed.

A structured ordering of data, commonly applied for finite difference and
finite volume methods, may be exploited to give highly efficient numerical
algorithms. This is especially useful when storing and manipulating large
amounts of data but it also means less flexibility when designing the layout
of a computational grid. An unstructured, taylor made mesh as typically
employed by finite element methods may in this respect offer the modeller
some more freedom when dealing with irregular topography or complica-
ted layouts, see Figure 1.4, although this comes at the expense of reduced
computational performance in terms of data processing.



1.2. Present research 9

For these reasons a finite element model is perhaps more appreciated
in an engineering environment, as it enables a quick assessment of design
alternatives, while structured models could be a more appropriate choice
for large water management and warning systems containing a vast amount
of variables. To accommodate the first group of applications, the coupled
solution of the set of Equations (1.4), (1.6) and (1.7) by the finite element
method in the context of small-scale civil engineering flow problems is the
main focus of this thesis.

1.2 Present research

1.2.1 Scientific objective

The principal challenge of numerical flow modelling is to control, in a consis-
tent way, two types of instabilities that may occur: (1) instabilities associa-
ted with the advection terms and (2) instabilities due to the incompres-
sibility constraint. In methods employing structured grids the problem is
readily solved by applying a staggered scheme where pressure and velocity
unknowns are located in alternate grid points and advection terms are sta-
bilized via upwind differencing [92]. The finite element approach is less
straightforward in the sense that different basis functions have to be cho-
sen for the pressure and velocity fields where the latter generally requires
a higher order approximation, see for instance Gunzburger [30] for possible
combinations. This however leads to an even more complex data structure
requiring different topologies for velocity and pressure unknowns.

More convenient in this respect are continuous basis functions where
velocity and pressure unknowns are stored in the same nodes. These equal-
order elements require additional stabilization which is generally achieved
by modifying the interpolated velocity field between nodal values. This
may be effected through the addition of element-wise velocity unknowns,
bubble methods [8]; the reconstruction of element velocities from nodal
values, streamline upwind Petrov-Galerkin (supg) method [10]; or by the
addition of residual-based terms, Galerkin least-squares (gls) method [38].
While computationally attractive, ensuring sufficient stability without intro-
ducing excessive dissipation can be problematic. Low-order bubble methods
for instance are not optimally stable [81] while supg and gls methods in-
volve a problem-dependent stabilization parameter which must be chosen
judiciously [87].

Recently, discontinuous Galerkin (dg) methods have been re-discovered
as an attractive alternative. The advected field is approximated by locally
discontinuous functions which involves the definition of fluxes at element
interfaces. The fluxes are obtained from the flow states in neighbouring ele-
ments for which a wealth of flux splitting schemes is available [33, 56]. Up-
winding is thus easily incorporated leading to good stability properties and,
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Figure 1.5: Linear two-dimensional basis functions: (a) continuous, (b) dis-
continuous, (c) global interface function.

in combination with continuous pressure functions, the velocity-pressure
compatibility problem is completely avoided. These benefits however come
at the price of an increased number of degrees of freedom compared to a
continuous Galerkin (cg) method on the same mesh. Also, the complexity
of the scheme increases when diffusive terms are introduced [1]. Recently, for
the advection-diffusion problem, a number of researchers have tried to cir-
cumvent these complications by coupling the discontinuous field to a global
continuous field, see Sangalli [77], Hughes et al. [35] and Buffa et al. [11]. In
the framework of the incompressible Stokes equations Cockburn and Gopa-
lakrishnan [16] have introduced hybrid methods where locally discontinuous
solutions on elements are coupled through the use of global Lagrange mul-
tipliers enforcing weak continuity of the pressure and tangential velocity on
element interfaces. These novel techniques may be exploited to reduce the
underlying system of equations to a global algebraic problem.

This research explores similar concepts by using interface functions which
are global, continuous functions defined on the interfaces between elements,
see Figure 1.5. The problem of interest is posed element-wise using weakly
imposed Dirichlet boundary conditions on each element which are given
as a function of the interface field. The interface field is then determined
such that the resulting flux between elements is weakly continuous. This
approach allows the natural incorporation of upwinding at element bounda-
ries, which is typical of dg methods, while retaining the number of degrees
of freedom as for a cg method. As the stabilizing term is inherited from
the formulation of the interface flux, it automatically adapts to the flow
conditions avoiding the need for a problem dependent stabilization para-
meter. Moreover, conservation is guaranteed with a minimum amount of
artificial dissipation. Interestingly, the approach may be applied to stabilize
incompressible flow problems using equal-order interpolations [51].

The discretization technique, coined Galerkin Interface Stabilization (gis )
method, is developed for the transport equation and the incompressible
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Navier-Stokes equations, in the context of small-scale environmental fluid
mechanics problems. These flow phenomena feature non-hydrostatic pres-
sures while the advection and diffusion of momentum are dominant pro-
cesses. In some cases, the deformation of the free surface may be appreciable
which raises moving domain issues and also leads to non-trivial free-surface
boundary conditions. In an estuarine environment, the coupling between
the flow and an advected density field introduces compatibility problems
[65] which requires special consideration. To accurately resolve intrinsic
three-dimensional geometries the mesh may be constructed from tetrahe-
drons (or triangles in two dimensions) having an arbitrary orientation, that
is without a principal or ‘preferred’ direction in the mesh. As the develop-
ment of the model is motivated by practical problems, its implementation
is tested using a range of examples obtained from engineering practice.

1.2.2 Practical relevance

The flow model is intended to be used for the practical computation of water
motion through or around hydraulic structures in civil engineering systems
such as weirs, barriers, shipping locks (see Figure 1.6), harbour dams or
outfalls. The correct modelling of these flows may contribute to optimizing
the design of such structures and the adjoint management of water systems,
thus gaining functionality and cost effectiveness. Practical situations often
involve complex geometries while most project environments demand a quick
assessment of modified or alternative designs.

Given these considerations, the finite element method is particularly
suited as a basis for such a design supportive modelling tool. It allows a re-
latively high degree of mesh flexibility and the variational format facilitates
a consistent treatment of all relevant terms. To be able to fully exploit these
qualities however, the unstructured data arrangement that comes along with
finite element models may not lead to excessive computational effort. The
present work has resulted in a finite element model, coined finlab, perfor-
ming reasonably efficient with the interface functions playing a crucial role
in this respect. The stabilized method is cast into a general variational fra-
mework which would also allow the extension to other technical disciplines.

It has still to be kept in mind that in a design optimization process or
when supporting the development of management strategies the experience
of the modeller is far more important than the class of numerical method
that is actually being used. In the hands of an experienced modeller any
method may give reliable results in terms of supporting the decisions to be
made. The quality of the results is therefore less dependent on the specific
choice of the method than on the personal expertise and experience of the
modeller.
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Figure 1.6: Example model application (Terneuzen - the Netherlands): ex-
change of salt water (red) and fresh water (blue) in shipping lock, distances
in m [47].

1.2.3 Scope of this thesis

This thesis is organized as follows. Chapter 2 introduces finite element no-
tation and practical issues associated with the use of cg and dg methods
are identified. A combination of both methods is pursued in Chapter 3 for
the advection-diffusion problem to develop a general stabilization technique
which hinges on the use of interface functions. In Chapter 4, the analysis
continues towards a stabilized variational form of the incompressible Navier-
Stokes equations on a fixed domain. Chapter 5 extends the resulting flow
model to the general case of advection-dominated flows with a free surface.
Throughout the exposition, the numerical code is tested using numerous
examples involving analytical solutions, experimental data and practical ap-
plications. In Chapter 6, general conclusions are drawn and directions for
further research are suggested. Summaries in English and Dutch are finally
provided in Chapter 7.



Chapter 2

Finite element computing

This chapter introduces basic concepts to transform the flow of water into
a finite element computer model amenable to practical computation. In
a nutshell, some common discretization techniques are given anticipating
the developments in the upcoming chapters. Most of the theory presented
in this chapter can be found in general finite element textbooks of which
Zienkiewicz and Taylor [99], Johnson [42], Gresho et al. [28], Gunzburger
[30] and Pironneau [68] are particularly relevant.

To demonstrate finite element discretization the potential flow problem,
which arises in the study of irrotational flows, is used as an example. For a
domain Ω ⊂ R

d with smooth boundary Γ = ∂Ω on which n is the outward
normal unit vector, this problem reads: given a source term1 f : Ω → R

d,
the Dirichlet boundary condition g : Γg → R and the Neumann boundary
condition h : Γh → R, find u : Ω → R

d and φ : Ω → R such that

u = ∇φ in Ω, (2.1)
∇ · u = f in Ω, (2.2)
φ = g on Γg, (2.3)
u · n = h on Γh, (2.4)

where d is the number of spatial dimensions and the boundary Γ has been
partitioned into Γg and Γh such that Γg ∪ Γh = Γ and Γg ∩ Γh = ∅. It will
be assumed throughout that the source term and the boundary conditions
possess sufficient regularity such that a solution is admitted. Note that
the potential flow problem has been expressed as a system of two first-
order equations, with a view to later manipulations. Despite its simplicity,
potential flow theory covers an important class of flow problems, notably
the flow towards hydraulic structures [62] and the propagation of surface
waves [60]. Although primarily used here as an example, any numerical flow

1While for incompressible flows f = 0, the general case f �= 0 is given here as this form
is frequently used in incompressible flow solvers.

13
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model should therefore be able to reproduce the corresponding irrotational
flow features.

2.1 Mathematical preliminaries

The discretization of flow problems, such as the potential flow example gi-
ven by Equations (2.1) to (2.4), comprises two subsequent steps. Firstly, the
flow variables in Ω must be represented by a finite set of discrete numbers
for which finite element methods employ function spaces having specific pro-
perties. Secondly, a procedure is needed to represent the flow and transport
problems in terms of the discretized variables for which finite element tech-
niques use variational formulations of the problem. These two topics are the
subject of this section.

2.1.1 Function spaces

Exact solutions of continuous problems having derivatives up to order m
generally belong to the class Cm (Ω) of continuous functions possessing up
to order m continuous derivatives. In contrast, finite element approxima-
tions only require square integrability of functions and their derivatives thus
admitting larger solution spaces. Generally, finite element solutions are de-
fined in L2 (Ω), the space of square integrable functions on Ω. This space
has an inner product

(u, v) =
∫

Ω
uv dΩ, (2.5)

which defines the L2 norm

‖u‖2 = (u, u)1/2 , (2.6)

where u and v are functions belonging to L2 (Ω). In quit a few cases, func-
tions u ∈ L2 are considered having a prescribed value on a partition Γg of
the boundary Γ, which is denoted by

L2
g (Ω,Γg) =

{
u ∈ L2 (Ω) : u = g on Γg ⊂ ∂Ω

}
. (2.7)

where g is the value u takes on Γg.
For second order problems finite element solutions involve the Hilbert

space H1 (Ω) ⊂ L2 (Ω) of functions whose first partial derivatives are also
square integrable

H1 (Ω) =
{
u ∈ L2 (Ω) : ∂iu ∈ L2 (Ω) , 1 ≤ i ≤ d

}
, (2.8)
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where ∂i denotes the partial derivative in the Cartesian direction i. Func-
tions u ∈ H1 (Ω) are C0 continuous and have an additional H1 norm given
by

‖u‖1 = {(u, u) + (∂ui, ∂ui)}1/2 , (2.9)

and a H1 semi-norm given by

|u|1 = (∂iu, ∂iu)1/2 , (2.10)

using the summation convention.
The previously defined function spaces are also used for vector valued

functions u = (u1, · · · , ud)
T ∈ R

d, which will be denoted using boldface
type. For instance, the space of square integrable vector valued functions is
defined by

L2 (Ω) =
{

u| u ∈ [
L2 (Ω)

]d}
. (2.11)

For functions u,v ∈ L2 (Ω) the inner product is naturally defined as

(u, v) =
∫

Ω
u · v dΩ, (2.12)

which defines an associated L2 norm

‖u‖2 = (u, u)1/2 . (2.13)

These definitions are easily extended to Hilbert spaces H1 (Ω) of vector
valued functions and associated norms.

Finite element discretization typically employs a partitioning of the spa-
tial domain Ω into disjoint, open subdomains Ωe (elements) each having a
boundary ∂Ωe on which n is the outward normal unit vector, see Figure
2.1. In the interior of the domain Ω elements intersect pairwise in common
interfaces. The partitioning defines the following unions

Ω̃ =
⋃
e

Ωe (2.14)

Γ̃ =
⋃
e

∂Ωe =
⋃
i

Γi, (2.15)

where Ω̃ is the union of all element interiors, Γ̃ is the union of all element
boundaries and Γi are element interfaces. On a partitioned domain, a space
V
(
Ω̃
)

⊂ L2 (Ω) can be defined containing functions that are piecewise
continuous on elements but discontinuous across element boundaries. These
so-called broken function spaces are formally defined by

V
(
Ω̃
)

=
{

v ∈ L2
(
Ω̃
)

: v ∈ H1 (Ωe) ∀ e
}

. (2.16)
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Figure 2.2: Schematic of broken (discontinuous) function space.
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On an element boundary functions v ∈ V
(
Ω̃
)

are left undefined, but traces

v− and v+ are given by

v± = lim
ε↓0

v (x ± εn) for x ∈ ∂Ωe. (2.17)

On an exterior boundary Γ the trace v+ is not defined but simply set to
v+ = v−, for convenience. Using the above trace definitions, the average and
jump of functions v on an element boundary ∂Ωe are defined as, respectively,

{v} =
1
2
(
v+ + v−

)
, (2.18)

and

�v� =
(
v− − v+

)
n, (2.19)

where the definition of v+ on exterior boundaries implies that �v� = 0 on
Γ. Note that, unlike the average {v}, the jump �v� is a vector quantity. For
vector valued functions v ∈ V

(
Ω̃
)

the jump involves the vector product of
v with n.

Frequently, spaces will be considered containing functions defined on Γ̃
having a unique value on element interfaces. For example, L2(Γ̃) denotes
the space of square integrable functions on Γ̃. A subspace concerns the trace
of the Hilbert space H1 (Ω) on Γ̃ which is denoted by

Ū
(
Γ̃
)

=
{

ū ∈ H1/2
(
Γ̃
)

: ū ∈ L2 (Γi) ∀ i
}

, (2.20)

where the space H1/2 is a fractional Hilbert space. In the sequel, a bar will
be used to denote functions defined on interfaces. Functions ū ∈ Ū are C0

continuous in the sense that

lim
ε→0

ū (x + εt) = ū (x) for x ∈ Γ̃, (2.21)

where t is any unit vector tangent to ∂Ωe in that t · n = 0. These trace
spaces will play a prominent role in this thesis.

2.1.2 Variational formulations

The next step of the discretization process involves the representation of the
underlying mathematical equations in terms of discrete functions, which is
in fact a fundamental issue in finite element approximation. Many problems
in physics may be formulated in terms of a variational principle, and clas-
sical finite element methods exploit this property to construct approximate
solutions. In this respect, it is noteworthy to mention that all flow problems
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encountered in geophysical fluid dynamics can be stated as a variational
principle, see for instance Salmon [76].

Potential flow, for instance, is a minimizer of the total kinetic energy in
the domain Ω [14]. The potential flow problem, Equations (2.1) and (2.2),
is therefore expressed alternatively as a minimization problem

min
u,φ

J =
∫

Ω

1
2
u ·u dΩ+

∫
Ω

φ (∇ · u − f) dΩ−
∫

Γh

φ (u · n − h) dΓ, (2.22)

where u and φ belong to the general solution spaces C∞ and C∞, respecti-
vely, and the functional J constitutes the total kinetic energy in Ω with the
continuity constraint Equation (2.2) and the Neumann boundary condition
Equation (2.4) enforced through a Lagrange multiplier φ. The functional J
attains its minimum where the variation δJ is zero for arbitrary but small
variations δu and δφ. Taking the variation of J and using partial integration,
this gives the following condition for the minimum

δJ =
∫

Ω
(u −∇φ) · δu dΩ +

∫
Ω

(∇ · u − f) δφ dΩ

−
∫

Γh

(u · n − h) δφ dΓ = 0. (2.23)

For φ = g and δφ = 0 on Γg, the variational form Equation (2.23) is fully
equivalent with Equations (2.1) to (2.4) with the potential function φ being
identified as the Lagrange multiplier enforcing continuity and the Neumann
boundary condition.

Variational formulations may be used to bypass the exact solution of
a problem by satisfying the model equations in a weak sense only. While
giving identical results for the exact solution space, variational formulations
also allow spaces having less stringent continuity requirements. For instance,
the functional (2.22) is formally defined for any u ∈ H1 (Ω) and φ ∈ L2 (Ω)
which can be exploited to construct approximate solutions. Supposing that
u and φ are approximated in finite dimensional spaces V ⊂ H1 (Ω) and
Q ⊂ L2 (Ω), respectively, Equation (2.23) may be restated as: find u ∈ V
and φ ∈ Q such that

∫
Ω

(u −∇φ) · v dΩ +
∫

Ω
(∇ · u − f) q dΩ

−
∫

Γh

(u · n − h) q dΓ = 0 ∀ v ∈ V ∀ q ∈ Q, (2.24)

where it has been assumed that φ satisfies the Dirichlet boundary condition
and functions q vanish on Γg. Obviously, Equation (2.24) is consistent with
the strong form of the problem as it is also satisfied by the exact solution
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(ue, φe). This implies Galerkin orthogonality of the discrete error∫
Ω

(eu −∇eφ) · v dΩ = 0 ∀ v ∈ V, (2.25)∫
Ω
∇ · eu q dΩ −

∫
Γh

eu · n q dΓ = 0 ∀ q ∈ Q, (2.26)

where eu = u − ue and eφ = φ − φe are the discrete errors of the velocity
and the potential function, respectively. Letting V and Q approach the
exact solution spaces, these errors can be made arbitrary small provided
that the Ladyshenskaya-Babuška-Brezzi (lbb) condition is satisfied [8]. This
condition reads: there exists a mesh-independent constant γ > 0 such that

sup
v∈V

(∇q, v)
‖v‖2

≥ γ ‖∇q‖2 ∀ q ∈ Q. (2.27)

Satisfaction of the lbb condition requires that the gradient ∇q is not or-
thogonal to the velocity space V for non-trivial functions q ∈ Q [30]. For a
proper choice of V and Q, such that the inequality given in Equation (2.27)
holds, the approximate solution will converge to the exact solution if the so-
lution spaces are refined2. Variational formulations are therefore the natural
starting point for finite element discretization.

2.2 Galerkin methods

Equation (2.24) is a mixed variational form as it contains both u and φ
as dependent variables. A further reduction of the problem is possible by
expressing u in terms of φ directly in which case the mixed form becomes
irreducible. Of particular interest in this thesis are continuous and disconti-
nuous Galerkin methods which are discussed next.

2.2.1 Continuous Galerkin method

A continuous Galerkin (cg) method for the potential flow problem is ob-
tained by setting u = ∇φ in Equation (2.24) directly which is effected by
choosing V = ∇Q. Consider therefore continuous function spaces Q and Qg

defined by, respectively,

Q =
{

q ∈ H1
(
Ω̃
)

: q ∈ P (Ωe) ∀ e
}

, (2.28)

Qg =
{

q ∈ H1
(
Ω̃
)

: q ∈ P (Ωe) ∀ e, q = g on Γg

}
, (2.29)

where P (Ωe) is a set of finite element basis functions defined on subdo-
mains Ωe. The space Qg only differs from Q in that the Dirichlet boundary

2In practice this means that the resolution of the computational mesh will be increased.
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conditions are satisfied. The variational problem becomes: find φ ∈ Qg such
that ∫

Ω̃

(∇2φ − f
)

q dΩ −
∫

Γh

(∇φ · n − h) q dΓ = 0 ∀ q ∈ Q. (2.30)

As functions φ are only C0 continuous the second derivative term can, in
general, not be evaluated directly. Integration by parts of this term leads to∫

Ω̃
∇2φ q dΩ =

∑
e

∫
∂Ωe

∇φ · n q dΓ −
∫

Ω̃
∇φ · ∇q dΩ, (2.31)

where
∑

e denotes summation over all elements. As a crucial step, the resul-
ting gradient terms on element boundaries are assumed weakly continuous
which requires that∑

e

∫
∂Ωe

∇φ · n q dΓ =
∫

Γh

∇φ · n q dΓ ∀ q ∈ Q. (2.32)

Using Equations (2.31) and (2.32), Equation (2.30) can be recast into: find
φ ∈ Qg such that∫

Ω̃
∇φ · ∇q dΩ +

∫
Ω̃

f q dΩ =
∫

Γh

h q dΓ ∀ q ∈ Q. (2.33)

As the general Equation (2.23), this variational form is consistent with the
strong form of the problem which implies Galerkin orthogonality of the error∫

Ω̃
∇e · ∇q dΩ = 0 ∀ q ∈ Q, (2.34)

where the error e = φ − φe.
The cg method has a number of properties marking its ability to construct

approximate solutions. To highlight just one important property, it is no-
ted that Equation (2.33) is also obtained from the following minimization
problem

min
φ∈Qg

J =
∫

Ω̃

1
2
∇φ · ∇φ dΩ +

∫
Ω̃

f φ dΩ −
∫

Γh

hφ dΓ, (2.35)

By straightforward algebra it can be shown that the difference between
functionals J of the discrete solution and the exact solution is given by

J (φ) − J (φe) =
∫

Ω

1
2
∇e · ∇e dΩ, (2.36)

which implies that J (φ) ≥ J (φe). As a consequence, discrete solutions
satisfying Equation (2.33) are optimal in the sense that for a given finite
element space Q the error measured in the H1 semi-norm is minimum

‖∇e‖ = min
φ∈Qg

‖∇ (φ − φe)‖ . (2.37)
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A priori estimates for the error can be obtained from local Taylor-series
expansions of the solution leading to the general result

‖e‖m ≤ Chk+1−m
e ‖φ‖k+1 , (2.38)

where he = diam (Ωe) is a measure of the element size, C is a constant
depending on the element shape and m addresses the type of norm being
considered [42]. For linear polynomials k = 1 the L2 norm of the error
convergences quadratically with the element size

‖e‖2 ≤ Ch2
e

∥∥∇2φ
∥∥

2
, (2.39)

while the corresponding H1 semi-norm of the error converges linearly,

|e|1 ≤ Che

∥∥∇2φ
∥∥

2
. (2.40)

These convergence rates are considered sufficient for general environmental
fluid mechanics applications.

2.2.2 Discontinuous Galerkin method

A discontinuous Galerkin (dg) method for the potential flow problem is
obtained by approximating the potential function φ in a broken function
space. For certain problems, notably the advection-diffusion equation of the
next chapter, the weaker continuity requirements pose some advantages that
may be exploited to obtain improved solutions. To this end spaces Q and
Qg are defined as, respectively,

Q =
{

q ∈ L2
(
Ω̃
)

: q ∈ P (Ωe) ∀ e
}

, (2.41)

Qg =
{

q ∈ L2
(
Ω̃
)

: q ∈ P (Ωe) ∀ e, q = g on Γg

}
, (2.42)

where P (Ωe) is a set of finite element basis functions defined on elements.
Introducing auxiliary interface terms φ̄ : Γ̃ → R and ū : Γ̃ → R

d, Equa-
tion (2.24) may be integrated by parts giving the following variational pro-
blem: given a source term f , find φ ∈ Qg and u ∈ V = L2(Ω̃) such that

∫
Ω̃

u · v dΩ +
∫

Ω̃
φ∇ · v dΩ −

∑
e

∫
∂Ωe

φ̄n · v dΓ −
∫

Ω̃
u · ∇q dΩ

+
∑

e

∫
∂Ωe

ū · n q dΓ −
∫

Ω̃
f q dΩ = 0 ∀ q ∈ Q, ∀ v ∈ V, (2.43)

where it has been assumed that φ̄ and ū satisfy the respective boundary
conditions. Setting v = ∇q for all q ∈ Q and partial integration yields the
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Figure 2.3: The discontinuous field φ and the interface function φ̄.

primal form of the dg method: given f , find φ ∈ Qg such that∫
Ω̃
∇φ · ∇q dΩ +

∑
e

∫
∂Ωe

(
φ̄ − φ

)
n · ∇q dΓ

−
∑

e

∫
∂Ωe

ū · n q dΓ +
∫

Ω̃
f q dΩ = 0 ∀ q ∈ Q. (2.44)

The above formulation closely resembles that in Arnold et al. [1] although
the format of Equation (2.44) is slightly different, with a view to later ela-
borations.

To complete the dg formulation, the interface variables φ̄ and ū have
to be expressed in terms of the function φ in neighbouring elements, see
Figure 2.3. For consistency, φ̄ and ū have to approach the exact solution in
the continuous limit. Conservation requires that jumps �φ̄� and �u� are zero.
An example of a conservative and consistent method is the interior penalty
(ip) method which has the following definitions for the interface terms

φ̄ = {φ} , (2.45)

ū = {∇φ} − α

he
�φ�, (2.46)

where he = diam (Ωe) is a measure of the local element size and α is a
suitably chosen O (1) penalty parameter which is required for stability. The
resulting weak formulation is similar to that of the cg method except for
the inclusion of the interface terms. For continuous function spaces these
terms vanish reducing Equation (2.44) to the cg method.

As can be shown by straightforward algebra, the dg-ip method mini-
mizes the following error functional

min
φ∈Qg

∫
Ω̃

1
2
∇e · ∇e dΩ −

∫
Γ̃
�e� · {∇e} dΓ +

∫
Γ̃

1
2

α

he
�e� · �e� dΓ, (2.47)

where the discrete error is denoted e = φ − φe. This implies that the
solution is optimal in the sense that for a given function space the above
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error functional is minimum. The error functional highlights the need for
the penalty term α as, due to the second term, the functional may become
negative in which case it does not give a norm. Provided that the stability
constant α is not too large, a priori error estimates for the dg-ip method
basically share the general convergence result of the cg method given by
Equation (2.38), although the derivation is far more complicated [1].

2.2.3 Galerkin interface stabilization method

A practical issue with the use of dg methods is the proliferation of the
number of degrees of freedom for a given number of elements relative to
the cg method. If a variational problem involves the solution of implicit
systems, the dg method will be outperformed by the corresponding cg

method on the same mesh. In this thesis, reduced dg formulations will be
pursued having the number of unknowns of a cg method while preserving
the attractive properties of discontinuous methods. The ensuing method is
coined Galerkin interface stabilization (gis ) method.

The starting point for the gis method is the dg formulation given by
Equation (2.44) in which the interface state φ̄ is an independent, global
variable that belongs to a trace space Q̄ defined by

Q̄ =
{

q̄ ∈ H1/2
(
Γ̃
)

: q̄ ∈ P (Γi) ∀ i
}

, (2.48)

where P (Γi) is a set of finite element basis functions defined on element
interfaces. In addition, a related space Q̄g is used which only differs from Q̄
in the sense that the boundary conditions on Γg are satisfied. According to
the above definitions, the interface state φ̄ is unique on element interfaces.

The interface flux ū is left undefined, other than that it must be ex-
pressed in terms of φ̄ and quantities belonging to an element. It may not
depend on quantities from a neighbouring element, the reason for which will
become apparent shortly. This definition renders ū discontinuous across
element interfaces. A constraint for the interface field φ̄ is obtained by re-
quiring weak continuity of the flux and weak satisfaction of the Neumann
boundary condition, which is expressed as∑

e

∫
∂Ωe

ū · n q̄ dΓ =
∫

Γh

hq̄ dΓ ∀ q̄ ∈ Q̄. (2.49)

Combination of Equations (2.44) and (2.49) gives the following variational
problem: given the source term f and the boundary condition h, find φ ∈ Q
and φ̄ ∈ Q̄g such that∫

Ω̃
∇φ · ∇q dΩ +

∑
e

∫
∂Ωe

(
φ̄ − φ

)
n · ∇q dΓ +

∑
e

∫
∂Ωe

ū · n (q̄ − q) dΓ

+
∫

Ω̃
f q dΩ =

∫
Γh

hq̄ dΓ ∀ q ∈ Q, ∀ q̄ ∈ Q̄g. (2.50)
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Obviously, the number of unknowns has increased compared to the standard
dg method due to the introduction of the interface function φ̄ in addition
to the discontinuous field φ. However, as the flux ū only depends on the
interface term φ̄ and terms particular to an element, φ can be eliminated
from Equation (2.50) in favour of the global variable φ̄.

To demonstrate this reduction procedure consider a flux, reminiscent of
the ip method, which has the required property

ū = ∇φ +
α

he

(
φ̄ − φ

)
n on ∂Ωe. (2.51)

Inserting this expression in Equation (2.50) yields: given the source term f
and boundary condition h, find φ ∈ Q and φ̄ ∈ Q̄g such that

∫
Ω̃
∇φ · ∇q dΩ +

∑
e

∫
∂Ωe

(
φ̄ − φ

)
n · ∇q dΓ

+
∑

e

∫
∂Ωe

∇φ · n (q̄ − q) dΓ +
∑

e

∫
∂Ωe

α

he

(
φ̄ − φ

)
(q̄ − q) dΓ

+
∫

Ω̃
f q dΩ =

∫
Γh

h q̄ dΓ ∀ q ∈ Q, ∀ q̄ ∈ Q̄. (2.52)

Setting q̄ = 0 yields a set of local problems on each element Ωe with weakly
imposed Dirichlet boundary conditions φ̄. These local problems can be
solved to express φ in terms of φ̄. Next, setting q = 0 and substituting
the local expressions for φ (static condensation), yields a global system of
equations for φ̄ which has the same structure as that of the associated cg

method. After solution of the global problem, the field φ is found by local
back substitution. Equation 2.52 is equivalent to the following minimization
problem,

min
φ∈Q, φ̄∈Q̄g

J =
∫

Ω̃

1
2
∇φ · ∇φ dΩ +

∑
e

∫
∂Ωe

(
φ̄ − φ

)
n · ∇φ dΓ

+
∑

e

∫
∂Ωe

1
2

α

he

(
φ̄ − φ

)2
dΓ +

∫
Ω̃

f φ dΩ −
∫

Γh

h φ̄ dΓ, (2.53)

which clearly shows the variational structure of the gis method.
In the context of the potential flow example, the above procedure may

seem tedious as the corresponding cg formulation, Equation (2.33), is al-
ready stable. However, the procedure may be exploited to stabilize advection
dominated flow and transport problems while inheriting the favourable pro-
perties of dg methods. Moreover, for an appropriate choice of the interface
flux, the lbb condition for mixed problems given in Equation (2.27) may be
circumvented. The reduction of dg formulations using interface functions
will therefore be a recurring theme in the next chapters.
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2.3 The discrete problem

For practical computing variational problems have to be transformed into
algebraic systems that can be solved on a computer. In this section an
overview of basic finite element spatial discretization and time integration
methods is given with particular emphasis on those methods that will be
used in the next chapters.

2.3.1 Mesh partitioning

In order to define the appropriate discrete subspaces the domain of interest
must be partitioned into elements first. A finite element mesh commonly
consists of triangles and quadrilaterals in R

2 or tetrahedrons, prisms and
hexahedrons in R

3. The construction of a mesh is performed by a mesh ge-
nerator, which partitions the domain Ω into elements Ωe satisfying specified
criteria. This thesis uses a mesh generator developed by Segal and Praag-
man [80] of which an example triangular mesh is shown in Figure 2.4. To a
certain extent, the size and shape of the elements may be chosen freely. This
enables the user to accurately resolve complex geometrical features such as
coastlines, irregular sea bed topography or man-made structures (breakwa-
ters, barriers). Moreover, the resolution of the mesh may be increased in
regions of specific interest or in parts of the domain where sharp gradients
of the solution are expected. For a thorough discussion on this topic see
Gresho et al. [28]. Advanced codes employ adaptive mesh refinement where,
driven by the discrete error, the element density increases automatically in
regions giving the largest contribution to the global error (h-refinement).
Another adaptive strategy is to move the nodes, while preserving the mesh
topology, in such a way as to minimize the discrete error [3]. These adaptive
techniques are however left out of consideration here.

Following the construction of a mesh, a discrete finite dimensional solu-
tion space is defined by assigning to each element a set P (Ωe) of elementary
basis functions. The combination of the shape of an element and the set of
basis functions defines the element type. The set of Lagrange polynomial ba-
sis functions P k(Ωe) is an obvious choice where the polynomial order k may
be chosen a priori or may depend adaptively on the solution (p-refinement).
Although finite element methods are not restricted to using polynomials
[28], it is certainly the most appropriate choice for common applications.
One advantage of using polynomials is their compact support, i.e. the basis
functions have a value of one in the associated node of the underlying mesh
and a value of zero in all other nodes. This restricts the connectivity of a
node to its immediate neighbour nodes. Figures 2.5 and 2.6 list some com-
mon two- and three-dimensional polynomial elements, showing the nodal
locations of the associated basis functions.

For the mixed problem of Section 2.1.2 the function spaces representing
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Figure 2.4: Example of finite element mesh: section of the river Lek, The
Netherlands.

P 1 P 2 Q1 Q2

Figure 2.5: Linear and quadratic two- and three-dimensional continuous
elements.
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P 0 dP 1 Q0 dQ1

Figure 2.6: Linear and quadratic two- and three-dimensional discontinuous
elements.

u and φ may not be chosen independently due to the lbb stability condi-
tion. Practically, this implies that the discrete velocity space V used in
Equation (2.24) should be taken sufficiently large compared to the space
Q for the potential function. The approximation of the velocity u and the
potential φ in equal order polynomial function spaces is generally unstable.
Some simple, yet stable mixed element pairs are shown in Figure 2.7. The
P 1 − P 0 element on simplexes has a continuous piecewise linear velocity
potential φ and piecewise constant velocity u. For this element u = ∇φ
exactly which renders the associated variational form irreducible. Another
stable mixed finite element pair is the mini element [8], which has conti-
nuous piecewise linear u and φ where u is enriched with piecewise linear or
cubic functions having a value of one in the element barycenter and a value
of zero on element boundaries, also referred to as ‘bubble’-functions. The
bubble degrees of freedom may be eliminated from the variational problem
yielding a system of equations for (u, φ) for the global degrees of freedom
only [81]. In the sequel, this idea will be extended to dg methods where the
reduction of the problem using interface variables, as in section 2.2.3, yields
a similar stabilizing effect.

2.3.2 Time stepping

Frequently, time dependent model equations will be considered where the
solution evolves in time. Also the geometry of the domain or the position of
the boundary may vary in time, for instance in case of flooding and drying or
free-surface motion. To demonstrate some principles, the following abstract
time dependent problem is considered on a fixed domain Ω: at time t, find
φ ∈ U such that ∫

Ω

∂φ

∂t
u dΩ = B (φ, u) ∀ u ∈ U, (2.54)
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potential velocity

P 1 − P 0
mini P 1 − P 2

Figure 2.7: Some stable two- and three-dimensional mixed-element combi-
nations for the potential (•) and velocity (�) degrees of freedom.

where U is an appropriate finite element function space defined on Ω̃ and B
is a given bi-linear form including the necessary boundary conditions. The
solution φ has to be determined on the time interval I = (t0, tN ) using the
initial condition φ (t0) = φ0.

A time discrete weak form of Equation (2.54) may be obtained by parti-
tioning the time interval I into N sub-intervals using a sequence of discrete
time levels: I = (t0, t1, . . . , tN−1, tN ). Letting In denote the sub-interval
(tn, tn+1) and V a function space defined on the space-time ‘slab’ Ω× In the
discrete weak formulation becomes [87]: given φ−

n , find φ ∈ V such that∫
In

∫
Ω

∂φ

∂t
v dΩ dt +

∫
Ω

(
φn − φ−

n

)
v dΩ =

∫
In

B (φ, v) dt ∀ v ∈ V, (2.55)

where φ−
n is the solution at time tn obtained from the previous substep,

see Figure 2.8. The ‘initial’ condition φ−
n is not imposed by constraining

the function space V but enforced weakly by terms containing the jump
discontinuity at the time level t = tn. A practical issue with the above
space-time formulation is that it adds an extra dimension to the discrete
function space which increases the computational effort, except when using
basis functions that are piecewise constant in time.

A more practical approach is therefore to discretize Equation (2.54) first
in time and then in space. Using for instance the θ-method to step in time,
the discrete weak formulation becomes: given φn, find φn+1 ∈ U such that∫

Ω

φn+1 − φn

Δt
u dΩ = B (φn+θ, u) ∀ u ∈ U, (2.56)

where the time step Δt is the size of the interval In, the time integration
parameter θ ∈ [0; 1] and φn+1 = (1 − θ) φn + θφn+1. The scheme may be
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Figure 2.8: Example of a space-time mesh.

written more compactly as: given φn, find φn+θ ∈ U such that∫
Ω

φn+θ − φn

θΔt
u dΩ = B (φn+θ, u) ∀ u ∈ U, (2.57)

after which the solution at time level n + 1 is found by extrapolation

φn+1 = φn + (φn+θ − φn) /θ. (2.58)

Equation (2.57) has the advantage that all unknowns are expressed at the
same time level n+θ. Note that this scheme has a similar form as the space-
time formulation Equation (2.55) if the latter uses basis functions that are
piecewise constant in time. The cases θ = 0 and θ = 1 yield the forward and
backward Euler schemes, respectively, which are both first-order accurate.
The forward Euler scheme is conditionally stable only while the backward
Euler scheme is strongly stable, smoothing rough initial data. Second order
accuracy is obtained for θ = 1

2 (Crank-Nicolson scheme) but the method
will only be weakly stable (small perturbations are not smoothed).

A time integration scheme combining second-order accuracy and strong
stability is the fractional-step (fs) method of Bristeau et al. [9]. Originally
developed to deal with operator splitting, this scheme has proven useful as a
pure time stepping method, see Rannacher [72]. On a sequence of three sub-
steps tn → tn+α → tn+1−α → tn+1 the one step θ-method is applied using
a time integration parameter θ in the first and last steps and a parameter
θ′ = 1−θ in the middle step. For α = 1−1/

√
2 the resulting scheme is second

order accurate for any θ ∈ [12 ; 1]. The choice θ = (1 − 2α) / (1 − α) has the
convenient property that αθ = (1 − 2α) θ′. The scheme is then easily imple-
mented by using the θ-method of Equation (2.57) with a fixed value of θΔt
while switching to the current θ or θ′ during the update, Equation (2.58).

In this thesis the fs method is preferred for time dependent problems
requiring a high degree of accuracy. If the time stepping scheme is solely
used to obtain stationary solutions, the backward Euler method is selected as
its strong damping properties will accelerate convergence towards a steady
state.
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2.3.3 Matrix form

The discrete function space obtained from the finite element discretization
is spanned by N polynomial basis functions N i (x) having a value of one
on the associated node i and zero on any other node j �= i. In this way a
discrete function φ (x) may be represented by a vector φ = [φ1, · · · , φN ]T

of nodal values

φ (x) =
N∑

i=1

φi N i (x) . (2.59)

Using this discrete representation, the variational form of Equation (2.33)
for instance results in the following matrix system

A (φ) = b, (2.60)

where the global matrix A and the right hand side vector b are given by,
respectively,

Aij =
∫

Ω̃
∇N i · ∇N j dΩ, (2.61)

bi = −
∫

Ω̃
f N i dΩ +

∫
Γh

h N i dΓ. (2.62)

In a practical code the contributions to A and b are computed element
by element and assembled into a global matrix system by looping over all
elements.

The computation of A and b involves the integration of functions and
derivatives of functions over an element. To this end, the element is mapped
onto a standard element defined in reference co-ordinates χ, see Figure 2.9.
Expressing the spatial coordinate x as

x (χ) =
N∑

i=1

xi N i (χ) , (2.63)

the derivatives and integrals, appearing in Equation (2.60), are calculated
using transformation rules. Analytical integration of functions over the stan-
dard element is usually avoided by reverting to discrete integration formulas
(Gauss-integration) where the integral of a function f (x) on the element Ωe

is approximated by a summation over discrete integration points xj having
weights wj ∫

Ωe

f (x) dΩ ≈
nw∑
j=1

wjf
(
xj

)
Δe, (2.64)

where nw is the number of integration points and Δe is the measure of the
element. Clearly, the order of the approximation increases with increasing
nw and for a wide range of standard elements formulas have been derived



2.4. The algebraic problem 31

1�

2�

1x

2x

� �1,0

� �0,0 � �0,1

Figure 2.9: Mapping a triangular element (left) onto a standard triangle
(right).

giving highly accurate or even exact results for a proper choice of integration
points and associated weights. For a range of element types and polynomial
orders values for the abscissa xj and weights wj are tabulated in Zienkiewicz
and Taylor [99].

2.4 The algebraic problem

The solution of algebraic problems resulting from finite element discretiza-
tion, such as Equation (2.60), involves the inversion of a large system of
equations. This part of the solution process is computationally demanding
and is largely effected by the chosen type of element. This section considers
these aspects in more detail, with particular emphasis on the role of the
underlying spatial discretization.

2.4.1 Sparse matrices

Commonly, finite element basis functions have compact support. The nodal
basis functions N i only differ from zero within elements connected to the
associated node, and the N × N global matrix has relatively few non-zero
entries. An example of a typical sparsity pattern is given in Figure 2.10.
The ‘sparsity’ can be exploited to efficiently store and solve the algebraic
system [69]. For example, a matrix A with a general sparsity pattern as for
instance

A =

⎛
⎜⎜⎝

a11 0 a13 0
0 a22 0 a24

0 a32 a33 0
a41 0 a43 a44

⎞
⎟⎟⎠
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may be stored in three one-dimensional arrays row, col and beg as

row = {a11, a13, a22, a24, a32, a33, a41, a43, a44} ,

col = {1, 3, 2, 4, 2, 3, 1, 3, 4} ,

beg = {1, 3, 5, 7, 10} ,

where row contains all matrix elements of A in row-order with col pointing
to the corresponding column number and beg pointing to the first position of
each new row in the array row. The last element of beg is added in order to
be able to find the last element of the last row. When solving sparse matrix
systems, operations only involving the upper or lower triangular part of a
matrix are frequently needed, which requires the position of the diagonal
elements in A. This information is stored in an additional pointer array
di containing the positions of the diagonal elements in row. For the above
example di is given by

di = {1, 3, 6, 9} .

The above storage scheme, also referred to as compressed sparse row (csr)
format, can be used for matrices with an arbitrary sparsity pattern. For
a symmetric matrix the storage requirements may be reduced even further
by a factor of about two storing the upper triangular part only. Although
the sparsity pattern of matrices resulting from a finite element flow model is
generally symmetric, the matrix entries are typically non-symmetric. Tech-
niques to deal efficiently with symmetric matrices are therefore not discussed
further here.

With the csr storage scheme, and for a typical finite element discretiza-
tion, the matrix-vector multiplication y = A (x) can be performed in O (N)
multiplications, with N being the number of unknowns. In an equally effi-
cient way the upper and lower triangular parts of a matrix can be inverted
in O (N) operations without requiring additional storage space. For algo-
rithms performing matrix-vector multiplication and lower-upper inversion a
reference is made to van der Ploeg [69].

2.4.2 Solution algorithms

Direct solution of large sparse systems by Gaussian elimination is compli-
cated by the fact that the factorization process causes fill-in of the sparsity
structure which progressively increases the computer demands during the
elimination. The problem may be alleviated by reordering the variables
in such a way that the resulting matrix has a minimum bandwidth (profi-
ling) or leads to a minimum amount of fill in during the elimination (mini-
mum degree). Alternatively, iterative solution techniques may be used where
an estimate of the solution is systematically improved using a sequence of
matrix-vector multiplications. This not only preserves the original sparse



2.4. The algebraic problem 33

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

Figure 2.10: Sparsity pattern of the nodal structure underlying the mesh of
the river Lek from Figure 2.4; Nnode = 1942, Nsparse = 12700.

matrix structure but also enables to quit the solution process as soon as the
estimate of the solution has become sufficiently accurate. Originally deve-
loped for symmetric and positive definite matrices, iterative methods have
been successfully extended to non-symmetric systems during the 1990’s. A
particularly useful method in the context of flow and transport modelling
is the stabilized bi-conjugate gradient method (bicgstab) of van der Vorst
[93].

The iteration may be stopped as soon as some norm of the residual
vector r = b−A (φ) drops below a prescribed minimum. The type of norm
to be used and the corresponding minimum value requires some numerical
experimentation. In this thesis the quadratic norm ‖r‖2 is used which has
to be a factor ε smaller than the initial error norm

‖r‖2 ≤ ε‖b − A (φ0)‖2, (2.65)

where φ0 is the initial guess of the solution vector. The precise value of the
parameter ε may depend on the application. In time dependent flow and
transport simulations ε ≈ 10−4 is generally sufficient while direct iteration
towards steady state solutions requires a smaller value ε ≈ 10−10. Depending
on the application other norms or stopping criteria may be used.

For a prescribed value of ε the number of required iteration steps is deter-
mined by the convergence rate which is defined as the relative decrease of the
error norm after one iteration step. The convergence rate is related to the
spectral condition number of the matrix A which depends on its eigenvalue
distribution. Matrices resulting from the discretization of flow and transport
problems are generally ill-conditioned which may lead to low convergence
rates or even stagnation of the iterative process. The convergence behaviour
may be improved by solving the modified system

P A (φ) = P (b) , (2.66)
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instead of solving the original Equation (2.60), where the preconditioner P
is an approximation of A−1 with the same storage requirements as A and
whose construction and inversion take at most O (N) floating point opera-
tions. To construct P an incomplete lower-upper (ilu) decomposition may
be performed using the conventional lu factorization process on A while
ignoring the fill-in additional to the initial sparse matrix structure. Com-
pared to other (cheaper) preconditioning techniques, for instance diagonal
scaling or Gauss-Seidel iteration, the performance of ilu preconditioning
in terms of improved convergence and robustness is generally considered
superior [69].

Sparse matrix algorithms may also be applied to solve algebraic systems
arising from constrained mixed formulations, for instance Equation (2.24).
However, due to the lbb condition, the solution process will be more com-
plicated. Firstly, the coupled variables u and φ need to be approximated in
different solution spaces leading to multiple sets of sparsity patterns. This
renders the sparse matrix operations less efficient, notably the construction
of preconditioners. Secondly, the algebraic structure of constrained (saddle-
point) problems leads to an implicit expression for the Lagrange multiplier φ
in terms of the constrained variable u. The corresponding diagonal blocks of
the matrix system become zero which requires non-standard preconditioning
techniques [57]. In this respect, stabilized equal order element pairs offer the
advantage that one sparsity pattern serves both variables. Moreover, the
stabilization in itself by-passes the saddle-point problem and improves the
condition number of the preconditioned system. These advantages are the
main motivation for pursuing these type of elements in the next chapters.

2.4.3 Computational aspects

The computational efficiency of a finite element model is determined by the
size of the resulting sparse matrix, relative to the number of nodes, and by
the convergence rate of the iterative solution process. The number of non-
zero sparse matrix entries Nsparse determines the number of floating point
operations Nflop per matrix-vector multiplication. In optimally converging
cases, the required number of iterations depends on the number of degrees of
freedom Ndof according to log Ndof . The number of floating point operations
to obtain a solution is therefore proportional to

Nflop ∼ Nsparse log Ndof , (2.67)

which will determine the total cpu-time needed to obtain the solution. Using
this relation, the computer demands to solve the potential flow problem are
estimated for the elements listed in Figures 2.5 to 2.7. Given a mesh of N
nodes, the corresponding values of Ndof and Nsparse are listed in Table 2.1.
The estimates are based on a regular configuration of elements. It is noted
that the interface element (Section 2.2.3) has the same nodal configuration as
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element P 0 Q0 P 1 Q1 dP 1 dQ1
mini

2-d Ndof 2 N N N N 6 N 4 N 5 N
Nsparse 8 N 5 N 7 N 9 N 24 N 20 N 49 N

3-d Ndof 6 N N N N 24 N 8 N 4 N
Nsparse 30 N 7 N 12 N 27 N 120 N 56 N 120 N

Table 2.1: Element comparison for the potential flow problem on a mesh of
N nodes.

the corresponding P 1 element. If N is sufficiently large, the factor log Ndof is
almost independent of the element type, and the relative amount of work is
indicated by the respective values of Nsparse. Depending on the application
however, the matrix assembly may also contribute significantly to the total
required cpu-time.

Table 2.1 shows that Q0 elements, which involve the same computational
structure as that of finite volume methods, result in a relatively small size
of the associated sparse matrix. Continuous P 1 elements are however a
good alternative in this respect. Less efficient are the P 0 elements although
the relative size of the sparse matrix is still acceptable in two dimensions.
On the other hand, the discontinuous dP 1 and dQ1 elements both lead to
a significant increase in the size of the algebraic system rendering these
elements impractical for solving implicit equations. However, when used
in an explicit time stepping mode, the locally invertible element matrices
will offer an advantage compared to continuous elements, which require the
inversion of a global matrix. The mini element is the most uneconomical
element of the elements listed in this comparison. However, the inclusion of
the velocity space additional to the potential function is indispensable for
the Stokes and Navier-Stokes problems rather than for the relatively simple
potential flow problem considered here.

2.5 Numerical examples

This section demonstrates some practical aspects of finite element discreti-
zation in the context of the potential flow problem. The examples address
the convergence rates of several methods in relation to the computational
effort.

2.5.1 Flow in an outlet

The first example concerns the plane irrotational flow in an outlet by Thijsse
[88]. Figure 2.11 shows the outlet which has a nozzle to minimize energy
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Figure 2.11: Outlet and corresponding orthonormal flow net, from Thijsse
[88].

losses. The same figure also shows the corresponding flow net which was
used to solve potential flow problems in former times.

The computations are performed for the linear cg method, the linear dg

method and a mixed method using the mini element. In this particular case
the source term f equals zero and the gis method is fully equivalent to the
cg method. A successive range of meshes is employed where the element size
he is halved in each step of the refinement. Figure 2.12a shows the mesh for a
mesh size of 2 m. The boundary conditions specify a zero velocity potential
on the outflow boundary (right), an inward normal velocity of 1 m/s on
the inflow boundary (left) and a zero normal velocity on the side-walls and
the surface (upper boundary). The interface fluxes for the dg method
are computed from Equations (2.46) using a penalty parameter α = 6.
The resulting sparse matrix systems are solved using the bicgstab method
in combination with ilu preconditioning setting the stopping criterion to
ε = 10−10.

Figure 2.12b shows the corresponding cg solution in terms of the stream-
lines and equi-potential lines. The streamlines are computed in a post-
processing step. The plotting intervals are chosen such that an orthonormal
flow net results. Qualitatively, the computed solution is similar to the gra-
phical solution shown in Figure 2.11. The required numbers of iteration
steps are listed in Table 2.2 and also presented graphically in Figure 2.13.
Roughly, the number of iteration steps doubles if the element size is hal-
ved which implies that Niter ∼ N

1/2
dof . The total number of floating point

operations is therefore proportional to Nflop ∼ N
3/2
dof which, compared to

Equation (2.67), is sub-optimal. Next, the convergence orders are conside-
red by calculating the energy functionals of the corresponding minimization
problems, Equation (2.35) for the cg method and Equation (2.22) for the
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Figure 2.12: Flow in an outlet: finite element mesh (a) and computed ortho-
normal flow net for the mini element (b).

element N = 142 N = 512 N = 1963 N = 7417 N = 29505

cg/gis

(
P 1

)
16 31 63 124 246

dg-ip

(
dP 1

)
38 71 180 532 stagnation

mixed (mini) 17 32 68 162 stagnation

Table 2.2: Flow in an outlet: number of required bicgstab iterations.

mixed method. For all considered methods a suitable error-norm of the
solution can be defined by

|||e||| = (J − Je)
1/2 , (2.68)

where J and Je are the energy functionals corresponding to the numerical so-
lution and the exact solution, respectively, see for instance Equation (2.36).
The functional Je is unknown but the convergence order p of the error |||e|||
can be estimated from J since

J = Je + |||e|||2 ≈ Je + Ch2p
e , (2.69)

where C is a mesh dependent constant. Figure 2.13 shows that for the
considered methods J is inversely proportional to the number of nodes. As
for a two-dimensional mesh the number of nodes is inversely proportional
to h2

e it follows that for all methods p = 1 and |||e||| has O (he) convergence
which is in accordance with theoretical error estimates.

Concluding, having the same order of convergence, the linear cg method
requires the least computational effort per degree of freedom. The mini
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element and the dg method are about three times slower due to the increased
size of the sparse matrix system that has to be solved. In this example, the
latter two methods are also less robust leading to stagnation of the iterative
solution process on the finest mesh.
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Figure 2.13: Flow in an outlet: number of floating point operations (a) and
increments of the energy functional ΔJ relative to the finest mesh solution
(b).

2.5.2 Standing wave

This example considers the accuracy of the gis method relative to the cg

method for the Helmholtz equation

∇2φ̃ + k2φ̃ = 0 on Ω ⊂ R
2, (2.70)

where φ̃ denotes the complex amplitude of the potential function and k2

is a separation factor. The Helmholtz equation arises in the study of wave
diffraction and is obtained by integrating the potential flow equation over
the water depth, using a linearized free-surface boundary condition [6]. The
corresponding cg and gis weak formulations are obtained through the re-
placement of f with k2φ̃ in Equations (2.33) and (2.50), respectively.

The computational domain is the rectangle (x, y) = (0; 3π) × (0;π). On
the boundary x = 0 a Dirichlet boundary condition φ̃ = cos y is prescribed
while on all other boundaries a homogeneous Neumann boundary condition
is imposed. For k2 = 2, the exact solution to this problem is given by

φ̃e = cos x cos y. (2.71)

The computations are performed on a successive range of triangular meshes
with decreasing element size. The gis penalty parameter appearing in the
interface flux term is set to α = 6. The solution procedure involves ilu

preconditioned bicgstab iteration, using a stopping criterion ε = 10−10.
The resulting error e = φ̃ − φ̃e, measured in the L2 norms and the H1

semi-norm, is shown in Figure 2.14. The observed convergence rates are of
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order two in the L2 norm and of order one in the H1 semi-norm, respectively.
For both methods this result is in agreement with the general error estimate
given by Equation (2.38).
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Figure 2.14: Standing wave: errors for the linear cg and gis methods in
the L2 norm (a) and in the H1 semi-norm (b).

2.6 Conclusion

The solution of algebraic problems obtained from finite element discretiza-
tion involves the storage and manipulation of systems of equations having
an arbitrary ordering of unknowns. The ordering is inherited from the un-
derlying weak formulation of the problem, and is of crucial importance when
considering the computational efficiency of a method. In this respect, the
continuous Galerkin method offers a relatively simple arrangement of unk-
nowns and therefore requires relatively few floating point operations per
degree of freedom to obtain a solution. The discontinuous Galerkin method
is an inefficient choice if implicit systems have to be solved but, having a
local mass matrix, may prove useful when solving explicit systems.

Blending continuous and discontinuous methods, an alternative approach
has been formulated having the same order of accuracy. By introducing glo-
bal interface functions, the favourable properties of discontinuous methods
are retained while the size of the system that has to be solved is reduced
to that of a continuous method. This approach is not strictly necessary
for the potential flow problem of this chapter, but will be fully exploited
for the advection-diffusion and incompressible Navier-Stokes equations to
by-pass advective instabilities and instabilities due to the incompressibility
constraint.





Chapter 3

Scalar transport

Transport of dissolved or suspended matter is an important phenomenon
in many hydraulic engineering problems such as sediment transport and
morphology or the dispersal of pollutants. If the transport of matter involves
changes in density, as for example in estuaries or near cooling water outfalls,
the advected concentration field interacts with the flow through buoyancy
forces. The transport equation also constitutes an important sub problem of
the flow equations. This chapter introduces a new finite element method for
the advection-diffusion equation. The method is also intended as a building
block for incompressible Navier-Stokes solvers1.

3.1 The model problem

3.1.1 Gouverning equations

Consider a domain Ω ∈ R
d, where d = 1, 2, 3, is the number of spatial

dimensions, which has a boundary Γ = ∂Ω. It is assumed that the boundary
is sufficiently smooth and the outward normal vector on Γ is denoted n.
The transport of scalar quantities in Ω is considered on the time interval
I = (t0, tN ). Formulated as a coupled system of first order equations, the
transport problem reads: given an advective velocity a : Ω × I → R

d, a
densimetric source term f : Ω × I → R and (turbulence) diffusivity κ, find
φ : Ω × I → R such that

∂φ

∂t
+ ∇ · σ = f in Ω × I, (3.1)

σ = aφ − κ∇φ in Ω × I, (3.2)

where φ is the mass fraction of the transported constituent and σ : Ω× I →
R

d is the associated flux vector. The solution of Equations (3.1) and (3.2)
1This chapter is partly based on: ‘A Galerkin interface stabilisation method for the

advection-diffusion and Navier-Stokes equations’, Robert Jan Labeur and Garth N. Wells.
In: Computer Methods in Applied Mechanics and Engineering, 196, 4985-5000, 2007.
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Figure 3.1: Schematic of inflow and outflow boundaries.

requires initial conditions φ0 = φ (x, t0) on Ω and boundary conditions on
Γ ⊂ ∂Ω for all t ∈ I. Denoting the Dirichlet boundary Γg and the Neumann
boundary Γh, where Γg∪Γh = ∂Ω and Γg∩Γh = ∅, the boundary conditions
are given by

φ = g on Γg × I, (3.3)
σ · n = h on Γh × I. (3.4)

In case of pure advection (κ = 0) boundary conditions can only be imposed
on the inflow part of the boundary, denoted Γ−, where the advective velocity
a is directed into the domain, i.e. a ·n ≤ 0. On outflow boundaries, denoted
Γ+, the velocity a · n > 0 and the advective flux is implicitly determined
by the trace of φ on Γ, see Figure 3.1. A more precise formulation of the
Neumann boundary condition is therefore given by

σ · n − (1 − γ) a · n φ = h on Γh × I, (3.5)

where γ = 1 on inflow boundaries and γ = 0 on outflow boundaries. On
inflow boundaries h specifies the total normal flux and on inflow boundaries
h prescribes the normal diffusive flux, see Hughes and Wells [37].

The continuous first order system may be written as a single second-
order equation for the scalar variable φ by substituting Equation (3.2) for
the flux into transport Equation (3.1), which leads to

∂φ

∂t
+ ∇ · (aφ − κ∇φ) = f on Ω × I. (3.6)

The first order system is however more general in the sense that it admits
a much wider class of function spaces in which solutions can be defined. It
is therefore the general starting point for the finite element discretization of
the transport equation considered in this chapter.
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3.1.2 Variational formulation

Consider a partitioning of the domain Ω into open, disjoint sub domains Ωe

(elements), each having a boundary ∂Ωe on which n is the outward normal
vector. The partitioning defines the following unions

Ω̃ =
⋃
e

Ωe (3.7)

Γ̃ =
⋃
e

∂Ωe =
⋃
i

Γi, (3.8)

where Ω̃ is the union of all element interiors, Γ̃ is the union of all element
boundaries and Γi are element interfaces.

A general variational form for the transport problem, including all dis-
crete approximations treated in this chapter, is obtained by approximating
φ in a broken Hilbert-space V defined by

V =
{
v ∈ L2 (Ω) : v ∈ H1 (Ωe) ∀ e

}
. (3.9)

Functions v ∈ V have square-integrable first derivatives in every element Ωe

but may be discontinuous across element interfaces Γi. Likewise, the flux
σ is approximated in a space W of square integrable, discontinuous vector
valued functions w defined by

W =
{
w ∈ L2 (Ω) : w ∈ H1 (Ωe) ∀ e

}
, (3.10)

Functions v ∈ V and w ∈ W are undefined on element interfaces, and the
state and flux on Γ̃ are given by auxiliary functions φ̄ : Γ̃ × I → R and
σ̄ : Γ̃ × I → R

d, respectively.
The derivation of the variational form of Equations (3.1) and (3.2) is

similar to that of the potential flow problem in Section 2.2.2, leading to the
following mixed problem: at given time t, given a source term f ∈ L2 (Ω),
find φ ∈ V and σ ∈ W such that∫

Ω̃

∂φ

∂t
v dΩ−

∫
Ω̃

σ ·∇v dΩ+
∑

e

∫
∂Ωe

σ̄ ·nv dΓ+
∫

Ω̃
(σ − aφ + κ∇φ) ·w dΩ

+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · w dΓ =

∫
Ω̃

fv dΩ ∀ v ∈ V, ∀ w ∈ W, (3.11)

where
∑

e denotes summation over elements, see also Arnold et al. [1] for
details of the derivation. In deriving Equation (3.11) the first derivative
terms have been integrated by parts leading to the element boundary inte-
grals containing the auxiliary functions φ̄ and σ̄. These quantities are to be
expressed in terms of φ and σ on either side of the element interface. For
the moment φ̄ and σ̄ are left undefined, although it is assumed that they
satisfy the boundary conditions.
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Equation (3.11) may be reduced to the conventional second-order form
by taking W = ∇V which gives: at time t, given f , find φ ∈ V such that∫

Ω̃

∂φ

∂t
v dΩ −

∫
Ω̃

aφ · ∇v dΩ +
∫

Ω̃
κ∇φ · ∇v dΩ +

∑
e

∫
∂Ωe

σ̄ · nv dΓ

+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · ∇v dΓ =

∫
Ω̃

fv dΩ ∀ v ∈ V. (3.12)

Provided that the proper choices for V , φ̄ and σ̄ are made, Equation (3.12)
is consistent with the strong form of the transport problem [51]. Before
giving possible choices, a few elementary properties of the transport equation
are briefly discussed as these should be reflected in the ensuing numerical
method, at least to some approximate degree.

3.1.3 Solution characteristics

In order to describe the general behaviour of solutions of the transport equa-
tion, the second-order Equation (3.6) is simplified assuming an incompres-
sible velocity field ∇ · a = 0 and a uniform, isotropic diffusivity κ while
neglecting the source function f , which leads to

∂φ

∂t
+ a · ∇φ = κ∇2φ. (3.13)

The left hand side constitutes the advection term, or material derivative,
while the right hand side is the diffusion term. The physical and numerical
behaviour of solutions is determined by the dimensionless Reynolds number
and the Péclet number, respectively.

3.1.3.1 The Reynolds number

The Reynolds number is defined by Re = |a|Lref/κ where Lref is a reference
length scale of the problem, for instance the size of a cloud of tracer or the
water depth. The limiting behaviour of solutions for small and large values
of Re, respectively, is depicted in Figure 3.2.

For Re << 1 the diffusive terms dominate and a cloud of dissolved
material spreads evenly where its size is proportional to

√
κt. In the absence

of source terms, the total mass in the cloud remains constant (conservation
property). The boundary conditions have to be imposed along the entire
boundary of the domain. By virtue of the maximum principle the maximum
value of φ is either assumed initially in Ω or along the boundary ∂Ω [86].

For Re >> 1 advection dominates and in the absence of source terms
φ will be constant along characteristic curves in the (x, t) -plane given by
the equation dx/dt = a. On each characteristic curve the corresponding
value of φ is determined either by its intersection with the plane t = 0 (ini-
tial condition) or by its intersection with the lateral boundaries (boundary
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(a) (b)

Figure 3.2: The Reynolds number: (a) dominant diffusion (Re << 1) and
(b) dominant advection (Re >> 1).

condition). Total mass is conserved while along characteristics φ can not ex-
ceed the value assumed initially or imposed along the boundary (maximum
principle). For pure advection, boundary conditions can only be prescribed
on the inflow boundary Γ−. Boundary conditions imposed on Γ+ are only
effective when κ �= 0. The resulting outflow boundary layer has a width of
order κ/|a| over which the solution gradually attains the imposed value at
the boundary.

3.1.3.2 The Péclet number

The Péclet number, defined by Pe = 1
2 |a|he/κ, may be regarded as a Rey-

nolds number using a length scale of half the element size he. For an outflow
boundary layer, the limiting behaviour of solutions for large and small values
of Pe is shown in Figure 3.3.

For dominant advection (Pe > 1) numerical solutions tend to exhibit
oscillations. To avoid this unphysical behaviour, artificial diffusion can be
added in streamwise direction such that Pe ≤ 1 (upwinding). While this
effectively suppresses the spurious modes it will also obscure the true physics
of the problem. Pure advection schemes, the (semi-) Lagrangian methods
[68] or the second moment method [26], do a better job in this respect but
also require considerable effort to implement the diffusion terms correctly.
The biggest challenge in numerical modelling of transport is in fact the
construction of an algorithm that performs well for arbitrary, possibly non-
uniform Péclet numbers.

In this respect many numerical techniques have been developed over the
years, most prominently in the realm of finite difference and finite volume
methods. The ordered data arrangement enables a judicious manipulation
of the fluxes, usually by means of limiters, such that the resulting method
preserves monotonicity with a minimum of artificial side effects [54]. Ini-
tially, the developments in finite elements lagged somewhat behind until the
introduction of the supg method by Brooks and Hughes [10] and characte-
ristic Galerkin methods [68, 100] which are both based on C0 -continuous
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Figure 3.3: The Péclet number: outflow boundary layer for Pe > 1 (a) and
for Pe < 1 (b); analytical solution (solid) and numerical solution (circles).

basis functions. Currently, there is a renewed interest in discontinuous Ga-
lerkin methods, already conceived by Reed and Hill [73], as a robust yet
accurate method to solve hyperbolic problems [4].

3.2 Continuous and discontinuous methods

This section presents a short overview of standard finite element methods
for the advection-diffusion problem, providing a background for the Galerkin
Interface Stabilization method, introduced later on, which blends various
features of continuous and discontinuous Galerkin methods.

3.2.1 Continuous Galerkin method

The continuous Galerkin (cg) method is obtained from the general varia-
tional form of the scalar transport problem Equation (3.12) by considering
continuous function spaces U and Ug defined by

U =
{

u ∈ H1
(
Ω̃
)

: u ∈ P k (Ωe) ∀ e
}

, (3.14)

Ug =
{

u ∈ H1
(
Ω̃
)

: u ∈ P k (Ωe) ∀ e, u = g on Γg

}
, (3.15)

where P k is a set of element wise polynomial basis functions of order ≤ k
and functions in Ug ⊂ U satisfy the Dirichlet boundary condition on Γg.
Functions u ∈ U are unique on element interfaces and setting φ̄ = φ on Γ̃ in
Equation (3.12) gives the following variational form: at time t, find φ ∈ Ug

such that∫
Ω̃

∂φ

∂t
u dΩ−

∫
Ω̃

σ ·∇u dΩ+
∑

e

∫
∂Ωe

σ̄ ·nu dΓ =
∫

Ω̃
fu dΩ ∀ u ∈ U. (3.16)
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where the element flux σ = aφ−κ∇φ. As a crucial step the interface fluxes
σ̄ are assumed weakly continuous across interior element interfaces while
satisfying the Neumann boundary condition on Γh, which is stated as∑

e

∫
∂Ωe

σ̄ · n u dΓ =
∫

Γh

(1 − γ) a · nφ u dΓ +
∫

Γh

hu dΓ ∀ u ∈ U. (3.17)

The first term on the right hand side is the advective flux on outflow Neu-
mann boundaries, where γ = 0, with h specifying the normal diffusive flux.
On inflow boundaries γ = 1 and h specifies the total normal flux. Substi-
tuting Equation (3.17) in Equation (3.16) yields the following problem: at
time t, find φ ∈ Ug such that∫

Ω̃

∂φ

∂t
u dΩ −

∫
Ω̃

σ · ∇u dΩ +
∫

Γh

(1 − γ) a · n φ u dΓ

=
∫

Ω̃
fu dΩ −

∫
Γh

hu dΓ ∀ u ∈ U. (3.18)

Variational Equation (3.18) has a number of desirable properties. Consis-
tency with the strong form of the transport problem can be proven while
the formulation is also conservative, both globally and locally, see Hughes
et al. [34]. For the L2 error norm the convergence rates are O (

hk+1
e

)
and

O
(
h

k+1/2
e

)
in the diffusive and the advection limits, respectively, see John-

son [42]. Stability on the other hand may become problematic in advection
dominated cases. Monotonicity is only preserved conditionally for κ suffi-
ciently large. If the Péclet number is larger than one the advection terms
may give rise to ‘wiggles’ in the numerical solution near sharp gradients,
outflow boundary layers and discontinuities, see Figure 3.3.

Apparently, the determination of the element flux σ in Equation (3.18)
directly from φ is not adequate in case of dominant advection. Although
some authors advocate never to suppress the wiggles in favour of good loo-
king solutions2, some stabilization may be necessary to keep solutions mo-
notone. The cg method can be stabilized in a consistent way, by mani-
pulating the advective fluxes, without affecting the overall accuracy of the
solution. A well known stabilization technique is the Streamline Upwind
Petrov-Galerkin (supg) method of Brooks and Hughes [10]. In each ele-
ment the associated numerical flux σ is replaced with a modified flux σ̃
according to

σ̃ = σ − τea

(
∂φ

∂t
+ ∇ · σ − f

)
︸ ︷︷ ︸
element wise residual

. (3.19)

2The ‘wiggle-signal’ generally indicates a poor quality of the way the underlying equa-
tion is discretized requiring mesh refinement in the respective part of the domain, see
Gresho et al. [28].
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Figure 3.4: supg method: regular weighting function N i and modified weigh-
ting function Ñ i.

The additional terms are proportional to the element wise residual using a
stabilization parameter τe which has the dimension of time. The modified
weak formulation becomes: find φ ∈ Ug such that∫

Ω̃

∂φ

∂t
u dΩ −

∫
Ω̃

σ̃ · ∇u dΩ +
∑

e

∫
∂Ωe

(1 − γ) a · nφ udΓ

=
∫

Ω̃
fu dΩ −

∫
Γh

hu dΓ ∀ u ∈ U. (3.20)

The procedure effectively increases the diffusivity in streamwise direction
and for a proper choice of τe nearly monotone solutions will be obtained.
Equation (3.20) is consistent with the strong form of the problem as in the
continuous limit the element residuals tend to zero and σ̃ → σ. As can
be shown by straightforward algebra, Equation (3.20) is also obtained by
shifting the weighting functions u over a distance −τea along the stream-
lines in a direction opposite to the advective velocity thereby increasing the
influence of the elements on the upstream side of a particular node, see
Figure 3.4.

The parameter τe should have the order of h2
e/κ for diffusion dominated

problems and the order of he/|a| in case of dominant advection [36]. For
stationary, one-dimensional cases an optimal expression for τe can be derived
yielding nodally exact solutions for every Péclet number. In two and three
dimensions this is not possible although the performance of the supg me-
thod is not critically dependent on a very precise choice for τe either which
explains the variety of alternative formulations for σ̃ found in literature [81].

Provided that τe is approximated in a reasonable way, O (
hk+1

e

)
and

O
(
h

k+1/2
e

)
convergence rates for the L2 error norm are obtained for the

diffusive and advective limit cases respectively, the proof of which is given
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Figure 3.5: Bubble function N e of the mini element.

in Johnson [42]. Being formulated in flux form, the supg method is conser-
vative, provided that the modified flux σ̃ is used for the evaluation of the
fluxes [37]. Although oscillations are effectively controlled, supg solutions
are not strictly monotone which in the vicinity of shocks and boundary
layers may result in some under- or overshoot. If this should be prevented
non-linear ‘discontinuity capturing’ may be used by shifting the weighting
functions u in the direction of the gradient of the solution as well [36].

A different stabilization concept utilizes local functions on elements, also
referred to as ‘bubble functions’, in order to to increase the accuracy of
the advective fluxes. The degrees of freedom associated with the bubble
functions can be eliminated during the matrix assembly process after which
a global system of equations results for the nodal degrees of freedom only,
a procedure referred to as ‘static condensation’. After solution of the nodal
degrees of freedom, the bubble degrees of freedom are retained in a back-
substitution step which does not require the inversion of a large system of
equations. For a general treatment of this concept see France et al. [25].
An example of this approach is the mini element which uses a space of
continuous P 1 basis functions combined with element wise basis functions
N e that have a value of one in the barycenter and vanish on the element
boundaries, see Figure 3.5. The variational form after static condensation
is fully equivalent to that obtained from the supg method, with a modified
expression for the stability parameter τe [8]. In the high Péclet number range
the mini element leads to non-optimal stabilization which may be bypassed
by scaling the bubble function with a Péclet -number dependent parameter,
see Simo et al. [81].

An advantage of using local ‘bubbles’ instead of supg -type weighting
functions is that the fluxes remain directly dependent on the nodal data.
Stability is provided by the geometrical definition of the element and the as-
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sociated function space without artificial manipulation of the element fluxes.
This also avoids the computation of additional stability parameters, which
may be a critical issue if the computational problem involves different flow
regimes. However, the example of the mini element shows that the bubble
functions need to be chosen with care as not every choice automatically
leads to sufficient stabilization. A theoretical framework to construct opti-
mal bubble functions is provided by the residual-free bubble (rfb) method
of Russo [75]. The resulting basis functions are however too complex to
implement in general flow and transport models.

3.2.2 Discontinuous Galerkin method

The observation that solutions of the advection problem admit discontinui-
ties naturally leads to considering discontinuous spaces in variational form
Equation (3.12). For purely hyperbolic problems the ensuing discontinuous
Galerkin (dg) method was already proposed in Reed and Hill [73] and ex-
tended to elliptic problems by Arnold [2]. Consider therefore function spaces
V and Vg defined by, respectively,

V =
{

v ∈ L2
(
Ω̃
)

: v ∈ P k (Ωe) ∀ e
}

, (3.21)

Vg =
{

v ∈ L2
(
Ω̃
)

: v ∈ P k (Ωe) ∀ e, v = g on Γg

}
, (3.22)

where P k, with k ≥ 0, is a set of polynomial basis functions defined on
elements and Vg contains all functions in V that satisfy the Dirichlet boun-
dary conditions. The dg formulation is obtained by supplementing Equa-
tion (3.12) with the Neumann boundary condition given in Equation (3.4),
which leads to the following variational problem: at time t, given the source
term f and the boundary condition h, find φ ∈ Vg such that

∫
Ω̃

∂φ

∂t
v dΩ−

∫
Ω̃

σ ·∇v dΩ+
∑

e

∫
∂Ωe

σ̄ ·nv dΓ+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)·n∇v dΓ

+
∫

Γh

(1 − γ) an · φv dΓ =
∫

Ω̃
fv dΩ −

∫
Γh

hv dΓ ∀ v ∈ V, (3.23)

in which φ̄ and σ̄ are yet unknown functions which are constructed from the
fields φ in the two elements sharing an interface.

Assuming that the interface flux may be decomposed additively into an
advective part and a diffusive part, the advective flux σ̄a may be compu-
ted using a flux splitting procedure taking into account the characteristic
direction of the transport velocity, see Figure 3.6. This is accomplished by
solving a local Riemann problem which yields

σ̄a = {aφ} +
1
2
|ã · n| �φ�, (3.24)
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Figure 3.6: The local Riemann problem.

where ã is the advective velocity at the interface. This formulation gives an
upwind bias to the flux. Note that the advection terms in Equation (3.23)
do not involve the interface state φ̄. Flux splitting methods described in
literature mainly differ in the definition of the interface advective velocity
ã, see for instance the classical paper by Harten et al. [33]. For non-linear
problems a proper expression for ã is crucial to obtain a correct behaviour of
solutions at shocks, by satisfying the entropy condition, for which a general
approach is outlined in LeVeque [56]. The diffusive part of the interface flux
σ̄d and the associated state φ̄ may be taken as averages of the respective
values on both sides of an interface augmented with terms containing the
jumps of σ and φ. A systematic overview of existing methods is presented
in Arnold et al. [1]. As an example, in the interior penalty (ip) method the
interface state and the diffusive interface flux are formulated as, respectively,

φ̄ = {φ} , (3.25)

σ̄d = −{κ∇φ} +
α

he
κ �φ�, (3.26)

where he is the element width normal to the interface and α is a dimen-
sionless O (1) penalty parameter which is necessary for stability of dg me-
thods. The similar form of the advection flux given by Equation (3.24) and
the diffusive flux of Equation (3.26) allows to write the total interface flux
σ̄ = σ̄a + σ̄d compactly as

σ̄ = {σ} + β�φ�, (3.27)

where
β =

1
2
|ã · n| + α

he
κ. (3.28)

The substitution of Equation (3.25) for the interface state φ̄ and Equa-
tion (3.27) for the interface flux σ̄ into variational Equation (3.23) yields a
formulation in terms of the unknown field φ only.
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(a) (b)

Figure 3.7: Nodal degrees of freedom for the linear cg method (a) and the
dg method (b).

The resulting dg-ip method is consistent and locally conservative since φ̄
and σ̄ are unique on element interfaces while the corresponding expressions
approach the continuous limit if the element size he tends to zero [1]. The
method is also optimally accurate in the sense that the L2 error norm has
O
(
h

k+1/2
e

)
and O (

hk+1
e

)
convergence rates in the advective and diffusive

limits, respectively [1, 42]. Linear monotone advection schemes can be first
order accurate at most and linear dg solutions involving steep gradients
are not completely wiggle free. Slope limiters or artificial dissipation may
be applied to suppress artificial wiggles, respecting the conservation and
consistency properties [44, 90].

3.2.3 Discussion: CG or DG?

While having attractive properties, a practical impediment of dg methods
is the increased number of degrees of freedom relative to a continuous Ga-
lerkin method on the same mesh. Considering the increase of the number
of non-zero entries in the associated sparse matrix system the situation is
even worse, see also Table 2.1. For systems involving the inversion of a glo-
bal sparse matrix discontinuous methods are likely to be outperformed by
methods employing continuous basis functions. As the dg mass matrix is
locally invertible, application of dg methods is particularly useful for, but
also more or less restricted to, explicit problems not requiring the inversion
of a global matrix.

Stabilized continuous Galerkin methods are more economical, both with
respect to data storage requirements and computational efficiency of sparse
matrix operations. The required stabilization by supg or gls methods is
easy to implement and leads to near optimal convergence. Although these
properties are attractive some drawbacks persist. This mainly concerns the
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Figure 3.8: Discontinuous functions connected by a continuous interface
’frame’.

stabilization parameter which must be judiciously chosen, the determination
of which relies on numerical tests. Ensuring sufficient stability without the
introduction of excessive dissipation can thus become problematic. Further-
more, the direct correspondence between nodal data and the fluxes is lost,
although this can be circumvented by using a modified advective velocity,
see Hughes and Wells [37]. While these drawbacks may still be acceptable in
scalar transport modelling, the application in flow solvers can become more
problematic especially when different flow regimes reign within the same
domain. This may amongst others lead to dissipation of (internal) waves,
as demonstrated in Labeur and Pietrzak [49].

A better approach is therefore using bubble functions. Static conden-
sation eliminates the bubble degrees of freedom, which reduces the system
to the nodal degrees of freedom only and effectively stabilizes the problem.
A clear advantage of this approach is that the bubbles retain the direct
dependency of the fluxes on the data. However, it is not easy in general
to construct bubbles that perform well in situations involving a wide range
of Péclet numbers. The mini element for example has non-optimal or even
insufficient stabilization in the high Péclet number range [81]. Although
optimal bubbles may be constructed dependent on the Péclet number, the
intended elegance and simplicity of the approach is somewhat lost if the
bubble functions change during the solution process, as in time dependent
or non-linear cases, which severely complicates its implementation.

At this stage of the discussion the dg method, which is optimally stable
and also conservative, may be reconsidered. The major drawback of this
method, namely the massive data processing when solving implicit systems,
would be alleviated if the dg sparse matrix structure could be reduced to a
much smaller size. To achieve this, piecewise discontinuous functions may
be considered that are in some way ‘coupled’ to global functions associated
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with the nodes of the mesh. Elimination of the discontinuous part of the so-
lution by means of static condensation would then reduce the sparse matrix
structure to a size comparable to that of the cg method on the same mesh.
Recently, a number of researchers have explored these concepts. In Sangalli
[77] discontinuous bubbles are used to stabilize the continuous weak form of
the stationary advection problem. In the multi-scale discontinuous Galerkin
(mdg) method introduced in Hughes et al. [35] and analyzed further in Buffa
et al. [11] the discontinuous solution φ is split into a continuous coarse-scale
part φ̄ and a discontinuous fine-scale part φ′ = φ − φ̄ which is solved by a
local problem on elements with the boundary conditions obtained from the
coarse scale solution.

In this thesis a different approach is pursued. Starting from a general
dg formulation, a variational problem on each element is posed which is
subject to weak Dirichlet boundary conditions. The boundary conditions
are given by a function which is defined on element interfaces. This leaves
two unknown fields, a field φ on elements and an interface field φ̄ on the
interfaces, see Figure 3.8. The element field can be eliminated locally, and
the interface field is solved for globally by requiring weak continuity of the
numerical flux across element boundaries. Upwinding of this flux provides
the necessary dose of stabilization from which the method is coined Galerkin
Interface Stabilization (gis ) method. As will be shown the gis method leads
to a supg type stabilization term in the global equations while the element
fluxes are retained by the local functions. As the interface functions may
also be regarded as continuous ‘frames’ connecting local element functions
the gis method bears some similarity to Trefftz-type elements [99].

3.3 Galerkin interface stabilization method

In this section a modification of the dg method is proposed having the same
global structure as the cg method while preserving the local upwinding
and conservation properties of a dg method. The resulting method, coined
Galerkin Interface Stabilization (gis ) method, is also described in Labeur
and Wells [51].

3.3.1 General formulation

The starting point for the gis method is the general variational form given
by Equation (3.12) in which the interface state φ̄ is an independent variable
which will be defined on the union of interior element interfaces Γ̃. Consider
therefore a function space V̄ and a related space V̄g defined by, respectively,

V̄ =
{

v̄ ∈ H1/2
(
Γ̃
)

: v̄ ∈ P l
(
Γ̃i

)
∀ i

}
, (3.29)

V̄g =
{

v̄ ∈ H1/2
(
Γ̃
)

: v̄ ∈ P l
(
Γ̃i

)
∀ i, v̄ = g on Γg

}
, (3.30)
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where the fractional space H1/2 is the trace of H1 (Ω) on Γ̃ and P l, with
l ≥ 1, is a set of polynomial basis functions defined on element interfaces.
Note that the function φ̄ is single-valued on element boundaries, and that
functions in V̄g satisfy the Dirichlet boundary conditions. The numerical
interface flux σ̄ in Equation (3.12) is still undefined, other than to say that
it is not single-valued on element boundaries and that it is expressed in terms
of quantities belonging to an element and the interface function φ̄ only. It
may not depend on quantities from neighbouring elements.

An equation for φ̄ may be formulated by imposing weak continuity of
the normal component of the numerical flux across element boundaries and
weak satisfaction of the Neumann boundary conditions, which requires that

∑
e

∫
∂Ωe

σ̄ · n v̄ dΓ =
∫

Γh

(1 − γ) a · nφ̄ v̄ dΓ +
∫

Γh

hv̄ dΓ ∀ v̄ ∈ V̄ . (3.31)

The above expression has been constructed such that only the diffusive flux
is imposed at outflow Neumann boundaries. Since σ̄ is dependent on φ and
φ̄, Equation (3.31) provides a constraint between φ and φ̄. In general dg

methods, σ̄ is constructed such that its jump is point-wise zero on interior
element boundaries, whereas Equation (3.31) enforces this condition in a
weak sense. The interface variable φ̄ may thus be regarded as a Lagrange
multiplier enforcing the normal flux continuity constraint across element
boundaries. Unlike in Hughes et al. [35], weak continuity of the flux is
imposed directly, which leads naturally to an expression for determining φ̄.
It is noteworthy to mention that the forcing term f appears in the local
equation only.

By combining Equations (3.12) and (3.31), the following mixed problem
is obtained: at time t, given the source term f and the boundary condition
h, find φ ∈ V and φ̄ ∈ V̄g such that∫

Ω̃

∂φ

∂t
v dΩ −

∫
Ω̃

σ · ∇v dΩ −
∑

e

∫
∂Ωe

σ̄ · n (v̄ − v) dΓ

+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · ∇v dΓ +

∫
Γh

(1 − γ) a · nφ̄v̄ dΓ

=
∫

Ω̃
fv dΩ −

∫
Γh

hv̄ dΓ ∀ v ∈ V, ∀ v̄ ∈ V̄ . (3.32)

Setting v̄ = 0 in the above equation leads to a set of local equations and can
be used to express φ in terms of φ̄ element wise. This is possible since σ̄
depends on quantities local to an element and the interface function φ̄ only.
Setting then v = 0, φ can be eliminated locally and the global equation
can be solved to yield φ̄. The process is essentially the same as the static
condensation of bubble functions. The major difference introduced here is
the choice of discontinuous ‘bubbles’ within an element together with the
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Figure 3.9: Construction of the advective flux from the local Riemann pro-
blem.

corresponding formulations involving the jump discontinuities across the
element interfaces and the upwinding of the associated fluxes.

3.3.2 Interface flux

To solve Equation (3.32) it remains to construct an expression for the inter-
face flux σ̄ having the required properties. To this end it is assumed that
σ̄ can be decomposed additively into an advective part σ̄a and a diffusive
part σ̄d, the determination of which requires a different approach.

For the advective (hyperbolic) part, the local Riemann problem at the
interface has to be considered. Generally, the solution of the Riemann pro-
blem consists of left and right travelling discontinuities separated by an
intermediate state, see Figure 3.9. The numerical flux is then determined
by the intermediate state φ̄ if the discontinuity travels into an element while
the flux is determined by the element state φ if the propagation direction is
outward. This principle can be used to construct the following expression
for the advective flux

σ̄a = aφ + γã
(
φ̄ − φ

)
, (3.33)

where ã is the transport velocity at the interface, γ = 1 where ã · n ≤ 0
(inflow) and γ = 0 where ã · n > 0 (outflow). The transport velocity ã
generally depends on the traces of a on the respective interface, see Harten
et al. [33] or LeVeque [56] for possible definitions of ã. The following choice
is made here

ã = min
(
a+ · n, a− · n)n, (3.34)

where a+ and a− are the traces of a on the element boundary ∂Ωe. This
expression for ã prevents φ̄ from becoming undefined in the cases of source
or sink interfaces, i.e. where a+ · n and a− · n have a different sign.

For the diffusive part of the interface flux, the elliptic nature of the
associated diffusion problem must be taken into account. This naturally
leads to a formulation in which the element flux at the interface is augmented
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with terms proportional to the jump φ̄ − φ. Out of many possibilities [1] a
formulation is chosen which is reminiscent of the ip method

σ̄d = −κ∇φ − α

he
κ
(
φ̄ − φ

)
n, (3.35)

where α is a dimensionless penalty parameter which is required for stability
of dg methods, and he is a measure of the element size. Also for anisotropic
diffusion, when κ is a symmetric tensor, Equation (3.35) is a consistent
formulation for the diffusive interface flux.

As the expressions for σ̄a and σ̄d given by the respective Equations (3.33)
and (3.35) have a similar format, the total interface flux σ̄ = σ̄a + σ̄b can
be written compactly as

σ̄ = σ + β
(
φ̄ − φ

)
n, (3.36)

where the term β is given by

β = γã · n − α

he
κ, (3.37)

which, owing to its definition, is always a negative quantity.
Using Equations (3.2) and (3.36) for the numerical element and interface

fluxes, respectively, Equation (3.32) leads to the following local problem: at
time t, given the source term f , find φ ∈ V such that∫

Ω̃

∂φ

∂t
v dΩ +

∫
Ω̃
∇ · (aφ − κ∇φ) v dΩ +

∑
e

∫
∂Ωe

β
(
φ̄ − φ

)
v dΓ

+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · ∇v dΓ =

∫
Ω̃

fv dΩ ∀ v ∈ V, (3.38)

in which the regular part of the flux has been integrated by parts. The above
local problem solves the advection-diffusion problem on each element with
weakly imposed Dirichlet boundary conditions φ̄ on the element boundary
∂Ωe. From Equation (3.31) the global problem becomes: at time t, given
the boundary condition h, find v̄ ∈ V̄g such that

∑
e

∫
∂Ωe

(aφ − κ∇φ) · nv̄ dΓ +
∑

e

∫
∂Ωe

β
(
φ̄ − φ

)
v̄ dΓ

−
∫

Γh

(1 − γ) a · n φ̄ v̄ dΓ =
∫

Γh

hv̄ dΓ ∀ v̄ ∈ V̄ . (3.39)

Equation (3.38) can be used to express φ locally in terms of φ̄, which can
then be substituted in Equation (3.39) to obtain a global equation for the
nodal degrees of freedom φ̄. After solving for φ̄, the local equation is used
to obtain the element degrees of freedom φ in a back-substitution step.
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3.3.3 Properties

Before discussing a particular choice for the function spaces V and V̄ some
general properties of the variational form given by Equation (3.32) with the
fluxes given by Equation (3.36) are considered in some more detail.

3.3.3.1 Consistency

For sufficiently smooth functions φ and continuous advective velocity, the
local problem given by Equation (3.38) leads to

∫
Ω̃

(
∂φ

∂t
+ ∇ · σ − f

)
v dΩ +

∑
e

∫
∂Ωe

β
(
φ̄ − φ

)
v dΓ

+
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · ∇v dΓ = 0 ∀ v ∈ V, (3.40)

which demonstrates consistency with the strong form of the transport pro-
blem, given by Equations (3.1) and (3.2), and the enforcement of φ̄ = φ on
Γ̃. Using φ̄ = φ on Γ̃, the global problem given by Equation (3.39) leads to

∑
e

∫
∂Ωe\Γh

σ · nv̄ dΓ +
∫

Γh

(γaφ − κ∇φ) · nv̄ dΓ

=
∫

Γh

hv̄ dΓ ∀ v̄ ∈ V̄g, (3.41)

which implies continuity of the flux and satisfaction of the modified Neu-
mann boundary condition given by Equation (3.5).

3.3.3.2 Linear conservation

For a pure Neumann problem, Γg = ∅, setting v = v̄ = 1 in Equation (3.32)
yields ∫

Ω

∂φ

∂t
dΩ =

∫
Ω

f dΩ −
∫

∂Ω
(1 − γ) a · nφ̄ dΓ −

∫
∂Ω

h dΓ, (3.42)

which proves linear conservation since the total increase of φ in Ω̃ equals
the total production plus the net inward flux over the boundary ∂Ω. For
Dirichlet boundary conditions the proof is more subtle as it is not possible
to set v̄ = 1 on the entire domain then. Global conservation can still be
demonstrated however by defining an auxiliary flux on Γg, see Hughes and
Wells [37] for details of the approach. Setting v̄ = 0 on Ω̃, v = 0 on Ω\Ωe

and v = 1 on Ωe in Equation (3.32) gives∫
Ωe

∂φ

∂t
dΩ =

∫
Ωe

f dΩ −
∫

∂Ωe

σ̄ · n dΓ, (3.43)
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which proves local conservation in terms of the numerical flux, as is typical
for dg methods. Unlike common dg methods the jump in σ̄ is not point-wise
zero on element interfaces, but the flux is weakly continuous in V̄ only.

3.3.3.3 Quadratic conservation

For the advective limit (κ = 0), setting v = φ and v̄ = φ̄ in Equation (3.32)
and using homogeneous boundary conditions and zero source term gives∫

Ω̃

∂φ

∂t
φ dΩ −

∫
Ω̃

φa · ∇φ dΩ +
∑

e

∫
∂Ωe

a · nφ
(
φ − φ̄

)
dΓ

−
∑

e

∫
∂Ωe

γã · n (
φ − φ̄

)2
dΓ +

∫
Γh

(1 − γ) a · nφ̄2 dΓ = 0. (3.44)

For a solenoidal vector field, ∇ · a = 0 in Ω̃ and �a� = 0 on Γ̃, integration
by parts of the regular flux term gives, after rearrangement,

d

dt

∫
Ω̃

1
2
φ2 dΩ +

∑
e

∫
∂Ωe

1
2
|a · n| (φ − φ̄

)2
dΓ

+
∫

Γh

1
2
|a · n| φ̄2 dΓ = 0. (3.45)

This demonstrates that for the considered case the L2 norm of φ will not
increase. For the diffusive limit case, a similar exercise yields

d

dt

∫
Ω̃

1
2
φ2 dΩ +

∫
Ω̃

κ∇φ · ∇φ dΩ +
∑

e

∫
∂Ωe

α

he
κ
(
φ − φ̄

)2
dΓ

+ 2
∑

e

∫
∂Ωe

κ
(
φ̄ − φ

)
n · ∇φ dΓ = 0, (3.46)

implying that in the diffusive limit the L2 norm of φ may increase due to the
fourth term on the left hand side which may become negative for function
spaces V with polynomial orders k > 0. This non-physical behaviour can
be avoided by choosing the penalty parameter α sufficiently large or by dis-
carding the fourth left hand side term altogether, as in the skew-symmetric
ip method [1, 35].

3.3.3.4 Stability

A non-increasing L2 norm does not yet prove stability as this requires coer-
civity of the variational form, implying that the rate of change of the L2

norm is also bounded from below for any non-trivial φ and φ̄. In the dif-
fusive case this may be accomplished by choosing α sufficiently large or
by reverting to the skew-symmetric ip formulation. The advective case is
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more problematic as for φ = φ̄ on Γ̃ and a · n = 0 on Γh the respective
terms in the left hand side of Equation (3.44) are already zero. This does
not yet mean that the gis method is unstable. The difficulty is inherent
in the structure of the mixed formulation, which requires the satisfaction
of an inf − sup condition in order to be stable. Demonstration of this is
non-trivial and is not pursued here. It will be shown however that for the
P 1 element a stabilizing mechanism is present which is closely related to
that of the supg method. Furthermore, numerical examples have revealed
remarkable stability properties, as will be demonstrated in Section 3.5.

3.4 Implementation

In this section the numerical implementation of the gis method will be ela-
borated for P 1 elements by setting the polynomial orders k = l = 1 for the
discontinuous space V and the space of interface functions V̄ , respectively.
In this particular case the resulting formulation becomes relatively simple
with most terms resembling those present in the linear cg method.

3.4.1 Time stepping

For P 1 basis functions all second derivative terms in Equations (3.38) and (3.39)
vanish. For piecewise constant κ and using the θ-method to step in time
the resulting discrete problem reads: given φn, the source term fn+θ and
boundary condition hn+θ, find φn+θ ∈ V and φ̄n+θ ∈ V̄g such that

∫
Ω̃

φn+θ − φn

θΔt
v dΩ +

∫
Ω̃
∇ · (aφn+θ) v dΩ +

∑
e

∫
∂Ωe

β
(
φ̄n+θ − φn+θ

)
v dΓ

+
∑

e

∫
∂Ωe

κ
(
φ̄n+θ − φn+θ

)
n · ∇v dΓ =

∫
Ω̃

fn+θv dΩ ∀ v ∈ V, (3.47)

and

∑
e

∫
∂Ωe

(aφn+θ − κ∇φn+θ) · nv̄ dΓ +
∑

e

∫
∂Ωe

β
(
φ̄n+θ − φn+θ

)
v̄ dΓ

−
∫

Γh

(1 − γ) a · nφ̄n+θv̄ dΓ =
∫

Γh

hn+θv̄ dΓ ∀ v̄ ∈ V̄ , (3.48)

where Δt is the time step size, θ ∈ [0; 1] is a numerical parameter and n + θ
denotes the intermediate time level tn + θΔt, see also Section 2.3.2. The
solution at the new time level n + 1 is obtained by extrapolation: φn+1 =
φn + (φn+θ − φn) /θ. The remainder of this section addresses the above
fully-discrete formulations.
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3.4.2 Solution procedure

The functions φn and φ̄n at time level tn are expressed in terms of P 1 finite
element basis functions and nodal values as

φn (x) =
∑

i

N i (x) φi
n, (3.49)

φ̄n (x) =
∑

j

N̄ j (x) φ̄j
n, (3.50)

where N i and N̄ j are finite element basis functions consistent with the
definitions in Section 3.3.1 and φi

n and φ̄j
n are nodal degrees of freedom.

For the case considered here, in which k = l = 1, the distinction between
N i and N̄ j may be dropped on element boundaries which permits to set
N i = N̄ j on ∂Ωe whenever i = j. The local problem (3.47) now leads to the
algebraic equation

1
θΔt

M (φn+θ − φn) + Aφn+θ + (K + Q)
(
φ̄n+θ − φn+θ

)
= fn+θ, (3.51)

where φi
n is a vector containing the local unknowns of φ at time tn, the

element matrices M , A, K and Q are given by, in respective order,

M ij =
∫

Ωe

N iN j dΩ, (3.52)

Aij =
∫

Ωe

N i ∇ · (aN j
)

dΩ, (3.53)

Kij =
∫

∂Ωe

N j (κn) · ∇N i dΓ, (3.54)

Qij =
∫

∂Ωe

β N iN j dΓ, (3.55)

and the element vector fn+θ is given by

f i
n+θ =

∫
Ωe

N ifn+θ dΩ. (3.56)

As can be shown by partial integration, the matrix K is algebraically equi-
valent to the standard element diffusion matrix of the linear cg method, for
κ piecewise constant. The global problem given by Equation (3.48) has the
following matrix format∑

e

[(
Ã − KT

)
φn+θ + Q

(
φ̄n+θ − φn+θ

)− Pφ̄n+θ

]
=

∑
e

hn+θ, (3.57)

where the matrices Ã and P are given by, respectively,

Ãij =
∫

∂Ωe

(a · n)N iN j dΓ, (3.58)

P ij =
∫

∂Ωe∩Γh

(1 − γ) (a · n) N iN j dΓ, (3.59)
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the right hand side vector hn+θ is given by

hi
n+θ =

∫
∂Ωe∩Γh

N ihn+θ dΓ, (3.60)

and
∑

e represents assembly of the element matrices into a global matrix.
Note that for P 1 elements and piecewise constant κ the matrix KT equals
the matrix K in Equation (3.54). For a solenoidal velocity field Ã = A+AT .

By algebraic manipulation, Equation (3.57) can be expressed entirely in
terms of the global unknowns φ̄n+θ and the known local degrees of freedom
φn. Subtracting Equation (3.57) from Equation (3.51) in an element wise
fashion yields

∑
e

[(
1

θΔt
M + A − Ã

)
φn+θ + (K + P ) φ̄n+θ

]

=
∑

e

(
1

θΔt
Mφn + fn+θ − hn+θ

)
. (3.61)

In order to eliminate φn+θ the local Equation (3.51) is rewritten as

φn+θ = φ̄n+θ − T

[
1

θΔt
M

(
φ̄n+θ − φn

)
+ Aφ̄n+θ − fn+θ

]
, (3.62)

where

T =
(

1
θΔt

M + A − K − Q

)−1

. (3.63)

Substitution of Equation (3.62) into Equation (3.61) and re-arrangement
results in the following global equation

∑
e

W

[
1

θΔt
M

(
φ̄n+θ − φn

)
+ Aφ̄n+θ − fn+θ

]

+
∑

e

(
K + P − Ã

)
φ̄n+θ +

∑
e

hn+θ = 0, (3.64)

where the element ‘weighting matrix’ W is given by

W = I −
(

1
θΔt

M + A − Ã

)
T . (3.65)

Besides being compact, this form of the matrix equations is particularly
convenient in practice as it only involves the multiplication of standard cg

matrices with the weighting matrix W , in an element wise fashion. The only
non-standard element matrices that must be computed to obtain W are the
element boundary matrices Q and Ã given by Equations (3.55) and (3.58),
respectively. Importantly, for elements where a = 0 and κ = 0 the ex-
pression for W remains non-singular. For T = 0 the interface stabilization



3.4. Implementation 63

terms vanish, and the conventional cg method is recovered. Reversely, a
linear cg computer code is easily converted into a linear gis code with the
use of Equation (3.64).

The elimination of the φ degrees of freedom at the element level re-
sults in an efficient algorithm, as global Equation (3.64) has the number
of un-knowns of the associated cg method. The resulting sparse matrix
system may be solved efficiently using iterative techniques as for instance
the bicgstab algorithm combined with ilu preconditioning [69, 93]. In
time stepping problems, the element degrees of freedom φ need to be sto-
red in memory. After solving the global system, their values are updated
in a simple back-substitution procedure, using local Equation (3.62) and
subsequent extrapolation to the next time level tn+1.

3.4.3 Stabilization mechanism

For a stationary problem, with solenoidal advective field a and homogeneous
Dirichlet boundary conditions, the global problem from Equation (3.64)
reads, after using Ã = A + AT and re-ordering,∑

e

(−AT + K
)
φ̄ −

∑
e

f︸ ︷︷ ︸
standard cg terms

+
∑

e

AT T
(
Aφ̄ − f

)
︸ ︷︷ ︸

additional terms

= 0. (3.66)

Compared to the standard linear continuous Galerkin method Equation (3.66)
has additional terms containing element wise ‘residual’ vectors Aφ̄−f from
the advection and source terms. For higher order elements, the element wise
residuals would also contain the diffusive part of the flux, but in this case of
linear elements all second derivatives in Equation (3.47) have vanished and
the diffusive part is not present in the element residual.

For the supg method, assuming piecewise linear velocity a and a linear
source function f , global Equation (3.20) has the following matrix form [36]∑

e

(−AT + K
)
φ̄ −

∑
e

f︸ ︷︷ ︸
standard cg terms

+
∑

e

AT τeM
−1

(
Aφ̄ − f

)
︸ ︷︷ ︸

supg stabilization term

= 0, (3.67)

where τe is a stabilization parameter, assumed piecewise constant, which is
given by

τe =
1
2

he

|a′|ξ, (3.68)

where he is the streamwise length of the element, a′ is a measure of the
advective velocity within an element and ξ is a function of the Péclet number
[87]. The supg stabilization term closely resembles that of the interface
stabilization method, with the matrix τeM

−1 replacing the matrix T of
the latter. If all terms in the ‘residual’ vector Aφ̄ − f are equal (element
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wise), the methods are algebraically equivalent as the matrix T can then be
replaced by a matrix τ ′

eM
−1 with the parameter τ ′

e given by

τ ′
e =

∑
i,j T∑

i,j M−1
, (3.69)

where
∑

i,j denotes summation over all matrix entries.
To show the correspondence between τ ′

e and τe, consider a one-dimensional
case with piecewise constant velocity a for which the matrix T is given by

T =

⎛
⎝1

2 |a| + (α−1)κ
he

1
2a + κ

he

−1
2a + κ

he

1
2 |a| + (α−1)κ

he

⎞
⎠−1

. (3.70)

From Equation (3.69), and using Equation (3.70), τ ′
e can be expressed as

τ ′
e =

1
2

he

|a|ξ
′, (3.71)

where ξ′ is a Péclet -number dependent function given by

ξ′ =
1 + (α − 2) Pe−1

1 + (α − 1)Pe−1 + 1
2α (α − 2) Pe−2

. (3.72)

Comparison of τ ′
e with the expression for τe given by Equation (3.68) shows

that in this example the interface stabilization method is equivalent to the
supg method with ξ′ replacing ξ.

Figure 3.10 shows the term ξ′ for penalty values α = 4 and α = 6. Also
shown are functions ξ for which supg stabilization is optimally accurate
and functions for which stabilization is critical in the sense that solutions
are just monotone, see Simo et al. [81]. For any penalty value α, the function
ξ′ approaches the optimal value of one in the advective limit. In the diffusive
case, α = 6 leads to the optimal limit behaviour ξ′ = 1

3Pe as Pe ↓ 0, but
the corresponding ξ′ is too small in the high Péclet number range. Taking
α = 4 improves this behaviour at the price of a slight deviation from the
optimal value of ξ in the diffusive limit. Importantly, with a fixed α, the
model adapts automatically to the flow conditions, removing the ambiguity
in selecting a Péclet-number dependent stabilization term.

3.4.4 Fourier analysis

Next, a Fourier analysis is performed for the one-dimensional case with
uniform advective velocity a and diffusivity κ by imposing periodic solutions
of the following form

φ = φ̃ e(iω−μ)te−ikx, (3.73)
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Figure 3.10: Optimal ξ (dark blue) and critical ξ (black) for the supg method
and ξ′ for the gis method with α = 4 (green) and α = 6 (light blue).

where φ̃ is a constant complex amplitude, k is the spatial wave number, ω is
the radian frequency, μ is the damping rate and i =

√−1 is the imaginary
unit. For each wave number, the corresponding frequency and damping rate
can be determined by solving the generalized eigenvalue problem which is
obtained after inserting the periodic solution into the semi-discrete Equa-
tions (3.38) and (3.39).

The eigenvalue problem has two roots which, together with the exact
root, are given in Figure 3.11 as functions of the dimensionless wave number
khe/π. Note that for the advective case ω and μ are scaled with a factor
he/|a| while for the diffusive case the scaling factor is h2

e/κ, in order to obtain
dimensionless quantities. In the advection dominated case the frequency of
the physical mode, shown in frame (a) is close to the exact frequency ω = ka
while the negative frequency of the non-physical mode indicates propagation
in the opposite direction. As shown in frame (b) the non-physical mode is
strongly damped and will quickly disappear from the solution. For wave
numbers khe < 0.4π, which involves more than 15 elements per wavelength,
the damping rate of the physical root is close to the exact solution μ = 0.
Note that the frequency of the physical mode is a monotone function of the
wave number. The group velocity cg = ∂ω/∂k is therefore positive which
avoids the upstream propagation of energy and the associated accumulation
of spurious wiggles. Frame (c) shows that in the diffusive case the physical
and the non-physical modes have the exact frequency ω = 0. As shown
in frame (d), the non-physical root of the diffusive case is strongly damped
leaving the physical root as the dominant part of the solution. For a stability
parameter α = 6 the damping rate of the physical mode is close to the exact
solution μ = κk2 if the wave number khe < 0.8π, which requires more than
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Figure 3.11: Fourier analysis: advection, (a) dispersion and (b) damping;
diffusion (α = 6), dispersion (c) and damping (d); physical roots (blue),
non-physical roots (red) and exact solutions (green).

8 elements per wavelength.

3.5 Numerical examples

In this section the linear interface stabilization method is demonstrated for
a range of numerical examples. Unless stated otherwise all examples use a
stability constant α = 4. For the one-dimensional cases a direct linear solver
is used while two- and three-dimensional cases use the bicgstab method in
combination with straightforward ilu preconditioning.

3.5.1 Advection-diffusion with source

Because of its resemblance with supg-type stabilization it is anticipated
that the linear interface stabilization method also has O (

h2
e

)
and O

(
h

3/2
e

)
convergence rates in the L2 error norm for the diffusive and the advective
limit cases, respectively. In order to confirm these convergence rates the
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Figure 3.12: Advection-diffusion with source: error in the L2 norm (a) and
in the H1 semi-norm (b) for Pe = 100 (blue), Pe = 1 (green) and Pe = 0.01
(red).

following one-dimensional smooth test problem is considered

Pe
∂φ

∂x
− ∂2φ

∂x2
= 50

(
1 − Pe x − 50x2

)
exp

(−25x2
)
, (3.74)

on the domain Ω = (−1, 1) with φ = 0 at x = ±1. For every Péclet number,
the exact solution φe to this problem is given by

φe = exp
(−25x2

)
. (3.75)

The computations are performed using uniform meshes with element sizes
he ranging from 1/1000 to 1/10. The value of κ is adjusted in order to
obtain Péclet numbers of 0.01, 1 and 100, respectively.

The resulting error e = φe − φ, measured in the L2 norm and in the H1

semi-norm, is shown in Figure 3.12. In the advective and diffusive limits, the
observed convergence rate is of order two in the L2 norm and of order one
in the H1 semi-norm. For the advective case, this result is slightly better
than generally predicted for stabilized linear finite element methods.

3.5.2 Boundary layers

Consider the stationary advection-diffusion equation

a · ∇φ − κ∇2φ = 0 on Ω ⊂ R
d, (3.76)

in which a ∈ R
d is a uniform advective velocity and κ is a uniform diffusivity.

The numerical behaviour of solutions is determined by the way the boundary
conditions are enforced, the orientation of a with respect to the mesh and
the element Péclet number. The following examples address these issues.
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3.5.2.1 Outflow boundary

Consider the domain Ω = (0, 1) with Dirichlet boundary conditions g = 1
at x = 0 and g = 0 at x = 1. The exact solution to Equation (3.76) for this
case is given by

φe =
exp (ax/κ) − exp (a/κ)

1 − exp (a/κ)
, (3.77)

which involves an outflow boundary layer having a width of order κ/a. For
large Péclet numbers, the boundary layer is thin with respect to the element
size he and the numerical solution may become oscillatory.

Figure 3.13 shows the computed solutions for he = 1/20 and Péclet
numbers ranging from 0.01 to 10. In general, the agreement between the
exact solution and the numerical solution is good. For Pe = 10, the solution
for φ shows some overshoot near the outflow boundary, but this remains
localized. In terms of φ̄ there is no overshoot. The effect of weakly imposed
boundary conditions on φ can be observed in Figure 3.13 for the case Pe =
10. At the outflow boundary, there is a significant difference between φ
and φ̄. This demonstrates an advantage of using weak Dirichlet boundary
conditions in regions with steep gradients.

The interpolated values of the interface variable φ̄ provide a good repre-
sentation of the discontinuous field φ and may be used for post processing
purposes instead of the latter. Especially in higher dimensions this will be
convenient as the vector of the nodal degrees of freedom φ̄ requires conside-
rably less storage space than the vector φ containing the local unknowns.

3.5.2.2 Characteristic boundary layer

Consider the unit square Ω : (0, 1)×(0, 1) with Dirichlet boundary conditions
g = 1 on y = 0, g = 0 on x = 0 and homogeneous Neumann boundary
conditions elsewhere. The computational domain is partitioned by regular
triangular elements with uniform element size he = 1/30. The transport
velocity in Equation (3.76) is set to a = (cos ϕ, sinϕ)T using characteristic
directions ϕ of 15◦, 30◦, 45◦ and 60◦, respectively. The diffusivity κ is set to
10−6. The exact solution to this problem involves a discontinuity which is
aligned with the characteristic direction and the test will reveal the ability
of the model to resolve the associated steep gradients [42, 81].

Figure 3.14 shows that for all directions ϕ the characteristic boundary
layer is adequately resolved. The jump discontinuities are captured in about
five elements. The under- and overshoot on either side of the boundary layer
remains localized. Table 3.1 summarizes maximum and minimum values of
φ and φ̄ across the boundary layer showing variations of ±15% and ±10% of
the theoretical jump, respectively. These results demonstrate that the weak
enforcement of the interelement continuity constraint reduces the amount of
under- and overshoot in the global solution φ̄.
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Figure 3.13: Outflow boundary layer for various Péclet numbers; φ̄ (dots),
φ (solid) and exact solution (circles).

3.5.2.3 Advection in a box

This example considers the influence of the Péclet number on the behaviour
of three-dimensional boundary layers. In two or three dimensions the Péclet
number is ambiguous and following definition is used here

Pe =

∫
Ωe

∣∣a · ∇N j
∣∣N j dΩ∫

Ωe
κ∇N j · ∇N j dΩ

, (3.78)

using the summation convention. The above expression is the ratio of the
traces of the modulus of the element advection and diffusion matrices.

The computational domain is the unit cube Ω : (0, 1) × (0, 1) × (0, 1).
The three-dimensional mesh of the cube is constructed by expanding a two-
dimensional mesh of triangles in z-direction using 20 layers of tetrahedrons.
The resulting mesh has 10227 nodes and an element size he = 1/20. The
advective velocity in Equation (3.76) is set to a = (1, 1, 1)T and the diffu-
sivity κ is adjusted in order to obtain Péclet numbers of 0.01, 0.1, 1 and
10, respectively. Dirichlet boundary conditions are imposed on each face of
the cube setting g = 1 on the inflow boundary given by the plane x = 0
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ϕ = 15◦ ϕ = 30◦

ϕ = 45◦ ϕ = 60◦

Figure 3.14: Characteristic boundary layer: numerical solution φ̄ for various
characteristic directions.

ϕ : 15◦ 30◦ 45◦ 60◦

φmax 1.146 1.136 1.157 1.166
φ̄max 1.067 1.082 1.094 1.110

φmin -0.104 -0.179 -0.155 -0.129
φ̄min -0.068 -0.122 -0.081 -0.087

Table 3.1: Characteristic boundary layer: minimum and maximum values
of computed φ and φ̄.
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Pe = 0.01 Pe = 0.1

Pe = 1 Pe = 10

Figure 3.15: Advection in a box: numerical solution φ̄ (interpolated) for
different Péclet numbers, view is in upstream direction; red indicates φ̄ > 1.

and setting g = 0 elsewhere. To by-pass the singularities at the edges of the
cube, the Dirichlet condition is imposed via a penalty formulation using a
penalty parameter 106. The solution involves outflow boundary layers at the
planes x = 1, y = 1 and z = 1, respectively, and a characteristic boundary
layer centered around the plane x = min (y, z).

Figure 3.15 shows the numerical solution φ̄. The numerical solution is
smooth for Pe ≤ 0.1 but for Pe ≥ 1 the outflow boundary layer exhibits
significant overshoot, see also Table 3.2. The overshoot remains confined to a
small neighbourhood of the outflow boundary and does not spoil the solution
in upstream direction. The overshoot is caused by the Dirichlet boundary
condition for φ̄ which affects the inter-element boundary condition in all
elements connected to the outflow boundary, irrespective of the direction of
the tangential velocity at element interfaces. In all cases, the characteristic
boundary layers are nicely resolved with a maximum over- and undershoot
of φ̄ of about 15% of the theoretical jump in the Pe = 10 case.

3.5.3 Anisotropic diffusion

Anisotropic diffusive transport is particularly relevant in environmental wa-
ter systems since the intensities of the horizontal and vertical mixing pro-
cesses may differ considerably, the physics of which is explained in Fischer
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Pe = 0.01 Pe = 0.1 Pe = 1 Pe = 10

φ̄max 1.000 1.000 1.754 2.611
φ̄min 0.000 0.000 -0.013 -0.162

Table 3.2: Advection in a box: minimum and maximum values of φ̄.

[24]. In shallow water the dispersion coefficients in streamwise and cross
stream directions, respectively, may differ by a factor of ten to twenty.

The formulation of the diffusive interface flux from Equation (3.35)
should take anisotropy into account, which is tested by solving the two-
dimensional diffusion equation obtained trivially from Equation (3.6) by
setting a = 0. The initial condition is a Gaussian hat with unit concentra-
tion in the center (x, y) = (0, 0) and standard deviation σ0 = 1. For the
boundary condition φ → 0 if |x| → ∞, the exact solution φe to this problem
reads

φe =
1

σsσn
exp

(
− s2

2σ2
s

− n2

2σ2
n

)
, (3.79)

where (s, n) are coordinates with respect to the principal axis of the diffusion
tensor, σ2

s,n = σ2
0+2κs,nt are the corresponding standard deviations in which

κs,n are the transformed diffusivities.
The computational domain is the square Ω : (−12, 12)× (−12, 12) which

is partitioned using thirty elements along each side of the square giving an
element size he = 0.8. The diffusivities are set to κs = 10 and κn = 1. The
principal axis of the diffusion tensor κ has angles ϕ of 0◦, 45◦, 90◦ and 135◦

with the x -axis, respectively. The computation proceeds until t = 1 for
which σ2

s = 21 and σ2
n = 3. The domain is chosen large enough to avoid

interference of the solution with the boundaries which permits to set φ̄ = 0
on ∂Ω. For time stepping, the fs scheme is used with an average time step
size Δt = 1/30.

The numerical solutions are shown in Figure 3.16 together with the exact
fields. The correspondence between the numerical and the exact solutions
is good. For ϕ = 45◦ a slight deviation from the exact solution may be
observed, which is probably caused by the bias in the orientation of the
mesh, from lower left to upper right. The results confirm that the proposed
approximation of the interface flux by Equation (3.35) is appropriate in the
case of anisotropic diffusion.

3.5.4 Simple waves

The next series of examples concerns the time dependent advection problem

∂φ

∂t
+ a · ∇φ = 0 on Ω ⊂ R

d, (3.80)
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ϕ = 0◦ ϕ = 45◦

ϕ = 90◦ ϕ = 135◦

Figure 3.16: Anisotropic diffusion: numerical solution φ̄ (colour) and exact
solution (isolines) for different orientations of the principal axis of the dif-
fusion tensor; contour intervals 0.02.

where the solenoidal advective velocity a : Ω → R
d. For the initial condition

φ (x, t0) = φ0 the exact solution to this problem is given by

φe (x (χ, t)) = φ0 (χ) , (3.81)

where χ is a label co-ordinate attached to material points moving with the
velocity a and which is chosen such that χ = x at t = t0. For a uniform
velocity a the above solution corresponds to a rigid body translation.

The numerical behaviour of solutions is to a large extend determined
by the Courant-Friedrich-Lewis (CFL) number, the definition of which is
ambiguous in two - and three dimensions. The following expression is used
here

CFL =

∫
Ωe

∣∣a · ∇N j
∣∣N j dΩ∫

Ωe
Δt−1N jN j dΩ

, (3.82)

which is the ratio of the traces of the modulus of the element advection
and mass matrices. The examples investigate the influence of the Courant
number on the quality of numerical solution for the fs time stepping scheme.
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case CFL = 0.2 CFL = 0.4 CFL = 0.8 CFL = 1.6

φ̄max 1-d 0.9532 0.9511 0.9142 0.8505
2-d 0.9353 0.9252 0.9195 0.8544
3-d 0.8899 0.8889 0.8833 0.7873

φ̄min 1-d -0.0034 -0.0065 -0.0329 -0.1651
2-d -0.0059 -0.0055 -0.0392 -0.1674
3-d -0.0071 -0.0068 -0.0477 -0.1916

rel. celerity 1-d 0.9993 0.9993 0.9994 1.0010
2-d 0.9954 0.9950 0.9925 0.9833
3-d 0.9983 0.9982 0.9976 0.9954

Table 3.3: Summary simple-wave tests: minimum and maximum concentra-
tions and relative celerity; initial distributions are Gaussian with standard
deviation 2 he; theoretical total displacements 15he.

3.5.4.1 Travelling hill

The one-dimensional domain Ω = (0, 1) is partitioned by thirty uniform
elements. The initial condition is a Gaussian hill with unit height, center
position x = 0.2 and standard deviation σx = 2he. Setting the advective
velocity a = 1, the time step size Δt is varied in order to obtain Courant
numbers of 0.2, 0.4, 0.6 and 1.8, respectively. The computation proceeds
until the theoretical translation of the hill equals 15he.

The numerical results are shown in Figure 3.17. Regarding the small
initial size of the hill with respect to the element size, the numerical results
are in good agreement with the theoretical solution. For CFL < 0.8 the
position of the center of the hill is reproduced correctly while the peak
height has decreased to about 0.95, see also Table 3.3. For CFL ≥ 0.8 the
relative celerity remains close to one but high frequency dispersion causes
some distortion and undershoot on the upstream side of the hill. This could
be suppressed by using the backward Euler time stepping scheme which will
however increase artificial diffusion. In all cases the total mass remained
constant, which confirms the theoretical result given by Equation (3.42).

3.5.4.2 Rotating cone

On the unit circle Ω = {(x, y) |x2 + y2 < 1} a rotational velocity field is
given by (ax, ay) = (−y, x). The initial condition φ0 is a Gaussian hat
with unit height, center position (x, y) =

(
1
2 , 0

)
and standard deviations

σx = σy = 2he. The domain is partitioned by equilateral elements with
element size he ≈ 1/10. The time step size Δt is adjusted in order to obtain
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Figure 3.17: Translation of a Gaussian hill for various Courant numbers
showing φ (solid), φ̄ (dots) and exact solution (circles).

Courant numbers of 0.2, 0.4, 0.8 and 1.6, respectively, measured at the center
of the cone. The total simulation time yields a theoretical rotation through
π radians, implying a total displacement of the cone center of about 15he.

The computational results are shown in Figure 3.18. For Courant num-
bers of 0.4 and 0.8 the results are in good agreement with the theoretical
solutions, giving the correct position of the center of the cone while keeping
the peak value close to one, see also Table 3.3. For Courant numbers 0.8 and
1.6, high frequency dispersion causes some distortion and negative concen-
trations on the upstream side of the cone. Computations confirm that the
total mass remains constant. The accuracy of the results is comparable to
that of the one-dimensional test.

3.5.4.3 Spiralling blob

On the cylindrical domain Ω =
{
(x, y, z) : y2 + z2 < 1, 0 < x < 3

}
the flow

field a =
(

1
2 , z,−y

)T describes a helical motion around the axis of the
cylinder. The initial condition φ0 is a Gaussian blob with unit height,
centered at the point (x, y, z) =

(
1
2 , 1

2 , 0
)

and with standard deviations
σx= σy= σz= 2he. The simulation proceeds until a theoretical rotation
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CFL = 0.2 CFL = 0.4

CFL = 0.8 CFL = 1.6

Figure 3.18: Numerical solution φ̄ (colour) and exact solution (isolines) of
the rotating cone problem for various Courant numbers; values isolines: 0.2,
0.4, 0.6 and 0.8.

through π/
√

2 radians giving a total displacement along streamlines of 15 he.
The mesh is constructed from the two-dimensional circular mesh of the ro-
tating cone test by ’inflating’ the mesh in x-direction with thirty layers of
tetrahedral elements giving an element size he ≈ 1/10. Different time step
sizes are used in order to obtain Courant numbers of 0.2, 0.4, 0.8 and 1.6,
respectively, measured at the center of the blob.

The results of the computations are shown in Figure 3.19 and summari-
zed in Table 3.3. For Courant numbers of 0.2 and 0.4 the numerical solution
is close to the exact solution with peak values of 0.89 and minimum values
of about −0.007, respectively. The relative celerity is close to one for these
cases. For CFL ≥ 0.8 the celerity error hardly increases but in terms of
peak height reduction and undershoot the results are less accurate than for
the smaller Courant numbers. Some distortion of the blob in streamline di-
rection can be observed leading to negative concentrations on the upstream
side of the blob. Given the small size of the initial blob with respect to
the element size the results are still satisfactory, although in the correspon-
ding one- and two-dimensional situations the shape of the advected cloud is
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CFL = 0.2 CFL = 0.4

CFL = 0.8 CFL = 1.6

Figure 3.19: Spiralling blob: numerical solution φ̄ (colour) for different Cou-
rant numbers, helical flow is from right to left.

generally preserved better.

3.5.5 Practical application: sediment transport North Sea

This example concerns the two-dimensional depth averaged transport of
suspended sediment in the North Sea by tidal currents. The source term
is non-zero due to deposition and erosion of sediment at the seabed. The
transport equation for this case is given by

d
∂φ

∂t
+ du · ∇ (αφ) −∇ · (dκ∇φ) = ws (φeq − φ) (3.83)

where φ is the depth averaged sediment concentration, u is the depth ave-
raged flow velocity (obtained from a shallow water flow model), d is the
water depth, α is a shape factor accounting for vertical variations of the se-
diment concentration, ws is the effective sediment settling velocity and φeq is
the equilibrium sediment concentration, i.e. the depth averaged concentra-
tion for which erosion and sedimentation at the seabed are in equilibrium.
Formulations for α, ws and φeq follow from the specific type of sediment
transport model that is actually used. Details of the specific choices made
here can be found in van Prooijen et al. [71].
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(a) (b)

Figure 3.20: Finite element mesh of the North Sea (a) and detail of the area
around the Port of Rotterdam (b), source: van Prooijen et al. [71].

(a) (b)

Figure 3.21: Computed (a) and observed (b) yearly mean suspended solids
concentration, source: van Prooijen et al. [71]

Figure 3.20 shows the computational mesh of the North Sea which consists
of about 25,000 nodes. Note that the spatial resolution is relatively fine
along the Dutch west coast, which is the area of interest for these simu-
lations, where the element size he is about 1000 m. The simulations were
performed using a time step of 1800 seconds. For typical tidal current ve-
locities up to 1 m/s velocities the resulting maximum Courant number is
about 2. A horizontal diffusivity κ = 15 m2/s is used to model the dis-
persion induced by the unresolved spatial variations of the total transport.
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This yields a maximum Péclet number of about 60. The total simulation
period was seven years.

The computed yearly averaged sediment distribution in the North Sea is
shown in Figure 3.21, together with observed average suspended sediment
concentrations. Considering the high degree of uncertainty of the sediment
transport parameters, the correspondence between the computed results and
the field observations is very good. It should be mentioned however that to
a large extend the quality of the computed results is directly related to a
proper choice for the sediment transport formulation and the corresponding
parameters. Nevertheless, the results show that the interface stabilization
method can be applied successfully in a typical transport problem encoun-
tered in hydraulic engineering.

3.6 Conclusion

In this chapter a stabilized finite element method has been formulated for
the advection-diffusion problem. The method is based on

• dg -type flux approximation at interior element interfaces,

• static condensation yielding the computational structure of a cg me-
thod.

The general discontinuous Galerkin variational form is supplemented with
basis functions defined on element interfaces. The interface field provides
the weak boundary condition for a local problem on each element. The as-
sociated flux on the element boundary is expressed in terms of the interface
variable and terms particular to the element. Upwinding of this flux guaran-
tees that the local solution can be expressed entirely in terms of the interface
variable. By imposing a global continuity constraint for the interface flux,
elimination of the local solution at the element level leads to a formulation
with the same number of degrees of freedom as for a continuous Galerkin
method on the same mesh.

For linear finite element basis functions the ensuing Galerkin interface
stabilization (gis ) method is easily implemented via element wise multi-
plication of the advection and source terms with an element stabilization
matrix. The computation of this matrix involves integration over element
boundaries. For the stationary advection-diffusion problem the stabilization
terms closely resemble those of the supg method and in one-dimension the
link to the supg stabilization parameter can be demonstrated. In effect, op-
timal stabilization evolves naturally from the formulation without recourse
to flow dependent parameters.

The performance of the method has been demonstrated for steady and
unsteady advection-diffusion problems highlighting the role of the Péclet
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number and the Courant number, respectively. The computed results de-
monstrate accuracy, stability and at the same time minimal dissipation. A
practical example of the North Sea shows that the method is well suited to
be incorporated in a hydraulic engineering tool.



Chapter 4

Incompressible flow

In this chapter the flow of an incompressible fluid in a fixed domain is consi-
dered as a first step towards the more complex free-surface flow problem. It
will be shown that the gis method, developed in the previous chapter, si-
multaneously stabilizes advective instabilities through upwinding of the ad-
vective flux and circumvents the instability due to the continuity constraint
for incompressible flows1.

4.1 Mathematical formulation

4.1.1 Gouverning equations

The motion of an incompressible fluid in a domain Ω ⊂ R
d, where d is the

number of spatial dimensions, is described by balance equations for mass
and momentum, see the derivation in Chapter 1. To this end, a fluid with
a uniform density is modelled by its velocity u : Ω × I → R

d and the
normalized pressure p : Ω×I → R, where I = (t0, tN ) is the considered time
interval. The incompressible Navier-Stokes problem can then be stated as:
given a forcing term f : Ω × I → R

d and kinematic viscosity ν, find the
velocity u and the normalized pressure p such that

∂u

∂t
+ ∇ · σ = f in Ω × I, (4.1)

σ = u ⊗ u + pI − 2ν∇sv in Ω × I, (4.2)
∇ · u = 0 in Ω × I, (4.3)

where I is the second-order identity tensor, σ is the momentum flux tensor,
(u ⊗ u)ij = uiuj is the advective flux and ∇s(·) = 1

2∇(·) + 1
2∇(·)T is the

1This chapter is partly based on: ‘A Galerkin interface stabilisation method for the
advection-diffusion and Navier-Stokes equations’, Robert Jan Labeur and Garth N. Wells.
In: Computer Methods in Applied Mechanics and Engineering, 196, 4985-5000, 2007.
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symmetric gradient. The normalized pressure p, which is the pressure di-
vided by the fluid density, is implicitly determined by the incompressibility
constraint, Equation (4.3). The forcing term usually represents gravitation,
in which case it may be written as f = ∇Φ, where Φ is the gravitational
potential. The flow can then be modelled by setting f = 0 and replacing the
normalized pressure p in the flux Equation (4.2) with the non-hydrostatic
pressure pd = p−Φ. In a stratified environment relative density differences
may also contribute to the forcing term, see Appendix A.

The solution of Equations (4.1) to (4.3) requires initial conditions

u (x, t0) = u0 in Ω, (4.4)

where the initial velocity u0 should be divergence free. The initial pressure
must not be specified but follows directly from the evolution of the initial
flow field.

On Γ ⊂ ∂Ω boundary conditions have to be specified for all t ∈ I. It
is assumed that the boundary is sufficiently smooth, and the outward unit
normal vector to Γ is denoted n. The boundary is partitioned into Γg and
Γh such that Γg∪Γh = Γ and Γg∩Γh = ∅. Dirichlet and Neumann boundary
conditions on Γg and Γh are then given by, respectively,

u = g on Γg × I, (4.5)
(γu ⊗ u + pI − 2ν∇su) n = h on Γh × I, (4.6)

in which g and h are the imposed Dirichlet and Neumann boundary condi-
tions, respectively, and γ = 1 on inflow boundaries (u ·n ≤ 0) and γ = 0 on
outflow boundaries (u · n > 0). The Neumann boundary condition h the-
refore specifies the total flux on inflow portions of the Neumann boundary
and the diffusive flux on outflow Neumann boundaries [51].

The Dirichlet and Neumann conditions may also be imposed in a combi-
ned fashion, for instance by prescribing the normal velocity and the tangen-
tial stress. For instance, an impermeable wall boundary, denoted Γw ⊂ Γ, is
modelled by setting the normal velocity to zero while imposing a tangential
wall shear stress τw, according to

u · n = 0
n × (γu ⊗ u − 2ν∇su) n = n × τw

}
on Γw × I. (4.7)

The wall shear stress is related to the tangential velocity via a ‘law of the
wall’

τw = cf |u|u on Γw, (4.8)

where cf is a dimensionless friction factor, which depends on the wall rough-
ness and the kinematic (turbulence) viscosity, see Appendix B.1. On open
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boundaries, denoted Γo ⊂ Γ, the normal velocity may be prescribed with
the tangential stress being set to zero, which yields

u · n = un

n × (γu ⊗ u − 2ν∇su) n = 0

}
on Γo × I, (4.9)

where un is the normal velocity boundary condition. A detailed discussion
of other possible combinations of boundary conditions and their implemen-
tation is given in Gunzburger [30].

4.1.2 Variational formulation

The spatial domain Ω is partitioned into disjoint subdomains Ωe having
boundaries ∂Ωe, to which n is the outward unit normal vector. This defines
the unions

Ω̃ =
⋃
e

Ωe, (4.10)

Γ̃ =
⋃
i

Γi =
⋃
e

∂Ωe, (4.11)

where Ω̃ is the union of element interiors, Γ̃ is the union of element boun-
daries and Γi are element interfaces.

The velocity u and the pressure p may be approximated in discontinuous
function spaces V and Q, respectively, which are defined by

V =
{

v ∈ L2
(
Ω̃
)

: v ∈ H1 (Ωe) ∀ e
}

, (4.12)

Q =
{

q ∈ L2
(
Ω̃
)

: q ∈ H1 (Ωe) ∀ e
}

. (4.13)

The format of the momentum balance Equations (4.1) and (4.2) is simi-
lar to that of the advection-diffusion problem given by Equations (3.1)
and (3.2), and the derivation of the discontinuous weak form of the Navier-
Stokes problem may proceed in a way similar to that for the transport
problem in Section 3.1.2. Introducing interface variables ū : Γ̃ × I → R

d

and σ̄ : Γ̃ × I → R
d × R

d and after partial integration of the continuity
constraint, the resulting variational problem reads: at a given time t, find
u ∈ V and p ∈ Q such that∫

Ω̃

∂u

∂t
· v dΩ −

∫
Ω̃

σ : ∇v dΩ +
∑

e

∫
∂Ωe

σ̄n · v dΓ

+
∑

e

∫
∂Ωe

2ν (ū − u) · ∇sv n dΓ −
∫

Ω̃
u · ∇q dΩ

+
∑

e

∫
∂Ωe

ū · nq dΓ =
∫

Ω̃
f · v dΩ ∀ v ∈ V, ∀ q ∈ Q, (4.14)
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where it has been assumed that the interface terms σ̄ and ū satisfy the
respective boundary conditions. The operator : denotes the Frobenius inner
product A : B =

∑
i,j AijBij , where A and B are given matrices and

∑
i,j

denotes summation over matrix elements.
For a proper choice of the spaces V and Q Equation (4.14) is consistent

with the strong form of the Navier-Stokes problem if the interface terms
are defined consistently. The latter requires that ū and σ̄ approach the
continuous limits if the jumps �u� and �σ� tend to zero [1]. For stability,
the spaces V and Q may not be chosen independently but have to satisfy the
lbb condition given by Equation (2.27). In the next section, a particular
choice for the spaces V and Q, and the interface terms ū and σ̄ will be
proposed which is reminiscent of the gis method for the advection-diffusion
problem and also has similar stability properties.

4.1.3 Dimensional scaling

This section examines the momentum equations in some more detail. For
an incompressible flow and spatially constant viscosity ν, the gradient of
the diffusive stress can be replaced by the Laplacian operator. Substitution
of the flux Equation (4.2) into the momentum balance Equation (4.1) then
leads to

∂u

∂t
+ ∇ · (u ⊗ u) + ∇pd = ν∇2u, (4.15)

in which the (gravitational) forcing term has been eliminated using the non-
hydrostatic pressure pd. In order to investigate the relative importance of
each term in Equation (4.15), consider a flow with a reference velocity scale
Uref in a domain having a length scale Lref . An appropriate intrinsic time-
scale is then given by Tref = Lref/Uref , which is the characteristic time for a
fluid particle to travel through the domain. Introducing non-dimensional va-
riables u∗ = u/Uref , x∗ = x/Lref and t∗ = t/Tref, the momentum equations
can be written in non-dimensional form as

∂u∗

∂t∗
+ ∇̃ · (u∗ ⊗ u∗) +

Pref

U2
ref

∇̃p∗d =
1

Re
∇̃2u∗, (4.16)

where ∇̃ is the scaled gradient operator, Pref is the pressure scale, p∗d is the
non-dimensional pressure and Re = UrefLref/ν is the Reynolds-number. The
pressure may be eliminated from Equation (4.16) by taking the curl which
gives the vorticity equation

∂ω∗

∂t∗
+ u∗ · ∇̃ω∗ − ω∗ · ∇̃u∗ =

1
Re

∇̃2ω∗, (4.17)

where ω∗ = ∇̃ × u∗ is the non-dimensional vorticity vector.
The Reynolds number to a large extent determines the behaviour of

solutions of the Navier-Stokes equations. If Re >> 1 the right hand side
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of Equation (4.17) can be neglected and the vorticity merely changes due
to advection and stretching by the velocity shear. Small perturbations of
the vorticity are enhanced due to the non-linearity of the advection and
stretching terms which ultimately renders the fluid motion turbulent. For
Re << 1 viscous damping dominates which will prevent the onset of these
instabilities. In environmental fluid mechanics, due to the small viscosity
of water and the large length scales involved, the flow will be turbulent in
most cases. Exceptions are fine scale processes as for example the settling of
sand or silt particles or the flow through porous media, which are however
not considered here. A turbulent flow is often modelled in terms of its
mean, large scale flow field by means of the Reynolds averaged Navier-Stokes
(rans) equations [61]. The net influence of the small-scale fluctuations
on the large scale mean flow is taken into account by adding an artificial
turbulence viscosity to the fluid viscosity. The mathematical behaviour of
the model will then depend on the Reynolds number resulting from the
virtual turbulence viscosity, see Appendix B.

Considering that the pressure gradient in momentum Equation (4.16)
balances all other terms, the reference pressure scale Pref is given by

Pref =

{
U2

ref if Re >> 1,

νUref/Lref if Re << 1.
(4.18)

In a numerical model, non-dimensionalization of the Navier-Stokes equa-
tions, using the above scaling parameters, will guarantee that the degrees
of freedom u and p have the same order of magnitude. Otherwise, numeri-
cal solution procedures may fail to converge. This especially concerns the
velocity-pressure coupling where improper scaling may cause violation of the
discrete incompressibility constraint, even when direct solution procedures
are used, which is demonstrated in the lucid paper by Pelletier et al. [65].
For this reason, the non-dimensional form of the Navier-Stokes equations
will be used in this thesis. In order to avoid notational clutter, the asterisks
are dropped from the formulations and the non-dimensional form is assumed
implicit throughout.

4.2 Galerkin interface stabilization method

4.2.1 Introduction

Numerical modelling of the incompressible Navier-Stokes problem requires
the suppression, in a consistent way, of: (1) instabilities due to the advection
terms, which is related to the Péclet number, and (2) instabilities due to
the incompressibility constraint, which is related to the lbb condition, see
Section 2.1.2. Heuristically, both type of instabilities are associated with
incompatible velocity fields on elements, that is if the interpolated velocity
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is inconsistent with the pressure gradient term or the velocity assumed on
the outflow part of the element boundary. The problem may be by-passed
in several ways:

• By taking different polynomial spaces for the velocity and pressure ba-
sis functions, respectively, yielding the class of Taylor-Hood elements
or Raviart-Thomas elements [30]. A practical impediment with this
approach is that the nodal structuring of the pressure and velocity unk-
nowns becomes mutually different which is inconvenient when handling
large systems of sparse matrix equations. In the high Péclet-number
range, the advection terms still need upwind stabilization which may
cause artificial dissipation.

• By using local bubble degrees of freedom for the velocity. Static
condensation of the bubble velocities algebraically leads to a Lapla-
cian operator for the pressure which stabilizes the incompressibility
constraint [8]. The reduced system of equations is easier to handle
and for the mini element a global system results with the pressure and
velocity degrees of freedom residing in the same nodes [7]. The stabi-
lization may be non-optimal however or even insufficient in advection-
dominated cases Simo et al. [81].

• By modifying the momentum flux using supg-like correction terms
which depend on the local residual of the momentum transport equa-
tion. Besides stabilizing the momentum equations, using the modified
velocity in the incompressibility constraint will effectively introduce
a consistent Laplacian pressure stabilization term [38]. The resulting
Pressure Stabilized Petrov-Galerkin (pspg) method is algebraically
equivalent to the mini element. A user defined stabilization parame-
ter is involved [87], the definition of which is non-trivial if different
flow regimes reign within the same domain.

The proposed gis method uses the same principle of modifying the local
velocity field in a different way. By defining global velocity degrees of free-
dom on the element interfaces, a locally discontinuous velocity field may be
eliminated from the momentum equation by static condensation. By leaving
the pressure field continuous, substitution of the discontinuous velocities si-
multaneously stabilizes the global incompressibility constraint in a similar,
consistent way as for the pspg method. A schematic of the gis pressure-
velocity finite element pair is given in Figure 4.1. The stabilization na-
turally arises from the flux definition at element interfaces and does not
involve flow dependent stabilization parameters. As for the mini element
the local velocity field is obtained from a back substitution step after the
global equation has been solved. Obviously, the procedure has the advan-
tage that the discrete velocity field may be used directly in the evaluation of
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u
u

p

x

Figure 4.1: Schematic of the gis pressure-velocity discretization.

the momentum advection terms without violating consistency [37]. Through
the definition of the interface flux and the interface ‘frame function’ ū, in
this respect the gis method bears some similarities to hybrid finite element
methods [8, 16, 17] and Trefftz-type methods [99].

4.2.2 General formulation

The starting point for the gis variational form of the Navier-Stokes equations
is the general discontinuous weak form given by Equation (4.14) with the
spaces V and Q given by, respectively,

V =
{

v ∈ L2
(
Ω̃
)

: v ∈ Pk (Ωe) ∀ e
}

, (4.19)

Q =
{

q ∈ H1
(
Ω̃
)

: q ∈ P l (Ωe) ∀ e
}

, (4.20)

where Pk and P l are sets of Lagrange polynomial basis functions with poly-
nomial orders k ≥ 0 and l ≥ 1, respectively. Anticipating a global problem
for the pressure, the pressure space Q is chosen continuous. Discontinuous
pressure may have some interesting features, see for instance [16, 17], but is
not pursued here. Reminiscent of the advection-diffusion problem, the in-
terface velocity ū is defined as an independent field on the union of element
interfaces. To this end a trace space V̄ and a related space V̄g are defined
by, respectively,

V̄ =
{

v̄ ∈ H1/2
(
Γ̃
)

: v̄ ∈ Pm (Γi) ∀ i
}

, (4.21)

V̄g =
{

v̄ ∈ H1/2
(
Γ̃
)

: v̄ ∈ Pm (Γi) ∀ i, v̄ = g on Γg

}
, (4.22)

where the fractional space H1/2 is the trace of H1 (Ω) on Γ̃ and Pm is a
set of Lagrange polynomial basis functions with polynomial order m ≥ 1
defined on interfaces Γi. Functions in V̄g only differ from functions in V̄ in
that the Dirichlet boundary conditions on Γg are satisfied.
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The above definitions for ū and p reduce the dg variational form Equa-
tion (4.14) to a global problem. Due to the continuity of ū and q on Γ̃, the
interface terms from the incompressibility constraint, which is embedded in
Equation (4.14), can be written as

∑
e

∫
∂Ωe

ū · n q dΓ =
∫

Γ
ū · n q dΓ ∀ q ∈ Q, (4.23)

since the integrals on the left hand side vanish pairwise on interior element
boundaries. For the interface terms in the momentum equations, a similar
reduction is not possible because functions v and the interface flux σ̄ are
discontinuous across element interfaces. Instead, continuity of σ̄ is imposed
weakly, which requires that

∑
e

∫
∂Ωe

σ̄n · v̄ dΓ =
∫

Γh

(1 − γ) (ū ⊗ u) n · v̄ dΓ

+
∫

Γh

h · v̄ dΓ ∀ v̄ ∈ V̄, (4.24)

where the Neumann boundary condition specifies the total momentum flux
or the diffusive flux at inflow or outflow boundaries, respectively. The in-
terface flux σ̄ in Equation (4.24) is yet undefined other than stating that it
depends on the interface field ū and terms local to an element. It may not
depend on quantities from neighbouring elements. Equation (4.24) thus pro-
vides a condition for ū and this variable may be interpreted as a Lagrange-
multiplier enforcing flux continuity on Γ̃.

Using Equations (4.23) and (4.24), the general gis variational form for
the incompressible Navier-Stokes problem becomes: at time t, given the
forcing term f and boundary condition h, find u ∈ V, p ∈ Q and ū ∈ V̄g

such that∫
Ω̃

∂u

∂t
· v dΩ −

∫
Ω̃

σ : ∇v dΩ −
∑

e

∫
∂Ωe

σ̄n · (v̄ − v) dΓ

+
∑

e

∫
∂Ωe

2ν (ū − u) · ∇sv n dΓ +
∫

Γh

(1 − γ) (ū ⊗ u) n · v̄ dΓ

−
∫

Ω̃
u · ∇q dΩ +

∫
Γ

ū · nq dΓ =
∫

Ω̃
f · v dΩ −

∫
Γh

h · v̄ dΓ

∀ v ∈ V, ∀ v̄ ∈ V̄, ∀ q ∈ P. (4.25)

Setting v̄ = 0 and q = 0 in Equation (4.25) leads to a local problem on
each element, from which u may be expressed locally as a function of the
global fields ū and p. This is possible since σ̄ depends on ū and terms local
to an element. Setting then v = 0 and eliminating u leads to a problem
for the global variables ū and p . After solution of the global problem the
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local velocity field u is found via element-wise back substitution. The entire
solution procedure is essentially similar to the static condensation of bubble
functions [81] and, as will be demonstrated, leads to favourable stability
properties.

4.2.3 Interface flux

A particular choice for σ̄ is presented having the requires properties and
which enables interface stabilization by means of upwinding. To this end
the numerical flux σ̄ is decomposed additively into an advective component
σ̄a and a diffusive component σ̄d, the determination of which requires a
different approach.

The advective flux σ̄a is formulated as

σ̄a = u ⊗ u + γ (ū − u) ⊗ ũ, (4.26)

where ũ is an advective interface velocity, the parameter γ = 1 on inflow
element boundaries and γ = 0 on outflow element boundaries, thereby up-
winding the interface flux. Considering a typical problem where ũ = u, the
advective flux on the downwind side of an element facet reads

σ̄a = u ⊗ ũ, (4.27)

whereas on the upwind side it reads

σ̄a = ū ⊗ ũ, (4.28)

which highlights the upwinding mechanism. The velocity u is discontinuous
at element interfaces which requires a careful formulation of ũ in order
to obtain a correct behaviour of shocks [56]. In particular, the entropy
condition should be satisfied which implies that the energy can not increase
across a shock in the direction of the flow. A range of flux splitting schemes
has been proposed, such as for example the hllc scheme [33] or the Roe
scheme [33]. Similar to the advection-diffusion problem, the following for-
mulation is adopted

ũ = min
(
u+ · n, u− · n)n, (4.29)

where u+ and u− are the traces of the velocity u on an element boundary.
The formulation avoids problems with sink interfaces and also guarantees
entropy conservation at rarefactions (source interfaces). In combination with
the flux continuity constraint, Equation (4.24), the above expression for the
flux resembles the definition of the interface state in flux splitting methods
in a weak sense, see for instance Toro [89] or LeVeque [56]. The diffusive
part of the flux σ̄d is reminiscent of the ip method

σ̄d = pI − 2ν∇su − α

he
ν (ū − u) ⊗ n, (4.30)
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where he is a measure of the local element size and α is a penalty term which
is required for stability of ip methods, see Arnold et al. [1]. The part of the
diffusive flux involving (ū − u)⊗n is not symmetric, which is permitted as
the task of this term is to provide control over the term |ū − u|∂Ωe

. It is not
required for consistency. Combining Equations (4.26) and (4.30), the total
numerical interface flux may be written compactly as

σ̄ = σ + (ū − u) ⊗ β, (4.31)

where

β = γũ − α

he
νn. (4.32)

The quantity β ·n is always negative at element boundaries from which the
ensuing gis method obtains its stabilization.

Substituting Equation (4.31) for the interface flux and setting v̄ = 0 and
q = 0 in Equation (4.25) gives the following local problem: at given time t,
given the forcing term f , find u ∈ V such that∫

Ω̃

∂u

∂t
· v dΩ +

∫
Ω̃
∇ · (u ⊗ u) · v dΩ +

∫
Ω̃
∇p · v dΩ

−
∫

Ω̃
2∇ · (ν∇su) · v dΩ +

∑
e

∫
∂Ωe

β · n (ū − u) · v dΓ

+
∑

e

∫
∂Ωe

2ν (ū − u) · ∇sv n dΓ =
∫

Ω̃
f · v dΩ ∀ v ∈ V, (4.33)

where the regular part of the element flux has been integrated by parts.
Equation (4.33) solves the momentum equations element wise with weakly
imposed Dirichlet boundary conditions ū on ∂Ωe. Setting v̄ = 0 in Equa-
tion (4.25) and using Equation (4.31) for the interface flux leads to the
following global problem: at given time t, given the boundary condition h,
find ū ∈ V̄g and p ∈ Q such that

∑
e

∫
∂Ωe

(u ⊗ u − 2ν∇su) n · v̄ dΓ +
∑

e

∫
∂Ωe

β · n (ū − u) · v̄ dΓ

+
∫

Ω̃
u · ∇q dΩ −

∫
Γh

(1 − γ) (u · n) ū · v̄ dΓ +
∫

Γ
pn · v̄ dΓ

−
∫

Γ
ū · nq dΓ =

∫
Γh

h · v̄ dΓ ∀ v̄ ∈ V̄, ∀ q ∈ Q, (4.34)

where the pressure terms at interior element boundaries have vanished due
to the continuity of p and v̄ on Γ̃. After the elimination of u via the ‘local’
problem, Equation (4.34) reduces to an equation for the global variables ū
and p that can be readily solved.
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The variational method discussed so far is still general in the sense that
the polynomial orders of the involved function spaces are not yet defined
specifically. Section 4.3 will consider in detail the obvious choice k = l =
m = 1 which leads to a particularly simple and efficient implementation.

4.2.4 Properties

For a stabilized method it is crucial to verify whether the addition of the sta-
bilization terms renders the modified variational form consistent and conser-
vative. To this end the general form of the gis method for the Navier-Stokes
problem is considered which is given by Equation (4.25) with the interface
flux according to Equation (4.31).

4.2.4.1 Consistency

For sufficiently smooth functions u and p, setting v̄ = 0 and q = 0 in
Equation (4.25) gives, after integration by parts∫

Ω̃

(
∂u

∂t
+ ∇ · σ − f

)
· v dΩ +

∑
e

∫
∂Ωe

β · n (ū − u) v · n dΓ

+
∑

e

∫
∂Ωe

2ν (ū − u) · ∇sv n dΓ = 0 ∀ v ∈ V, (4.35)

which is consistent with the strong form of the Navier-Stokes problem, given
by Equation (4.1), and the enforcement of ū = u on Γ̃. Setting then v = 0,
q = 0 and using ū = u on Γ̃ in Equation (4.25) gives

∑
e

∫
∂Ωe\Γh

σn · v̄ dΓ +
∫

Γh

(γu ⊗ u + pI − 2ν∇su) n · v̄ dΓ

=
∫

Γh

h · v̄ dΓ ∀ v̄ ∈ V̄, (4.36)

which implies continuity of the flux between subdomains and satisfaction of
the Neumann boundary condition given by Equation (4.6). For v = 0, v̄ = 0
and smooth functions u Equation (4.25) yields, after partial integration,∫

Ω̃
∇ · u q dΩ +

∫
Γ

(ū − u) · nq dΓ = 0 ∀ q ∈ Q, (4.37)

which demonstrates consistency with the continuity constraint Equation (4.3)
and also enforces u · n = ū · n on Γ.

4.2.4.2 Volume conservation

Setting v = 0, v̄ = 0 and q = 1 in Equation (4.25) proves that∫
Γ

ū · n dΓ = 0, (4.38)
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which is a statement of volume conservation in that the net inflow along the
boundary Γ equals zero.

4.2.4.3 Momentum conservation

Setting q = 0, v = ej and v̄ = ej in Equation (4.25), with ej being the unit
vector in Cartesian direction j, gives for the pure Neumann problem

d

dt

∫
Ω̃

u · ej dΩ =
∫

Ω̃
f · ej dΩ

−
∫

Γh

(1 − γ) (u · n) ū · ej dΓ −
∫

Γh

h · ej dΓ, (4.39)

which states that the total increase of momentum in Ω equals the body
force plus the net inward momentum flux over the boundary Γh. For the
case with Dirichlet boundary conditions proving momentum conservation is
less obvious since v̄ can not be set to ej on Γg. The difficulty can however
be circumvented by introducing an auxiliary flux on the Dirichlet boundary
[37]. Considering Equation (4.25) with q = 0, v̄ = 0, v = ej on Ωe and
v = 0 elsewhere, leads to

d

dt

∫
Ωe

u · ej dΩ =
∫

Ωe

f · ej dΩ −
∫

∂Ωe

σ̄n · ej dΓ, (4.40)

which proves local conservation on element e in terms of the numerical flux
σ̄ along the element boundary. Due to the formulation of the global flux
continuity constraint, Equation (4.24), this flux is not point-wise continuous
between elements.

4.2.4.4 Energy conservation

In the viscous limit, setting v = u, v̄ = ū and q = p in Equation (4.25)
gives, after partial integration and re-arrangement,

d

dt

∫
Ω̃

1
2
|u|2 dΩ +

∫
Ω̃

2ν |∇su|2 dΩ +
∑

e

∫
∂Ωe

α

he
ν |ū − u|2 dΓ

+ 2
∑

e

∫
∂Ωe

2ν (ū − u) · ∇su n dΓ =
∫

Ω̃
f · u dΩ −

∫
Γh

h · ū dΓ. (4.41)

The first term in Equation (4.41) concerns the time derivative of the total
kinetic energy. In the absence of external forcing terms, i.e. the case where
f = 0 and h = 0, the total kinetic energy should decrease monotonically.
Obviously, this is not the case for Equation (4.41) as the last term on the left
hand side may become negative. This deficiency can be repaired by making
the penalty term α sufficiently large [1]. The problem may be circumven-
ted altogether by changing the sign of the corresponding interface term in
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Equation (4.33), leading to the skew symmetric form of the ip method which
however lacks consistency [35].

For the advective limit, a similar exercise yields

d

dt

∫
Ω̃

1
2
|u|2 dΩ +

∫
Ω̃

1
2
|u|2 ∇ · u dΩ −

∑
e

∫
∂Ωe\Γh

1
2
|ū|2 u · n dΓ

+
∑

e

∫
∂Ωe

1
2
|ũ · n| |ū − u|2 dΓ +

∑
e

∫
∂Ωe

1
2

(u − ũ) · n |ū − u|2 dΓ

+
∫

Γh

1
2
|ū|2 |u · n| dΓ =

∫
Ω̃

f · u dΩ −
∫

Γh

h · ū dΓ, (4.42)

where the advective flux has been integrated by parts using ∇ (u ⊗ u) =
u · ∇u + (∇u) u. Without external forcing, the energy should remain
constant. Inspection of Equation (4.42) reveals that the second and third
terms on the left hand side may become negative. Due to the definition
of ũ, given in Equation (4.29), the remaining advection terms are strictly
positive. The associated dissipative mechanism stems from the upwinding
of the momentum flux at element interfaces and is partly determined by
the difference between the velocity field u and the interface function ū, and
partly by the advective velocity ũ at element facets. The energy may in-
crease if the flow field u is not divergence free. As the discrete velocity field
u is weakly non-divergent only, energy stability is not guaranteed in prac-
tice. Sacrificing momentum conservation, the problem may be by-passed
by rendering the advection operator skew-symmetric, see for instance Gre-
sho et al. [28]. The difficulty to simultaneously satisfy linear and quadratic
conservation is a fundamental issue in numerical flow modelling. Fortuna-
tely, the differences between alternate forms of the advection operator are
usually small and should not be over-emphasized, moreover if viscous terms
are present [30].

Since the pressure does not appear in Equations (4.41) and (4.42) the
stabilization of the incompressibility constraint does not imply artificial dis-
sipation. Therefore, in the case of zero viscosity and negligible advection the
total energy will be conserved. This does not yet mean that the pressure-
velocity coupling in the proposed formulation of the incompressible Navier-
Stokes problem is stable as stability requires the satisfaction of an inf − sup
condition, given by Equation (2.27). Proving inf − sup stability for Equa-
tion (4.25) is not trivial and is not pursued here. As will be demonstrated in
Section 4.3.4 the gis formulation inherits a stabilization mechanism that is
closely related to that of pressure stabilized Petrov-Galerkin (pspg) methods
[38].
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4.3 Implementation

4.3.1 Time stepping

For time integration, the time interval I is partitioned in N sub-intervals
using a sequence of discrete time levels I = (t0, t1, · · · , tN−1, tN ) and asso-
ciated sub-intervals In = (tn, tn+1). On each sub-interval the flow problem is
solved using a linear interpolation in time. The solution from the previous
time step is used as an initial condition which, in contrast to space-time
methods, is imposed strongly. The non-linearity of the momentum terms
is dealt with using a Picard linearization (‘frozen coefficient’) where the
advective field is determined explicitly by the flow state at time level tn.

The procedure yields the following discrete local problem: given the
velocity un and the forcing term fn+θ, find un+θ ∈ V such that∫

Ω̃

un+θ − un

θΔt
· v dΩ +

∫
Ω̃
∇ · (un+θ ⊗ un) · v dΩ +

∫
Ω̃
∇pn+θ · v dΩ

−
∫

Ω̃
2∇ · (ν∇sun+θ) · v dΩ +

∑
e

∫
∂Ωe

βn · n (ūn+θ − un+θ) · v dΓ

+
∑

e

∫
∂Ωe

2ν (ūn+θ − un+θ) · ∇sv n dΓ =
∫

Ω̃
fn+θ · v dΩ ∀ v ∈ V,

(4.43)

in which Δt denotes the time step size, θ ∈ [12 , 1] is a time stepping parameter
and the velocity un+θ is given by

un+θ = (1 − θ) un + θun+1. (4.44)

The format of Equation (4.43) has the practical convenience that all unk-
nowns are expressed at the same time level. The discrete global flux conti-
nuity constraint reads: given the boundary condition hn+θ, find ūn+θ ∈ V̄g

such that

∑
e

∫
∂Ωe

(un · n) un+θ · v̄ dΓ −
∑

e

∫
∂Ωe

2ν (∇sun+θ n) · v̄ dΓ

+
∑

e

∫
∂Ωe

βn · n (ūn+θ − un+θ) · v̄ dΓ

−
∫

Γh

(1 − γ) (un · n) ūn+θ · v̄ dΓ =
∫

Γh

h̃n+θ · v̄ dΓ ∀ v̄ ∈ V̄, (4.45)

where the pressure terms on interior element boundaries have vanished pair-
wise, due to the continuity of p and v̄ on Γ̃, leading to the modified Neumann
boundary condition h̃ defined by

h̃ = h − pn. (4.46)
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This modification is convenient in practice since a homogeneous modified
Neumann boundary condition can then be imposed at a closed wall where
the fluid pressure balances the normal stress on the boundary. If h̃ includes
quadratic friction terms, as in Equation (4.8), these are discretized in time
according to

cf |u|u ≈ cf |un|un+1, (4.47)

which will exactly solve the corresponding part of the momentum equations.
Finally, the discrete global incompressibility constraint reads: find pn+θ ∈ Q
such that ∫

Ω̃
un+θ · ∇q dΩ −

∫
Γ

ūn+θ · n q dΓ = 0 ∀ q ∈ Q, (4.48)

in which the pressure appears implicitly as un+θ will be expressed in terms
of ūn, ūn+θ and pn+θ using local Equation (4.43).

The above time-discrete equations preserve a uniform flow state satis-
fying the boundary conditions. This assertion reflects consistency of the dis-
crete method. The linear conservation properties, proven in Section 4.2.4,
carry over unaltered to the discrete equations for any value of θ, which is
easily asserted by taking v = ej , v̄ = ej and q = 1 in Equations (4.43),
(4.45) and (4.48), respectively. For volume conservation, the initial field u0

should be weakly non-divergent, which will yield discrete satisfaction of the
incompressibility constraint at all time levels tn. Proving quadratic conser-
vation is more elaborate. Setting v = un+θ, v̄ = ūn+θ and q = pn+θ in
Equations (4.43), (4.45) and (4.48), respectively, it can be shown that in the
absence of forcings and using skew-symmetric advection-diffusion operators,
see Section 4.2.4, the following equation holds

∫
Ω̃

un+1 − un

Δt
· un+θ dΩ +

∑
e

∫
∂Ωe

(
1
2
un − βn

)
· n |ūn+θ − un+θ|2 dΓ

+
∫

Ω̃
2ν |∇sun+θ|2 dΩ +

∫
Γh

1
2
|un · n| |ūn+θ|2 dΓ = 0. (4.49)

Due to the formulation of the interface flux the term
(

1
2u − β

) ·n is strictly
positive, and the L2 norm of the velocity will decrease monotonically for θ >
1
2 . Alternatively, the fs scheme is used here to render the time integration
of the momentum equations strongly-stable.

4.3.2 P 1 − P 1 discretization

For linear function spaces, the discrete equations can be rendered in a par-
ticularly convenient form as the second derivative terms in Equations (4.43)
and (4.45) vanish. Furthermore, for the case of spatially constant viscosity,
the divergence of the stress term in the Navier-Stokes momentum equation
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can be replaced by the Laplacian operator. Changing all symmetric gra-
dient operators to the gradient operator and removing all appearances of
the common factor ‘2’ in the variational equations leads to the formulation
that would result from the direct consideration of a spatially constant vis-
cosity. In combination with the Picard iteration for the advection terms,
the Laplacian form of the viscous terms is convenient as it decouples the
equations for the respective velocity components.

The local Equation (4.43) is now restated as: given un and fn+θ, find
un+θ ∈ V such that∫

Ω̃

un+θ − un

θΔt
· v dΩ +

∫
Ω̃
∇ · (un+θ ⊗ un) · v dΩ +

∫
Ω̃
∇pn+θ · v dΩ

+
∑

e

∫
∂Ωe

βn · n (ūn+θ − un+θ) · v dΓ

+
∑

e

∫
∂Ωe

ν∇ (ūn+θ − un+θ) · ∇v n dΓ =
∫

Ω̃
fn+θ · v dΩ ∀ v ∈ V.

(4.50)

The global flux continuity constraint Equation (4.45) becomes: given h̃n+θ,
find ūn+θ ∈ V̄g such that

∑
e

∫
∂Ωe

(un · n) un+θ · v̄ dΓ −
∑

e

∫
∂Ωe

(ν∇un+θ n) · v̄ dΓ

+
∑

e

∫
∂Ωe

βn · n (ūn+θ − un+θ) · v̄ dΓ

−
∫

Γh

(1 − γ) (un · n) ūn+θ · v̄ dΓ =
∫

Γh

h̃n+θ · v̄ dΓ ∀ v̄ ∈ V̄. (4.51)

The incompressibility constraint, Equation (4.48), is left unaltered for the
case of linear basis functions.

The functions un, ūn and pn at time tn are expressed in terms of a finite
element basis as

un (x) =
∑

i

N i (x) ui
n, (4.52)

pn (x) =
∑

j

Ñ j (x) pj
n, (4.53)

ūn (x) =
∑

j

N̄ j (x) ūj
n, (4.54)

where N i, Ñ j and N̄ j are linear basis functions consistent with the defini-
tions in Section 4.2 and ui

n, pj
n and ūj

n are nodal degrees of freedom. For
a single element, the local numbering of the basis functions may be chosen
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such that i = j on corresponding nodes, dropping the distinction between
N j , Ñ j and N̄ j on element boundaries.

As the equations for the respective components of the velocity vector are
decoupled, the format of the discrete momentum Equations (4.50) and (4.51)
is similar to the format of the discrete transport equations in Chapter 3.
The algebraic treatment of the problem proceeds in a similar way as for the
advection-diffusion problem, the only difference being the inclusion of the
pressure gradient which appears as a source term. The matrix format of
local Equation (4.50) thus becomes

1
θΔt

M
(
Uk

n+θ − Uk
n

)
+ AUk

n+θ + (K + Q)
(
Ūk

n+θ − Uk
n+θ

)
+ Gkpn+θ = Fek, (4.55)

where Uk, with k = 1, · · · , d, is the vector of unknowns of the kth velocity
component and p is the vector of pressure unknowns. The element matrices
M , A, Gk, K and Q are given by, respectively,

M ij =
∫

Ωe

N iN j dΩ, (4.56)

Aij =
∫

Ωe

N i ∇ · (unN j
)

dΩ, (4.57)

Gij
k =

∫
Ωe

N i
(∇N j · ek

)
dΩ, (4.58)

Kij =
∫

∂Ωe

N j (νn) · ∇N i dΓ, (4.59)

Qij =
∫

∂Ωe

(βn · n) N iN j dΓ, (4.60)

and the matrix F is given by

F ij =
∫

Ωe

N ifn+θ · ej dΩ. (4.61)

The matrices A, K and Q are independent of the considered component k
which has the practical convenience that the matrices have to be computed
only once in each time step. For linear elements, and piecewise constant ν,
the matrix K is equal to the standard cg element diffusion matrix. The
global momentum Equation (4.51), leads to the algebraic equation

∑
e

[(
Ã − KT

)
Uk

n+θ + Q
(
Ūk

n+θ − Uk
n+θ

)
− PŪk

n+θ

]
=

∑
e

Hek, (4.62)

where
∑

e represents assembly of the element matrices into a global matrix.
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The matrices Ã and P are given by, respectively,

Ãij =
∫

∂Ωe

(un · n) N iN j dΩ, (4.63)

P ij =
∫

∂Ωe∩Γh

(1 − γ) (un · n) N iN j dΓ, (4.64)

and the matrix H is given by

H ij =
∫

∂Ωe∩Γh

N ih̃n+θ · ej dΓ. (4.65)

For piecewise constant ν and linear elements, the matrix KT equals K. The
pressure unknowns p are determined through the simultaneous solution of
the discrete continuity Equation (4.48), which in matrix form reads∑

e

(
DkU

k
n+θ − EkŪ

k
n+θ

)
= 0, (4.66)

where repeated indices denote summation, and the matrices Dk and Ek are
given by, respectively,

Dij
k =

∫
Ωe

(
ek · ∇N i

)
N j dΩ, (4.67)

Eij
k =

∫
∂Ωe∩Γh

(ek · n) N iN jdΓ. (4.68)

The divergence matrix Dk is the transpose of the gradient matrix Gk given
by Equation (4.58). Elimination of the velocity degrees of freedom Uk

n+θ

from Equation (4.66) using local momentum Equation (4.55) yields the glo-
bal form of the continuity equation. The resulting solution procedure of the
coupled system for

(
Ū1, · · · , Ūd, p

)
is outlined in the next section.

4.3.3 Solution procedure

The solution procedure proceeds in a similar way as for the advection-
diffusion equation, see Section 3.4.2, but is more complicated due to the
pressure gradient terms and the incompressibility constraint.

4.3.3.1 Condensation

The first step is to express Uk
n+θ implicitly in terms of Ūk

n+θ and pn+θ

on each element using local Equation (4.50) which, after some algebraic
manipulation, can be rewritten as

Uk
n+θ = Ūk

n+θ

− T

[
1

θΔt
M

(
Ūk

n+θ − Uk
n

)
+ AŪk

n+θ + Gkpn+θ − Fek

]
(4.69)
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in which the matrix T is given by

T =
(

1
θΔt

M + A − K − Q

)−1

. (4.70)

Equation (4.69) states that the local velocity field is found by ‘correcting’ the
global velocity field with terms proportional to element-wise ‘residual’ of the
material derivative, pressure and forcing terms. Referring to Section 3.4.2 for
the details of the derivation, substitution of Equation (4.69) into the global
momentum Equation (4.62) finally results in the following global matrix
system

∑
e

W1

[
1

θΔt
M

(
Ūk

n+θ − Uk
n

)
+ AŪk

n+θ + Gkpn+θ − Fek

]

+
∑

e

(
K + P − Ã

)
Ūk

n+θ +
∑

e

Hek = 0, (4.71)

where the ‘weighting’ matrix W1 is given by

W1 = I −
(

1
θΔt

M + A − Ã

)
T , (4.72)

Equation (4.71) is similar to the global system of equations that would arise
from the standard Galerkin method, the only difference being the appea-
rance of the weighting matrix W1 which for the cg method would be equal
to the unit matrix. The only non-standard term that must be evaluated to
compute the weighting matrix is the boundary matrix Q.

In a similar way, local Equation (4.69) may be substituted into the dis-
crete global continuity equation (4.48), which yields

∑
e

DkŪ
k
n+θ−

∑
e

DkT

[
1

θΔt
M

(
Ūk

n+θ − Uk
n

)
+ AŪk

n+θ + Gkpn+θ − Fek

]
−
∑

e

EkŪ
k
n+θ = 0. (4.73)

Rewriting and collecting terms this can be re-arranged into

∑
e

[
(DkW2 − Ek) Ūk

n+θ

]
−
∑

e

DkTGk pn+θ

+
∑

e

DkT

(
1

θΔt
MUk

n + Fek

)
= 0, (4.74)

which features a second weighting matrix W2 which is given by

W2 = I − T

(
1

θΔt
M + A

)
. (4.75)
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In elements where u and ν are zero the above expressions remain non-
singular yielding matrices W1 and W2 equal to zero. The elimination pro-
cedure leads to a modification of the cg divergence matrix, the addition of
a pseudo-Laplacian operator for the pressure, and a few additional expli-
cit terms. The structure of this system, and the stabilization properties it
inherits, are discussed in Section 4.3.4.

4.3.3.2 Iteration

The discrete global momentum and continuity equations constitute a cou-
pled system which can be written in symbolic form as(A Gk

Dk B
)(

Ūk

p

)∣∣∣∣
n+θ

=
(

V k

q

)∣∣∣∣
n

, (4.76)

where k = 1, · · · , d, A is a d × d block-diagonal matrix representing the
stabilized advection-diffusion operator, Dk and Gk are block-row and block-
column matrices for the modified divergence and gradient operators, respec-
tively, B is a Laplacian matrix and the vectors V k and q on the right-hand
side denote the explicit contributions from time level n. All block matrices
in Equation (4.76) have the same sparse matrix structure as the degrees of
freedom Ūk and p reside in the same nodes of the finite element mesh. This
not only facilitates the storage and handling of the system but may also be
exploited to obtain an efficient iterative solution procedure.

For a mesh of N nodes, Equation (4.76) involves a set of N × N sparse
matrices to be stored in memory for which the Block Sparse Row (bsr)
storage scheme may be used. All contributions to row i from the degrees of
freedom in node j are wrapped up in a single matrix Aij given by

Aij =

(
Aij Gij

k

Dij
k Bij

)
, (4.77)

which is easily stored as an ordered set of matrices in the same way as the
Compressed Sparse Row (csr) format stores scalar valued matrix elements.
The bsr storage scheme only requires one set of pointer arrays col, beg
and di while the elements in the array row are ordered matrices Aij . See
also Chapter 2 for the corresponding csr format of a scalar sparse matrix.
Accordingly, the right hand side vector may be stored as an ordered set of
nodal vectors [ū1, · · · , ūd, p]Ti . Matrix-vector multiplication and upper-lower
inversions can now be performed efficiently, replacing the scalar operations
in conventional algorithms by matrix-vector operations.

Iterative solution of block systems like Equation (4.76) by the bicgstab

algorithm is complicated by the construction of a proper preconditioner,
which is non-trivial. Basically, one may a) incorporate the block structure
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into the bicgstab algorithm, as in Liu et al. [57], or b) construct an approxi-
mate lu block-decomposition of the system as follows, using the summation
convention, (A Gk

Dk B
)

≈
( I 0
DkA−1 I

)(A Gk

0 B −DkA−1Gk

)
, (4.78)

whose inversion requires ilu decompositions of the matrix A and of the
Schur-complement B − DkA−1Gk only, as in van der Ploeg [69]. Although
good results have been obtained with both approaches [49], this thesis pro-
ceeds in another direction. As the block systems encountered here are stored
as an ordered series of matrices Aij , a straightforward ilu decomposition
may be performed where the operations on the scalar elements of row from
a regular ilu preconditioner are replaced by the corresponding matrix ope-
rations. Provided that the system rows are scaled with the inverses of the
diagonal elements Aii, the resulting preconditioner proved efficient in all
numerical examples given in this chapter.

In time dependent problems, the local solution vectors Uk are obtained
from a back-substitution step using Equation (4.69) and stored in memory.
To do this efficiently, the matrix T given by Equation (4.70) is also stored
in memory during the assembly process.

4.3.4 Stabilization mechanism

In order to sketch the stabilization mechanism introduced by the interface
terms, the stationary case with homogeneous Dirichlet boundary conditions
and without forcing terms is considered. This simplification mainly serves
to focus on the relevant aspects. Extension to the general case is straight-
forward but involves more lengthy notation.

For this simplified case, the local momentum equation reads, after inver-
sion

Uk = Ūk − T
(
AŪk + Gkp

)
. (4.79)

The corresponding global momentum equation reads, after condensation∑
e

[(
A − Ã + K

)
Ūk + Gkp −

(
A − Ã

)
T
(
AŪk + Gkp

)]
= 0.

(4.80)
Noting that for a divergence-free velocity field A− Ã = −AT , this equation
is similar to that obtained for the gis stabilized advection-diffusion problem,
Equation (3.67) in Section 3.4.3. The standard Galerkin terms are augmen-
ted with terms proportional to the element ‘residuals’ Rk = AŪk + Gkp,
which results in a supg-like stabilization mechanism for the advective part
of the momentum equation, as shown in Section 3.4.3. For a penalty para-
meter α = 4 the stabilization is near-optimal and almost identical to that
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obtained from the supg method, with the pressure gradient consistently
retained in the stabilization terms.

At this point all of this is too familiar to be very exciting. More in-
teresting is that the condensation procedure simultaneously stabilizes the
incompressibility constraint. To this end, for homogeneous Dirichlet boun-
dary conditions, the condensed global continuity equation reads∑

e

[
DkŪ

k − DkT
(
AŪk + Gkp

)]
= 0, (4.81)

using the summation convention. Combination of the global momentum
equation (4.80) and the global incompressibility constraint, Equation (4.81),
yields the following block-matrix system

∑
e

⎛
⎝−AT + AT TA + K Gk + AT TGk

Dk − DkTA −DkTGk

⎞
⎠
⎛
⎝Ūk

p

⎞
⎠ = 0. (4.82)

For linear basis functions, the element matrices associated with the operators
Dk and Gk are column-wise and row-wise constant, respectively, in which
case it may be shown that the lower diagonal in Equation (4.82) represents
a Laplacian term which stabilizes the pressure field. The stabilizing effect of
the pressure Laplacian was already recognized in Johnson [42] and analyzed
more fundamentally by Brezzi and Fortin [8]. The associated stability para-
meter is equal to the stability parameter τ ′

e of the momentum equation. The
additional terms in the divergence operator keep the stabilization consistent.

The above form of the global continuity constraint closely resembles
that of the Pressure Stabilized Petrov-Galerkin (pspg) method which was
initially conceived in a series of papers by Hughes et al. [38]. In contrast
to the pspg method, the stabilization terms in Equation (4.82) are not
added explicitly but inherited from the formulation of the interface flux in
Equation (4.32) and the associated flux continuity constraint given by Equa-
tion (4.24). The back substitution by Equation (4.79) also guarantees weak
zero divergence of the discrete velocity field u. Hence, in time stepping pro-
blems, the advection operator is constructed naturally from a weakly zero
divergent advective transport field, without recourse to correction terms
as for instance in Hughes and Wells [37]. The mini element also features
this nice property but has the disadvantage that the stabilization parameter
of the resulting Laplacian is non-optimal [81]. Noteworthy to mention is
that discontinuous Galerkin methods with equal-order discontinuous velo-
city/continuous pressure are stable for Stokes flow [15].

4.4 Numerical examples

For all numerical examples a penalty parameter α = 4 is used, unless stated
otherwise. The solutions are obtained using the monolithic iterative solution
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procedure outlined in Section 4.3.3. Time dependent problems use the fs

time stepping scheme and time steps given denote the average value of the
three substeps of this scheme. All meshes were constructed using the mesh
generator from the sepran package [80].

4.4.1 Stokes flow

The linear Stokes problem is obtained trivially from the Navier-Stokes pro-
blem by ignoring the advection terms. For a constant viscosity ν this yields

∂u

∂t
+ ∇p − ν∇2u = f , (4.83)

∇ · u = 0. (4.84)

The next two examples consider the convergence rate of the Stokes problem
and the acceleration of a laminar flow in a pipe, respectively.

4.4.1.1 Stokes flow with source

This example, taken from Donea and Huerta [19], has a closed form analy-
tical solution which is used to determine the convergence rate. The compu-
tational domain is given by the unit square Ω = (0, 1) × (0, 1). A constant
viscosity ν = 1 is used, Dirichlet boundary conditions g = 0 on ∂Ω and a
source function f = (fx, fy) given by

fx = (12 − 24y) x4 + (24 − 48y) x3 − (
48y − 72y2 + 48y3 − 12

)
x2

− (
2 − 24y + 72y2 − 48y3

)
x + 1 − 4y + 12y2 − 8y3,

fy =
(
8 − 48y + 48y2

)
x3 − (12 − 72y + 72y2)x2(

4 − 24y + 48y2 − 48y3 + 24y4
)
x − 12y2 + 24y3 − 12y4.

(4.85)

The exact solution to this problem is, see Donea and Huerta [19],

ux = x2 (1 − x)2
(
2y − 6y2 + 4y3

)
,

uy = −y2 (1 − y)2
(
2x − 6x2 + 4x3

)
,

p = x (1 − x) .

(4.86)

The problem is solved on five different uniform meshes with element sizes
he ranging from 1/10 to 1/160. The elements are approximately equilateral.
As the pressure is only determined up to a constant, the pressure is fixed at
one point.

Figure 4.2 shows the computed flow and pressure fields for he = 1/40.
The computed pressure and velocity fields are reasonably smooth. The L2

error norms for the pressure and the velocity are shown in Figure 4.3. A
convergence rate of order two is observed for the velocity field, while the
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(a) (b)

Figure 4.2: Stokes flow with source: computed flow field (a) and pressure
field (b); results for he = 1/40.

pressure converges at a rate slightly better than one. Varying the penalty
parameter α between 1 and 10 gives similar convergence results. Signifi-
cantly larger or smaller values of α however result in a loss of accuracy.

4.4.1.2 Accelerating pipe flow

Consider a circular pipe with radius R and length L. The fluid in the pipe
is initially at rest. For t > 0 a constant pressure difference Δp is imposed
between both pipe ends causing the fluid to accelerate. For a constant
viscosity ν and a no-slip boundary condition along the pipe wall, the solution
for the axial velocity ua is a function of the radial distance r and time t given
by, see for instance Strauss [86],

ua =
∑

j

J0 (αjr)βj

[
1 − exp

(−α2
jνt

)]
, (4.87)

where J0 is the Bessel function of the first kind and order zero, the coef-
ficients αj are determined from J0 (αjR) = 0 and the coefficients βj are
determined from

βj =

∫ R
0 u∞ (r) J0 (αjr) r dr∫ R

0 J2
0 (αjr) r dr

, (4.88)

in which u∞ is the equilibrium axial velocity at t = ∞,

u∞ =
Δp

4νL

(
R2 − r2

)
. (4.89)

The flow problem has an intrinsic time scale τs = 1/α2
1ν and for t > 5τs

the flow will be approximately stationary with the total wall shear stress
balancing the applied pressure force.
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Figure 4.3: Stokes flow with source: errors in the L2-norm of the velocity
(dots) and the pressure (circles).

The numerical test concerns a pipe with a radius R = 2 and a length
L = 20. The pressure drop over the pipe amounts 10 which results in an
equilibrium velocity in the center of the pipe of one. A tetrahedral mesh is
used with eight elements over the width and thirty elements over the length
of the pipe, respectively. The viscosity is set to ν = 0.5 giving an intrinsic
time scale τs ≈ 1.4. For time stepping the fs scheme is used with an average
time step size Δt = 0.1 giving a diffusion number νΔt/h2

e = 0.8. The end
time for the simulation T = 10.

Figure 4.4 shows the computed and analytical solution for the velocity.
Considering that the mesh is relatively coarse and the time step is relatively
large compared to the intrinsic time scale of the problem, the results are
good. Importantly, the final velocity profile is reproduced accurately which
implies that for a prescribed discharge the pressure drop over the pipe will
also be computed correctly.

4.4.2 Burgers’ equation

The formulation for the Navier-Stokes equations can be modified trivially
to solve the one-dimensional viscous Burger’s equation

∂u

∂t
+

∂

∂x

(
u2

2

)
− ν

∂2u

∂x2
= 0. (4.90)

For the case ν = 0 this non-linear equation admits shocks as solutions while
for ν > 0 shocks will have a finite width. The Burgers’ equation is used
to assess the numerical behaviour of the non-linear flux terms and the as-
sociated choice for the interface flux function given by Equation (4.32). In
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Figure 4.4: Accelerating pipe flow: analytical solution (solid) and numerical
solution (circles) of the velocity magnitude at different time steps.

particular, shock propagation, conservation and combined non-linear advec-
tion and diffusion will be considered. To this end two cases are considered,
a stationary shock and N -wave rarefaction.

4.4.2.1 Stationary compression shock

The stationary solution to the one-dimensional viscous Burgers’ equation
with boundary conditions u (±∞) = ∓u0, where u0 > 0, is given by

u = −u0 arctan
(

Pe
x

he

)
, (4.91)

where the Péclet number is defined as Pe = u0he/ν. The numerical solu-
tion is calculated on the domain Ω = (−10, 10), which is partitioned into
twenty linear elements with a uniform element size he = 1. The viscosity
ν is adjusted in order to obtain Péclet numbers of 0.1, 1, 10 and 100, res-
pectively. The solution is obtained from the non-stationary model using the
initial condition u (x, 0) = 0 and Dirichlet boundary conditions provided by
Equation (4.91) until steady state is reached.

Figure 4.5 shows that the numerical results are in good agreement with
the analytical solution, giving correct positions and slopes of the shocks.
The solutions for ū do not exhibit overshoot. For Péclet-numbers 10 and
100, the solution of u has some overshoot, but this remains localized to a
limited region around the shock only. These results confirm that for arbi-
trary Péclet numbers, the combination of non-linear advection and diffusion
is handled well by the gis method without requiring additional shock cap-
turing or limiting procedures.
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Figure 4.5: Stationary compression shock: solution for various Péclet num-
bers; showing ū (dots), u (solid) and exact solution (circles).

4.4.2.2 N-wave rarefaction

This example considers time dependent solutions of the non-viscous Burgers
equation. If the initial condition u0 has an ‘N ’-shape given by

u (x, 0) =

{
u0x/x0 for |x| ≤ x0,

0 elsewhere,
(4.92)

the solution for the unbounded domains Ω = (−∞,∞) and t > 0 is of the
form

u =

⎧⎨
⎩

u0 x/ (x0 + u0t) for |x| < x0

√
1 + u0t/x0,

u = 0 elsewhere.
(4.93)

The solution has right and left propagating compression shocks on the res-
pective sides of the N , which are separated by a rarefaction shock at the
center (x = 0). The numerical example uses a uniform mesh of 40 linear
elements and he = 1. The initial conditions are specified by setting u0 = 1
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Figure 4.6: N -wave rarefaction: computed and analytical solution at dif-
ferent time steps for an initial Courant number u0Δt/he = 0.5; shown are
ū (dots), u (solid) and the exact solution (circles).

and x0 = 1, which represents an initial N profile captured by just two ele-
ments. Using the fs scheme with average time step Δt = 0.5 gives a Courant
number u0Δt/he = 0.5.

Figure 4.6 shows the numerical and analytical solutions at different time
steps. The numerical solution reproduces the analytical shock positions and
shock heights well with minimal overshoot at shocks in ū. The rarefaction
in the center at x = 0 is smoothly resolved without kink or other local
irregularities in the solution. It was also confirmed that the total mass
given by

∫
Ω u dΩ remains zero to within machine accuracy.

The examples for the Burgers’ equation show that the gis method is
capable to treat the non-linearity in the problem without additional limiting
or shock capturing, provided that the proper expressions for the fluxes at
the interfaces and within the elements are used. Especially the behaviour of
the scheme around shocks is encouraging.
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4.4.3 Driven cavity flow

This test considers the incompressible Navier-Stokes problem on the square
domain Ω = (0, 1)×(0, 1) with pure Dirichlet boundary conditions, imposing
ū = (1, 0) on the upper boundary at y = 1, and ū = 0 elsewhere on ∂Ω.
The flow field has a primary vortex near the center of the domain. Smaller
vortices may appear in the corners of the domain which is dependent on the
Reynolds number. Defining length- and velocity scales Lref = 1 and Uref = 1,
respectively, the viscosity ν is adjusted in order to obtain Reynolds numbers
of 100, 400, 1000 and 5000, respectively.

The computational domain is discretized by approximately uniform and
equilateral triangles with mesh size he ≈ 1/64. The boundary conditions
ū are discontinuous at the upper left and right corners of the domain. To
bypass this singularity, the velocity is imposed via a penalty formulation
with penalty parameter 106. As the pressure is only determined up to a
constant, the pressure is fixed at one point. The Péclet number ranges from
Pe ≈ 3 for Re = 400, to Pe ≈ 40 for Re = 5000.

Figure 4.7 shows the computed flow fields in terms of the velocity ma-
gnitude and the corresponding streamlines. The solution involves a primary
vortex, while for the higher Reynolds numbers secondary vortices appear
in the lower corners of the domain. The Re = 5000 case also has a secon-
dary vortex in the upper left corner. Qualitatively, the results are similar to
reference solutions [19, 23] although the mesh used here is too coarse to re-
solve the finer details of the secondary vortices. Table 4.1 summarizes some
properties of the computed main vortex together with corresponding values
from reference solutions. Given the relatively coarse mesh that is used, a
good agreement is observed.

4.4.4 Borda mouthpiece

This example concerns the quasi-steady, turbulent exchange flow between
two reservoirs connected by a so-called Borda mouthpiece. This discharge
structure, devised by de Borda2, consists of a short tube with constant dia-
meter which protrudes into the upstream reservoir. The energy loss and the
contraction of the streamlines in the tube can be determined analytically by
applying basic fluid mechanics principles [62]. The flow contraction coeffi-
cient, defined as the ratio of the cross-sectional area of the vena contracta
to that of the mouthpiece, is theoretically given by μ = 1

2 and the corres-
ponding normalized pressure drop over the mouthpiece amounts Δp = 1

2U2,
where U is the mean flow velocity at the transect of maximum contraction.

2Jean-Charles de Borda, who lived from 1733 to 1799, was a French mathematician,
physicist and political scientist. Besides the mouthpiece bearing his name he also proposed
a political voting system.
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Re = 100 Re = 400

Re = 1000 Re = 5000

Figure 4.7: Driven cavity flow: velocity (colour) and streamlines (isolines)
for Reynolds numbers of 100, 400, 1000 and 5000; streamline intervals 10−2

(primary vortex) and 5.10−4 (secondary vortices); colour interval 0.1; ele-
ment size he ≈ 1/64.
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Re x y stream function

100 present simulation 0.608 0.737 0.104
Donea and Huerta [19] 0.62 0.74 0.103

400 present simulation 0.557 0.611 0.115
Donea and Huerta [19] 0.568 0.606 0.110

1000 present simulation 0.524 0.560 0.121
Donea and Huerta [19] 0.540 0.573 0.110
Erturk et al. [23] 0.530 0.565 0.119

5000 present simulation 0.515 0.546 0.131
Erturk et al. [23] 0.515 0.535 0.121

Table 4.1: Driven cavity flow: primary vortex position and stream function
value; present simulation, he ≈ 1/64; Donea and Huerta [19], he = 1/30;
Erturk et al. [23], he = 1/400.

The computational domain has a length of 20 m and a width of 6 m.
In the middle of the domain (x = 0) a vertical wall is present, separating
both reservoirs. The mouthpiece is situated halfway the wall (y = 0) and
has a width of 0.5 m and a total length of 0.6 m of which 0.5 m protrudes
into the upstream (left) reservoir and 0.1 m into the downstream (right)
reservoir, see also Figure 4.8. The adopted mesh size ranges from 0.025 m
in the vicinity of the mouthpiece to 0.15 m towards the outer boundaries.
All boundaries are closed, except for the left and right boundaries where
a discharge of 1 m2/s and a zero Neumann boundary condition h̃ = 0 are
specified, respectively. The turbulent fluid motion is modelled by defining
the turbulence momentum flux σt (Reynolds stress) according to

σt = − (Cshe)
2 (∇su : ∇su)1/2 ∇u, (4.94)

where Cs is the Smagorinsky parameter, see also Appendix B. The turbulent
motion is initiated by prescribing a randomly perturbed inflow velocity. The
turbulent wall shear stress is modelled according to Equation (4.8). In this
example Cs is set to 0.15 and the random inflow perturbation amounts 15%
of the inflow velocity magnitude. The wall friction coefficient cf is calculated
using a Nikuradse wall-roughness height kn =1 mm. It was confirmed that
the results were not very sensitive to the precise values of Cs and cf , nor the
magnitude of the inflow perturbations. For time stepping, the fs scheme
is used with a time step Δt =0.01 s. Being strongly stable, this scheme is
ultimately suited to compute high frequency turbulent fluctuations in large
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(a)

(b)

Figure 4.8: Borda mouthpiece: (a) mean velocity magnitude and streamlines
in the ‘vena contracta’ and (b) velocity magnitude instantaneous flow field.

eddy simulations (les) while rendering the solution stable [72]. The total
simulation time is 150 s.

The computed flow fields are shown in Figure 4.8 while Figure 4.9 shows
the computed mean velocity and mean pressure profiles in the mouthpiece.
The mean quantities are obtained by averaging over 6000 time steps or,
equivalently, 60 s. The computed maximum velocity in the vena contracta
amounts 3.61 m/s corresponding to a contraction coefficient μ ≈ 0.55 which
is close to the theoretical value μ = 1

2 while observed values of μ in ex-
periments [31] range between 0.51 and 0.56. The computed normalized
pressure drop over the mouthpiece corresponds to the theoretical value, see
Figure 4.9b. Taking into account the actual velocity profile in the vena
contracta, by integrating the computed momentum flux, the computed pres-
sure drop satisfies the theoretical value Δp = A−1

∫
A U2dA, exactly. The

computed pressure minimum at x ≈ 5 m is due to a large eddy residing in
the downstream reservoir, in front of the mouthpiece, see also Figure 4.8b.
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Figure 4.9: Borda mouthpiece: (a) computed mean velocity profile in the
‘vena contracta’, x = -0.25 m, (circles) and corresponding theoretical ve-
locity profile (solid); (b) computed mean normalized pressure (circles) and
theoretical normalized pressure (solid) in center line y = 0, vertical transects
indicate position mouthpiece.

4.4.5 Internal waves

If the flow transports constituents of inhomogeneous density, the flow field
and the advected density field will interact. This can be modelled by cou-
pling the gis transport model from Section 3.4 and the gis model for the
Navier-Stokes problem, the details of which are described in Appendix A.

Assuming small density deviations from a constant ‘reference’ density ρ0

(Boussinesq approximation) and a uniform background velocity U , periodic,
small-amplitude solutions of the vertical velocity component w satisfy the
Taylor-Goldstein equation,

(U − c)2
d2w̃

dz2
−
(

g
dρ∗

dz
+ ω2

r

)
w̃ = 0, (4.95)

where z is the vertical coordinate, w̃ is the complex amplitude of the vertical
velocity component, g is gravitation, ρ∗ = (ρ − ρ0) /ρ0 is the dimensionless
relative density difference, c is the wave celerity and ωr is the relative fre-
quency as observed when moving with the velocity U [66]. Two cases will
be considered, a standing wave in a closed basin and a stationary trapped
wave.

4.4.5.1 Standing interfacial wave

Consider a two-layered fluid in a closed rectangular basin with vertical side
walls, constant depth d and background velocity U = 0. At rest, the upper
layer has a depth d1 and relative density difference ρ∗1 and the lower layer
has a depth d2 = d − d1 and relative density difference ρ∗2 > ρ∗1. The two
layers are separated by a thin interfacial layer of which the vertical elevation
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is denoted ζ. The homogeneous solution of Equation (4.95) leads to the
following expression for the interface elevation

ζmn = Amn cos (kmx) cos (kny) cos (ωmnt) , (4.96)

where m, n = 0, 1, 2, · · · , Amn is the amplitude of the wave motion, km and
kn are horizontal wave numbers in x- and y-direction, respectively, and ωmn

is the corresponding radian frequency. The horizontal wave numbers are
given by km = mπ/lx and kn = nπ/ly, where lx and ly are the horizontal
dimensions of the basin in x- and y-direction, respectively. The frequency
ωmn is related to the wave number kmn =

(
k2

m + k2
n

)1/2 via the dispersion
relation

ω2
mn = (ρ∗2 − ρ∗1) gkmn

tanh (kmnd1) tanh (kmnd2)
tanh (kmnd1) + tanh (kmnd2)

. (4.97)

The numerical example concerns a basin with lx = ly = 20 m, depths
d1 = d2 =5 m and relative density differences of ρ∗1 = −0.01 and ρ∗2 = 0.01.
For m = n = 1 the eigen frequency ω11 =0.1324 rad/s which corresponds to
an eigen period of T11 = 47.46 s. The initial position of the interface, denoted
ζ0, is computed from Equation (4.96) setting t = 0 and A11 =0.75 m. The
initial relative density is prescribed according to

ρ∗ =
1
2

(ρ∗1 + ρ∗2) +
1
2

(ρ∗1 − ρ∗2) tanh
(

z − ζ0

Δi

)
, (4.98)

where z is the vertical position and Δi is a measure of the interface width
which in this simulation is set to 0.5 m. For the corresponding density profile
an eigenmode analysis reveals that the eigenperiod equals T11 = 50.78 s. The
domain is partitioned using regular tetrahedral elements with 30 elements
in both horizontal directions and also 30 elements over the depth of the
basin, see Figure 4.10. This gives 60 elements over one wavelength while
the interface is captured in about 3 elements. The fs method is used for
time stepping. The average time step size Δt =0.5 s giving 95 time steps
per wave period.

The computed position of the interface at time t = 51.5 s (maximum
elevation) is shown in Figure 4.10. The configuration of the interface is
resolved smoothly and corresponds to the exact solution given by Equa-
tion (4.96). Time series of the computed and analytical interface elevation
at (x, y) = (0, 0) are shown in Figure 4.11. The computed solution shows
negligible amplitude damping. Initially, the phase error is small but the
computed wave period gradually increases due to diffusion of the interface
layer by the upwind mechanism. This artifact could be reduced by increasing
the resolution in vertical direction which would however become prohibitive
in most engineering applications. In this respect, the accurate computation
of non-hydrostatic internal waves is far more demanding than the computa-
tion of non-hydrostatic free-surface waves, with a comparable water depth
to wave length ratio, see also the examples in Section 5.5.1.
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Figure 4.10: Internal standing wave: mesh and computed interface position
at t =51.5 s (maximum elevation).
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Figure 4.11: Internal standing wave: interface elevation at (x, y) = (0, 0),
numerical solution (circles) and theoretical solution (solid).
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4.4.5.2 Trapped internal wave

A stably stratified flow over a non-uniform sea bed may feature stationary
‘trapped’ internal waves due to the vertical displacement of the fluid by the
bed topography and the buoyant restoring forces. For a sinusoidal shape
of the sea bed with amplitude a and wave number kt, and assuming a li-
near density stratification, small-amplitude trapped-wave solutions for the
vertical velocity component w are of the form

w = U kta
sin (λz)
sin (λd)

sin (ktx) , (4.99)

in which z is the vertical position with respect to the surface level, d is the
undisturbed water depth and λ is defined by

λ2 = −k2 − g

U2

∂ρ∗

∂z
, (4.100)

where k is the wave number of the trapped internal wave [48]. Importantly,
for cases where λ = nπ/d, with n = 0, 1, 2, · · · , the solution for w given by
Equation (4.99) becomes singular which is associated with resonance of the
trapped waves. In an estuarine environment, with varying tidal flow veloci-
ties, the resonance conditions change during the tide leading to continuous
generation and dispersion of trapped waves over the topography, the details
of which are explained in Pietrzak and Labeur [66].

The numerical example concerns trapped waves having the same wave
number as the topography, that is k = kt. The computational domain
has an undisturbed depth d =15 m and a length of 800 m. In the center
of the domain a series of 10 bed waves is present, with a wave length of
50 m and an amplitude of 0.15 m. The initial density field is uniform in
the horizontal direction and linear in the vertical direction with a relative
density difference Δρ∗ = 0.01 over the vertical. The domain is partitioned
using regular triangular elements with an average horizontal element size
of 2 m, which amounts to 25 elements per wave length, while the vertical
element size is 0.5 m. At the bottom and at z = 0 a zero normal velocity and
zero tangential stress are imposed. At the lateral boundaries the background
velocity U is prescribed using values of 0.40 m/s, 0.15 m/s and 0.085 m/s,
respectively, in order to obtain a range of trapped-wave modes. Reflection
of travelling internal waves from the boundaries is suppressed by applying a
flow relaxation scheme (sponge layer) over a 100 m wide section at both ends
of the domain. A relaxation parameter of 0.1 s−1 is used. As the transient
solution damps very slowly the horizontal viscosity and horizontal diffusivity
are increased to 0.01 m2/s to accelerate convergence towards steady state
which, using the backward Euler method and a time step size Δt = 2 s,
requires about 5000 time steps.

The theoretical and computed fields of the vertical velocity are shown
in Figure 4.12 for a 50 m wide section (one wave length) in the middle of
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model analytical

U =0.40 m/s U =0.40 m/s

U =0.15 m/s U =0.15 m/s

U =0.085 m/s U =0.085 m/s

Figure 4.12: Trapped internal wave: computed (left) and theoretical (right)
solutions of the vertical velocity w (mm/s).

the domain. The model results are in good agreement with the theoretical
solution obtained from Equation (4.99). The effect of the added horizon-
tal diffusivity is minimal in the sense that conventional upwinding of the
fluxes would cause a much larger distortion of the solution, in particular
of the higher wave-modes, which is demonstrated in Labeur and Pietrzak
[49]. Practical situations primarily concern low mode internal waves and the
example shows that a vertical resolution of 30 elements is generally sufficient
in this case.

4.4.6 Practical application: current load on VLCC

Ships, when moored at an open jetty, at anchor or while slowly manoeuvring,
may experience drag forces from ambient currents. For very large crude car-
riers (vlcc’s) these current loads are difficult to handle by a fender system
or by tugs. The Oil Companies International Marine Forum (ocimf) has
conducted experimental work to investigate these loads [64]. More speci-
fically, the influence of the angle of the current and the influence of the
keel-clearance were considered. Most relevant in this respect are the longi-
tudinal and lateral drag forces Fx and Fy, respectively, and the yaw current
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Figure 4.13: Current load on vlcc: computed current velocity magnitude
|ū| in m/s for ϕ = 50◦.

Figure 4.14: Current load on vlcc: computed dimensionless non-hydrostatic
pressure pd/U2 at ships’ hull for ϕ = 50◦.

moment Mxy which depend on the ambient current velocity U according to

Fx =
1
2
Cx ρU2 Lbp T, (4.101)

Fy =
1
2
Cy ρU2 Lbp T, (4.102)

Mxy =
1
2
Cxy ρU2 L2

bp
T, (4.103)

where ρ is the density of water, Lbp is the length of the vessel between
perpendiculars, T is the draft of the vessel and Cx, Cy and Cxy are the drag
and yaw moment coefficients, respectively [64]. The horizontal forces and
the yaw moment are highly dependent on the keel-clearance factor k = d/T ,
where d is the water depth. The associated current load coefficients generally
increase if k decreases due to the enhanced blockage by the ship which causes
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the water to flow around rather than beneath the hull.
The computational example concerns a fully loaded vlcc without bulb

and length Lbp = 310 m, width B = 45 m and draft T = 20 m. The
water depth d = 24 m which yields a keel-clearance factor k = 1.2. The
computations involve an ambient current velocity magnitude U = 1 m/s
and current angles ϕ of 10◦, 50◦, 90◦, 130◦ and 170◦, respectively, using the
ocimf convention where a zero angle denotes a stern-on current. A three-
dimensional mesh with a circular boundary of radius 600 m is used with
the vlcc situated in the center, see Figure 4.13. The average element size
he ≈ 3 m near the hull and gradually increases towards the lateral boundary,
yielding about 36,000 nodes and 240,000 tetrahedral elements. At the lateral
boundary the ambient current velocity is specified, at the bottom and the
surface a zero Neumann boundary condition is applied and at the ships’ hull
the tangential shear stress is imposed using a Nikuradse roughness-height
kn = 0.02 m, see Appendix B.1. The turbulence viscosity is modelled using
a Smagorinsky-type formulation setting Cs = 0.15. It was confirmed that
the computed results are not very sensitive to the precise value of the wall-
roughness height nor the viscosity formulation. Using the backward Euler
time stepping scheme with time step Δt = 1 s the simulation is run until
quasi-steady state which takes approximately 2000 s.

Figures 4.13 and 4.14 show the computed velocity magnitudes around
the vlcc and the pressure distribution on the hull for ϕ = 50◦. In accor-
dance with theory, the maximum non-hydrostatic pressure on the hull equals
the stagnation pressure Δps = 1

2U2. Table 4.2 summarizes the computed
current load coefficients and measured values given in [39]. The coefficients
are obtained from the model results by integrating the computed pressure
force and momentum over the hull of the ship. Overall, the computed lon-
gitudinal and lateral drag force coefficients are in good agreement with the
experimental results. The good correspondence of the yaw momentum co-
efficient indicates that the pressure distribution along the hull is computed
accurately. In practice these results were used to predict current loads on
slowly manoeuvring vlcc’s in the Port of Rotterdam, also in situations with
density stratification [46]. It was concluded that stratification may increase
considerably the current drag coefficients.

4.5 Conclusion

In this chapter the interface stabilized finite element method has been ex-
tended to the incompressible Navier-Stokes problem. Analogous to the
advection-diffusion problem, by using velocity basis functions which are
discontinuous across element boundaries and interface velocity functions
connecting elements, natural upwinding is incorporated into the formula-
tion which stabilizes the advective-diffusive part of the momentum equa-
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ϕ : 10◦ 50◦ 90◦ 130◦ 170◦

Cx model 0.00 0.11 0.04 0.07 0.01
marin 0.01 0.08 0.04 0.10 0.01

Cy model 0.23 1.36 2.05 1.50 0.27
marin 0.35 1.51 2.02 1.47 0.41

Cxy model -0.10 -0.22 -0.01 0.19 0.10
marin -0.10 -0.32 -0.09 0.15 0.08

Table 4.2: Current load on vlcc: comparison of computed and measured
[39] longitudinal current force coefficient Cx, transverse current force coeffi-
cient Cy and current yaw moment coefficient Cxy; zero angle denotes current
stern-on; keel-clearance k = 1.20.

.

tions. Moreover, by choosing a continuous pressure space, the formulation
invokes a pspg like pressure stabilization term without introducing double-
degrees of freedom on element boundaries. Since functions on each element
communicate only via the interface function the local degrees of freedom
can be eliminated at the element level. This leads to a formulation with the
same number of degrees of freedom as a regular continuous Galerkin method
on the same mesh when using equal-order elements.

The performance of the method for the P 1−P 1 element is demonstrated
for steady and unsteady Stokes flow, Burgers’ equations and for the steady
and unsteady Navier-Stokes equations. The computed results demonstrate
that the method provides stability, has good convergence properties and at
the same time introduces minimal dissipation. In particular, the perfor-
mance of the method near shocks is promising.
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Free-surface flow

Free-surface flow is basically gouverned by the Navier-Stokes equations trea-
ted in Chapter 4. It may be anticipated that the gis method can be used
as a solution procedure for problems with a free surface as well. However,
the unconstrained movement of the free surface introduces some additio-
nal numerical issues. These mainly concern the formulation of free-surface
boundary conditions, the adaptation of the mesh to the movement of the
free surface and the representation of the momentum and continuity equa-
tions in a moving reference frame. Hence, the extension of the model to
the case with moving free surfaces is not as straightforward as may seem
in first instance. The developments of this chapter are presented in an ar-
bitrary Lagrangian-Eulerian (ale) framework which is a convenient way to
describe fluid motion on deforming meshes1.

5.1 Moving domains

This section introduces some notation to describe the movement of the do-
main of interest Ω while it deforms under the action of the moving boun-
daries and free-surface dynamics. Of special concern is the description of
functions defined in a reference domain Ω̂ associated with ‘the mesh’, and
the transformation of conservation laws from the spatial domain onto the
referential domain.

5.1.1 Kinematics

A fluid dynamics problem may be described in the spatial domain Ω ⊂ R
d,

in the material domain Ω0 ⊂ R
d, or in a reference domain Ω̂ ⊂ R

d. Points
x ∈ Ω are fixed in space and posing the flow problem in Ω leads to the

1This chapter is partly based on: ‘Interface stabilised finite element method for moving
domains and free surface flows’, Robert Jan Labeur and Garth N. Wells. In: Computer
Methods in Applied Mechanics and Engineering, 198, 615-630, 2009.

121



122 Chapter 5. Free-surface flow
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Figure 5.1: Schematic illustration of mappings.

Eulerian formulation of fluid dynamics. Points X ∈ Ω0 are attached to
fluid particles which leads to a Lagrangian description of the flow. Points
χ ∈ Ω̂ finally, are labels connected to an arbitrary reference frame and
the resulting formulation of the fluid flow is coined the arbitrary Eulerian-
Lagrangian (ale) method. The reference frame is associated with a finite
element mesh which partially follows the fluid motion. In practice points X
and points χ are chosen such that X = χ = x at the initial time t = t0. For
arbitrary t material points X are mapped to points x via the transformation
ψ which is defined by

ψ : X → x = ψ (X, t) ∀ X ∈ Ω0, t ≥ t0, (5.1)

and the mapping of a reference point χ to a point x is defined via the
transformation ψ̂ defined by

ψ̂ : χ → x = ψ̂ (χ, t) ∀ χ ∈ Ω̂, t ≥ t0. (5.2)

It will be assumed throughout that the maps ψ and ψ̂ are continuous and
invertible. A schematic illustration of the various domains and the mappings
ψ and ψ̂ is given in Figure 5.1.

The Jacobian F of the transformation ψ̂ reads

F = ∇χψ̂ =
∂xi

∂χj
, (5.3)

and the determinant of the Jacobian is denoted by J ,

J = det (F ) . (5.4)
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Infinitesimal volume elements dΩ and dΩ̂ on the spatial and reference do-
mains, respectively, are related via

dΩ = JdΩ̂. (5.5)

Infinitesimal surface elements n dΓ and n̂ dΓ̂ on the spatial and reference
domains, respectively, are related via Nanson’s relationship,

n dΓ = JF−T n̂ dΓ̂, (5.6)

where n and n̂ are unit vectors normal to the respective surface elements
and F−T denotes the inverse transpose of the Jacobian F .

The Eulerian velocity u of a material point X is given by

u (X, t) =
∂ψ

∂t
, (5.7)

and the Eulerian velocity û of a reference point χ is given by

û (χ, t) =
∂ψ̂

∂t
. (5.8)

In the context of finite element methods, û is referred to as the ‘mesh velo-
city’. The velocity c of a material point relative to the mesh, which is the
‘convective velocity’, is defined as

c (x, t) = u − û. (5.9)

The ‘referential material velocity’ w, is then defined by the following trans-
formation

wi =
∂xi

∂χj
cj ⇒ w = F−1 c, (5.10)

which expresses the convective velocity in terms of the reference coordinates.
When the reference domain coincides with the material domain c = w = 0,
which is the Lagrangian limit, and when the reference domain is fixed in
space c = w = u giving the Eulerian limit.

At the boundary the material velocity may be constrained by the pre-
sence of the boundary. At moving boundaries, denoted Γs ⊆ ∂Ω, material
points cannot cross the boundary, which is formally expressed by

u · n = û · n on Γs, (5.11)

where n is the outward unit normal vector to ∂Ω. The expression ‘mo-
ving boundary’ will be used to describe both free surfaces and moving im-
permeable boundaries. From the definition of the convective velocity c in
Equation (5.9) the moving-boundary condition requires that

c · n = 0 on Γs. (5.12)
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Using Nanson’s relationship, Equation (5.6), this condition may be equiva-
lently restated as

w · n̂ = 0 on Γ̂s. (5.13)

Equation (5.12) leads to a coupling between the material velocity and the
mesh velocity. Yet, this leaves undetermined the motion of reference points
parallel to the spatial boundary and the displacement of interior points. See
also Section 5.1.3.

5.1.2 Transport theorem

The transformation of the Navier-Stokes equations onto the reference do-
main requires a reformulation of the transport equation in terms of referen-
tial quantities. From Equation (5.3), the spatial and referential gradients of
a scalar function f are related by

∂f

∂χi
=

∂xj

∂χi

∂f

∂xj
⇒ ∇χf = F T∇xf, (5.14)

where ∇x and ∇χ denote the gradient operators in the spatial and reference
domains, respectively. From Equation (5.14) the following identities for
spatial derivatives can be derived:

∇xf = F−T∇χf, (5.15)

∇xa = (∇χa) F−1, (5.16)

∇x · σ = J−1∇χ · (JσF−T
)
, (5.17)

where a is a vector and σ is a second-order tensor, see also Chadwick [13].
The relation between the referential and spatial time derivatives of a

scalar function f is given by

∂f

∂t

∣∣∣∣
χ

=
∂f

∂t

∣∣∣∣
x

+
∂ψ̂j

∂t

∂f

∂xj
, (5.18)

and the material and spatial time derivatives of f are related by

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+
∂ψj

∂t

∂f

∂xj
. (5.19)

Subtraction and using Equation (5.15) to rewrite the spatial gradient and
using the definition of w in Equation (5.10), the Lagrangian (material) time
derivative of f may be written as

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+ w · ∇χf. (5.20)

Equation (5.20) is the non-conservative form of the transport equation in
the reference frame with the left hand side constituting the source term.
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To obtain the conservative form of the transport equation, consider a
control volume C which moves with the mesh velocity û. Applying Leibniz’
rule of integration to the time derivative of the volume integral of f gives

d

dt

∫
C

f dΩ =
∫

C

∂f

∂t

∣∣∣∣
x

dΩ +
∫

∂C
f û · n dΓ. (5.21)

For a referential control volume Ĉ moving with velocity û, Leibniz’ rule
yields

d

dt

∫
Ĉ

Jf dΩ̂ =
∫

Ĉ

∂ (Jf)
∂t

∣∣∣∣
χ

dΩ̂. (5.22)

Combining Equations (5.21) and (5.22) and using the divergence theorem,
it can be deduced that

∂f

∂t

∣∣∣∣
x

= J−1 ∂ (Jf)
∂t

∣∣∣∣
χ

−∇x · (f û) . (5.23)

Setting f = 1 in Equation (5.23) leads to an important identity,

∂J

∂t

∣∣∣∣
χ

= J∇x · û, (5.24)

which is the ‘geometric’ conservation law. Equation (5.23) may be regarded
as the conservative form of Equation (5.18) since the volumetric changes
induced by the transformation ψ̂ are preserved. In a similar way, for a
control volume moving with the material velocity u,

∂f

∂t

∣∣∣∣
x

= J−1
0

∂ (J0f)
∂t

∣∣∣∣
X

−∇x · (fu) , (5.25)

in which J0 denotes the Jacobian determinant of the map ψ. Subtraction
of Equation (5.23) from Equation (5.25), using the divergence theorem and
Nanson’s relation, the conservative form of the transport equation on the
reference domain Ω̂ is obtained,

J

J0

∂ (J0f)
∂t

∣∣∣∣
X

=
∂ (Jf)

∂t

∣∣∣∣
χ

+ ∇χ · (Jfw) . (5.26)

Without loss of generality J0 can be taken equal to the specific volume
ρ−1 after which Equation (5.26) may be used to restate the Navier-Stokes
problem on the reference domain. As an example, for f = ρ, the resulting
mass balance equation reads

∂ (Jρ)
∂t

∣∣∣∣
χ

+ ∇χ · (Jρw) = 0. (5.27)

See also Scovazzi [79] for a detailed derivation of balance laws on reference
configurations.
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5.1.3 Construction of mappings

The mapping ψ̂ involves the reconstruction of the position x of interior
points χ given the time dependent Eulerian position of the boundaries.
Equivalently, the mesh velocity û may be determined after which the nodal
positions follow from Equation (5.8). It will be assumed here that the nor-
mal component of the mesh velocity at the boundary is specified, although
finding the boundary movement is often a part of the solution process.

The determination of the interior mesh velocity from the boundary condi-
tions requires interpolation techniques such as affine mapping or a simple
smoothing procedure where û is averaged, in some way, from the mesh velo-
cities in surrounding points. Alternatively, a pseudo-elasticity problem may
be solved in which the mesh movement is controlled by imposing stresses
along the boundary Γ, see for instance Duarte et al. [21]. The problem is
complicated by the fact that at moving boundaries, due to Equation (5.12),
only the normal displacements are known while the tangential displacements
can not be specified directly. This problem may be by-passed by releasing
the tangential stress at the boundaries that would result from the deforma-
tion of the mesh. In general terms, the mapping problem can then be stated
as: given the boundary condition v̂ · n on Γs × I, where I = (t0, tN ) is the
time interval of interest, find the mesh velocity û such that

∇ · (∇û + λI∇ · û) = 0 in Ω × I, (5.28)
n × (∇û + λI∇ · û) n = 0 on Γ × I, (5.29)
û · n = v̂ · n on Γs × I, (5.30)

where I is the second-order identity tensor and λ ≥ 0 is a parameter to
control the compression of the mesh. For cases with free surfaces, the map-
ping problem needs to be solved in conjunction with the flow problem as
the latter provides the boundary condition v̂ · n on the free surface via the
kinematic condition given by Equation (5.12).

The pseudo-elastic mesh deformation allows the nodes to move in all
directions which renders the equations for the different components of û
fully coupled. Obviously, this complicates the ensuing discrete mapping
problem. However, for flow problems involving truly multi-directional free-
surface movement the coupled approach is necessary to prevent severe mesh
distortion [21]. For the free-surface flows encountered here moderate, non-
overturning surface displacements will be assumed, which allows a simplified
approach where the mesh is moved in the vertical direction only. This will
yield a significant reduction of Equations (5.28) and (5.29).

5.2 Incompressible flow on moving domains

The incompressible Navier-Stokes equations on a fixed spatial domain Ω have
been given in Section 4.1. The problem is extended here to moving domains
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with geophysical free-surface flows as a special class. The developments
are presented on the reference domain, instead of on the more familiar and
intuitive spatial domain. Since the reference domain is constant in time
this avoids ambiguities with respect to the precise form of the time stepping
scheme to be introduced later on.

5.2.1 General formulation

The Navier-Stokes equations can be formulated in the reference domain Ω̂
using the transformed transport equation given by Equation (5.26). For an
incompressible flow the procedure simplifies considerably since the density
ρ of a fluid particle remains constant. The continuity equation is then easily
obtained by setting f = 1 in Equation (5.26). Setting f = u yields the
momentum equations where the left hand side of Equation (5.26) constitutes
the body force plus the divergence of the Cauchy stress tensor which is
transformed using the identity given in Equation (5.17).

For a domain of interest Ω̂ ⊂ R
d, having a boundary ∂Ω̂ which is par-

titioned such that Γ̂g ∪ Γ̂h = ∂Ω̂ and Γ̂g ∩ Γ̂h = ∅, the resulting problem
on the time interval I = (t0, tN ) reads: given the map ψ̂ : Ω̂ × I → R

d, a
forcing term f : Ω̂ × I → R

d, the boundary conditions g : Γ̂g × I → R
d and

ĥ : Γ̂h × I → R
d, and the initial velocity u0 : Ω̂ → R

d, find the velocity u
and the normalized pressure p such that

∂ (Ju)
∂t

+ ∇χ · σ̂ = f̂ in Ω̂ × I, (5.31)

σ̂ = Ju ⊗ w + P in Ω̂ × I, (5.32)
∂J

∂t
+ ∇χ · (Jw) = 0 in Ω̂ × I, (5.33)

u = g on Γ̂g × I, (5.34)

(γJu ⊗ w + P ) n̂ = ĥ on Γ̂h × I (5.35)

w · n̂ = 0 on Γ̂s × I, (5.36)

u (χ, 0) = u0 in Ω̂, (5.37)

where the body force f̂ = Jf , σ̂ is the total referential momentum flux,
the product tensor (u ⊗ w)ij = wiuj and P is analogous to the first Piola-
Kirchhoff stress. It is assumed throughout that the forcing terms and boun-
dary conditions possess sufficient regularity. The stress tensor P is given
by

P = JτF−T , (5.38)

where τ is the Cauchy stress,

τ = pI − 2ν∇s
xu, (5.39)
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in which I is the second-order identity tensor, ν is the kinematic viscosity
and ∇s

x (·) is the symmetric spatial gradient operator. On inflow boundaries,
that is where w · n̂ < 0, γ = 1 and on outflow boundaries, where w · n̂ ≥ 0,
γ = 0. The use of the function γ implies that the total flux is prescribed
on inflow portions of Γ̂h, and only the diffusive flux is prescribed on outflow
portions of Γ̂h [37]. More complex combinations of Dirichlet and Neumann
boundary conditions can be specified in which different components of the
velocity are subject to different boundary condition types [30]. Frequently,
Dirichlet and Neumann boundary conditions are specified for the normal
velocity and tangential stress, respectively, see also Section 4.1.

For simplicity, it is stated that the map ψ̂ is explicitly given, although in
many cases, such as free-surface flows, finding the map is part of the solution
process.

5.2.2 Geophysical free-surface flows

Under certain conditions, which are typical for geophysical flows, the in-
compressible Navier-Stokes equations can be reformulated in terms of the
piezometric level in place of the pressure. Such a reformulation is particu-
larly convenient when employing a moving mesh as it will turn out that the
location of the free surface is defined naturally then.

For a fluid of uniform density under the action of gravity in the −ez

direction, the body force due to gravity is of the form

f = −gez, (5.40)

where g is the gravitational constant. The piezometric level η is related to
the normalized pressure p via

p = pa + g (η − z) , (5.41)

where pa is the normalized atmospheric pressure. Physically, η is the height
to which the pressure causes the fluid to rise in a column. For a spatially
constant atmospheric pressure, the gravity body force and the pressure can
be eliminated from the Navier-Stokes equations in favour of the piezometric
level since after taking the gradient of Equation (5.41) and using Equa-
tion (5.40) the pressure gradient may be rewritten as

∇xp = g∇xη + f . (5.42)

Formulating a problem in terms of the piezometric level leads to an alter-
native expression for the Cauchy stress,

τ = gηI − 2ν∇s
xu. (5.43)

Therefore, setting the source term f = 0 and using Equation (5.43) in
the definition of the flux and the flux boundary condition leads to a form
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Figure 5.2: Kinematic free-surface condition for vertical mesh motion.

of the Navier-Stokes equations which is applicable for various geophysical
free-surface flows. Other body forces, such as the Coriolis force, can still
be considered in which case only the gravity effects are excluded from the
source term f while all other forcing terms are retained.

The normalized pressure at the free surface equals the atmospheric pres-
sure pa, which from Equation (5.41) leads to

η = z on Γs. (5.44)

The mesh velocity in the ez direction at the free surface is then given by

û · ez =
∂η

∂t

∣∣∣∣
χ

on Γs. (5.45)

The motion of the free surface is therefore expressed compactly in terms of
the piezometric head. If the mesh motion is restricted to the ez direction
only, the free surface condition in Equation (5.11) can be rewritten as

u · n =
∂η

∂t

∣∣∣∣
χ

ez · n on Γs, (5.46)

where the term ez · n is the projection of a unit surface element onto the
horizontal plane, see also Figure 5.2. For strictly vertical mesh motion this
quantity remains constant in time and is hence determined by the initial
configuration of the domain.

5.2.3 Dimensional scaling

This section considers the continuity equation in some more detail, in par-
ticular the free-surface boundary condition given by Equation (5.46). In
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Section 4.1.3 it was shown that a flow problem with a reference length scale
Lref and a velocity scale Uref , has a pressure scale Pref given by

Pref = U2
ref

(
1 + Re−1

)
, (5.47)

where Re = UrefLref/ν is the Reynolds number. Using Equation (5.41),
which relates the pressure to the piezometric level, the corresponding scale
of the piezometric level, denoted Href, is given by

Href =
U2

ref

g

(
1 + Re−1

)
, (5.48)

from which the non-dimensional form of the momentum equations, given
by Equations (5.31) and (5.32) can be obtained. Non-dimensionalization
guarantees that all variables in the coupled set of equations have the same
order of magnitude which, for the fully discrete problem, is a prerequisite
to obtain convergence of the resulting algebraic solution across all Reynolds
numbers [65].

The free-surface dynamics, introduced by the boundary condition for the
continuity equation, leads to additional scaling arguments. To this end, non-
dimensionalization of the free-surface boundary condition, Equation (5.46),
gives

Href

Tref

∂η∗

∂t∗

∣∣∣∣
χ

= Uref u∗ · n on Γs, (5.49)

where the asterisks denote dimensionless quantities. Setting the reference
time scale Tref = Lref/Uref and using Equation (5.48) for Href, this can be
written as

Fr2
(
1 + Re−1

) ∂η∗

∂t∗

∣∣∣∣
χ

= u∗ · n on Γs, (5.50)

where Fr = Uref/
√

gLref denotes the Froude number. The length scale Lref,
used in the definition of Fr, can be related to the length of an object in
the flow field or, in case of gravity-wave propagation, to the water depth.
According to the dimensionless free-surface condition, the Froude number
determines the order of magnitude of the surface movement relative to the
remaining terms of the continuity equation. In this respect, for Re >> 1
and Fr << 1, the surface movement is relatively weak and the dynamics
associated with the mesh motion may be neglected. If on the other hand
Fr ≥ O (

10−1
)

the surface dynamics will be appreciable and the full formu-
lation of the moving domain problem is required.

Consideration of the Froude number is important when applying the
boundary conditions. For surface-wave propagation, the condition Fr < 1
yields a sub-critical flow regime in which long, infinitely small perturba-
tions of the free-surface will propagate in every direction. As a consequence,
boundary conditions must be specified on the inflow as well as on the out-
flow boundaries of the domain. For Fr > 1 the flow is super-critical and
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the disturbances propagate in downstream direction only. In this case, the
boundary conditions can only be specified on the inflow portion of Γ.

5.3 Galerkin interface stabilization method

The developments in this section proceed along similar lines as for the in-
compressible Navier-Stokes equations of Chapter 4. New aspects are the
moving domain and the associated free-surface boundary condition, which
only require minor modifications to fit into the gis systematic given in the
previous chapter. Using the referential form of the Navier-Stokes equations,
the resulting variational formulation naturally lends itself to a gis treatment.
Obviously, the referential form involves a constant domain of integration
which is particularly appropriate when considering semi-discrete variational
formulations.

5.3.1 General formulation

The reference domain Ω̂ is partitioned into disjoint elements Ω̂e having boun-
daries ∂Ω̂e on which n̂ denotes the outward unit normal vector. The ele-
ments intersect pairwise in interfaces Γ̂i. This defines the following unions

Ω̃ =
⋃
e

Ω̂e, (5.51)

Γ̃ =
⋃
i

Γ̂i =
⋃
e

∂Ω̂e, (5.52)

where Γ̃ is the union of element boundaries. In order to avoid notational
clutter, Ω̃ denotes the union of all elements, excluding element facets, and in
the remainder integration over Ω̃ implies the summation of all integrals over
elements. On Ω̃ a discontinuous velocity space V and a continuous pressure
space Q are defined by, respectively,

V =
{

v ∈ L2
(
Ω̃
)

, v ∈ Pk
(
Ω̂e

)
∀ e

}
, (5.53)

Q =
{

q ∈ H1
(
Ω̃
)

, q ∈ P l
(
Ω̂e

)
∀ e

}
, (5.54)

where Pk and P l denote the standard Lagrangian polynomial spaces on
elements of degrees k and l, respectively, where l > k ≥ 0. The spaces V
and Q are similar to the corresponding spaces from Section 4.2.2, except for
the domains in which they are defined. Interestingly, on moving domains,
switching from the spatial domain Ω to the reference domain Ω̂ leads to the
convenient property that for any basis function the time derivative equals
zero.

The general discontinuous weak formulation of the Navier-Stokes pro-
blem posed on Ω̃, can be obtained directly from Equations (5.31) to (5.33).
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Introducing, as before, an interface velocity ū : Γ̃× I → R
d and a referential

interface flux ˆ̄σ : Γ̃ × I → R
d × R

d, the procedure is essentially similar to
that for the Navier-Stokes problem on the fixed spatial domain. Assuming
that ū and ˆ̄σ satisfy the Dirichlet and Neumann boundary conditions on Γ̂g

and Γ̂h, respectively, the resulting dg method reads: at time t, given the
map ψ̂ : Ω̃ × I → R

d and the source term f : Ω̃ × I → R
d, find u ∈ V and

p ∈ Q such that∫
Ω̃

∂ (Ju)
∂t

· v dΩ̂ −
∫

Ω̃
σ̂ : ∇χv dΩ̂ +

∑
e

∫
∂Ω̂e

ˆ̄σn̂ · v dΓ̂

+
∑

e

∫
∂Ω̂e

2ν (ū − u) · S (v) n̂ dΓ̂ +
∫

Ω̃

∂J

∂t
q dΩ̂ −

∫
Ω̃

Jw · ∇χq dΩ̂

+
∑

e

∫
∂Ω̂e

Jw̄ · n̂ q dΓ̂ =
∫

Ω̃
f̂ · v dΩ ∀ v ∈ V, ∀ q ∈ Q, (5.55)

where

S (v) =
J

2

[
(∇χv) F−1 + F−T (∇χv)T

]
F−T = J ∇s

xv F−T . (5.56)

The form of the referential flux σ̂ follows from Equation (5.32) and w̄
= F−1c̄ = F−1 (ū − û) is the referential material velocity on element in-
terfaces. In standard dg methods the interface velocity ū and the interface
flux ˆ̄σ depend on the traces of u and σ̂ on ∂Ω̂e, respectively [1].

Following the general gis procedure, the interface field ū is rendered an
independent global variable, which is defined in a space V̄ on Γ̃ given by

V̄ =
{

v̄ ∈ H1/2
(
Γ̃
)

, v̄ ∈ Pm
(
Γ̂i

)
∀ i

}
, (5.57)

where the fractional space H1/2 is the trace of H1
(
Ω̃
)

on Γ̃ and Pm is a set
of Lagrange polynomial basis functions with polynomial order m > 1 defined
on element interfaces. An associated subspace V̄g contains all functions in
V̄ satisfying the Dirichlet boundary condition v̄ = g on Γ̂g. The definition
of ū renders the interface velocity w̄ single-valued on an element facet. As
functions q ∈ Q are also single-valued on a facet, terms containing w̄ in
Equation (5.55) vanish on interior element interfaces. The continuity of ū
does not yet imply that the interface flux is also single-valued at element
facets since ˆ̄σ not only depends on ū but also depends on the velocity u
in the adjacent element. Instead, continuity of ˆ̄σ is imposed weakly in V̄
which is formally expressed as

∑
e

∫
∂Ω̂e

ˆ̄σn̂ · v̄ dΓ̂ =
∫

Γ̂h

(1 − γ) J (ū ⊗ w) n̂ · v̄ dΓ̂ +
∫

Γ̂h

ĥ · v̄ dΓ̂

∀ v̄ ∈ V̄, (5.58)
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where γ = 1 on inflow Neumann boundaries, that is where w · n̂ < 0, and
γ = 0 on outflow Neumann boundaries where w · n̂ ≥ 0.

Subtracting Equation (5.58) from Equation (5.55), and using the conti-
nuity of w̄ and q across element facets, the variational problem can be
restated as: at time t, given the map ψ̂, the source term f , the boundary
conditions g : Γ̂g × I → R

d and ĥ : Γ̂h × I → R
d, find u ∈ V, ū ∈ V̄g and

p ∈ Q such that

∫
Ω̃

∂ (Ju)
∂t

· v dΩ̂ −
∫

Ω̃
σ̂ : ∇χv dΩ̂ −

∑
e

∫
∂Ω̂e

ˆ̄σn̂ · (v̄ − v) dΓ̂

+
∑

e

∫
∂Ω̂e

2ν (ū − u) · S (v) n̂ dΓ̂ +
∫

Γ̂h

(1 − γ) J (ū ⊗ w) n̂ · v̄ dΓ̂

+
∫

Ω̃

∂J

∂t
q dΩ̂ −

∫
Ω̃

Jw · ∇χq dΩ̂ +
∫

Γ̂
Jw̄ · n̂ q dΓ̂

=
∫

Ω̃
f̂ · v dΩ −

∫
Γ̂h

ĥ · v̄ dΓ̂ ∀ v ∈ V, ∀ v̄ ∈ V̄, ∀ q ∈ Q. (5.59)

It is useful to remind at this point some aspects of the above variational
formulation. If the interface flux ˆ̄σ is chosen such that its value on one side
of an element facet does not depend on terms from the other side of the
facet, the ‘local’ velocity field u on an element is not linked directly to the
velocity field on neighbouring elements. The velocities u on neighbouring
elements are linked via the ‘global’ interface function ū only. In practice,
it is therefore possible to eliminate degrees of freedom corresponding to u
locally in the same way as the degrees of freedom associated with bubble
functions are eliminated locally via static condensation. Only degrees of
freedom corresponding to ū and p will therefore appear in a global system
of equations. This avoids the common criticism of dg methods, compared
to cg methods, that the double degrees of freedom at element facets lead to
a dramatic increase in the computational cost, yet the momentum flux on
element facets can be specially formulated, as is typical for dg methods.

The equivalence of variational Equation (5.59) with the gis method for
the Navier-Stokes equations on the spatial domain, given by Equation (4.25),
can be shown by pushing Equation (5.59) forward to the spatial configura-
tion. In the Eulerian limit (û = 0) the spatial equations are identical to
those presented in Section 4.2. See also Labeur and Wells [52].

5.3.2 Interface flux

It remains to complete the variational problem by defining the interface
flux ˆ̄σ. Proceeding in a similar way as in Section 4.2.3, using the transfor-
mation rules for second-order tensors, the referential interface flux is defined
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as

ˆ̄σ = σ̂ + J

[
γ (ū − u) ⊗ c̃ − α

he
ν (ū − u) ⊗ n

]
F−T on ∂Ω̂e. (5.60)

The interface velocity c̃ is given by

c̃ = min
(
c+ · n, c− · n)n, (5.61)

where c+ and c− are traces of the the convective velocities on either side of an
interface, α is a dimensionless penalty parameter and he is a measure of the
element size in the spatial configuration. The term γ = 1 on inflow element
facets, that is where c̃ · n < 0, and γ = 0 elsewhere, thereby upwinding the
interface flux. The formulation for c̃ in Equation (5.61) prevents singularities
in case of source interfaces, that is where c · n− < 0 < c+ · n, or in case
of sink interfaces, where c− · n > 0 > c+ · n. The diffusive part of the
interface flux is constructed such that it reduces to an interior penalty-type
term on the spatial domain [1]. The interface flux as a whole coincides with
the interface flux on the spatial domain defined in Section 4.2.3. Defining a
term β̂ according to

β̂ = F−1

(
γc̃ − α

he
νn

)
= γw̃ − α

he
νF−1n, (5.62)

where w̃ = F−1c̃, the interface flux may be written compactly as

ˆ̄σ = σ̂ + J (ū − u) ⊗ β̂ on ∂Ω̂e. (5.63)

Owing to its definition, the quantity β̂ · n̂ is always negative at element
boundaries.

Supplementing Equation (5.59) with the above definition of the flux,
and setting v̄ = 0 and q = 0, the gis method leads to the following local
problem: at time t, given the mapping ψ̂ and the forcing term f , find u ∈ V
such that

∫
Ω̃

∂ (Ju)
∂t

· v dΩ̂ +
∫

Ω̃
∇χ · (Ju ⊗ w) · v dΩ̂ +

∫
Ω̃

JF−T∇χp · v dΩ̂

−
∫

Ω̃
2∇χ · [νS (u)] · v dΩ̂ +

∑
e

∫
∂Ω̂e

Jβ̂ · n̂ (ū − u) · v dΓ̂

+
∑

e

∫
∂Ω̂e

2ν (ū − u) · S (v) n̂ dΓ̂ =
∫

Ω̃
f̂ · v dΩ̂ ∀ v ∈ V. (5.64)

With a view to later manipulations the regular flux term has been integra-
ted by parts. The associated global problem is obtained by setting v = 0
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in Equation (5.59) and substituting the referential interface flux from Equa-
tion (5.63). The procedure yields: at time t, given the mapping ψ̂, find
ū ∈ V̄g and q ∈ Q, such that

∑
e

∫
∂Ω̂e

[Ju ⊗ w − 2νS (u)] n̂ · v̄ dΓ̂ +
∑

e

∫
∂Ω̂e

Jβ̂ · n̂ (ū − u) · v̄ dΓ̂

−
∫

Ω̃

∂J

∂t
q dΩ̂ +

∫
Ω̃

Jw · ∇χq dΩ̂ −
∫

Γ̂
Jw̄ · n̂q dΓ̂ +

∫
Γ̂

JpF−T n̂ · v̄ dΓ̂

−
∫

Γ̂h

(1 − γ) J (w · n̂) ū · v̄ dΓ̂ =
∫

Γ̂h

ĥ · v̄ dΓ̂ ∀ v̄ ∈ V̄, ∀ q ∈ Q. (5.65)

Due to the continuity of p and v̄ the pressure terms have canceled at interior
element interfaces. Noteworthy to mention is the correspondence of the
above referential format of the gis method to the formulation on the fixed
spatial domain described in the previous chapter.

For a geophysical free-surface flow the corresponding equations are ob-
tained by setting p = gη and f = 0 in Equations (5.64) and (5.65), respecti-
vely. In particular, on free surfaces the kinematic boundary condition which
is embedded in Equation (5.65) will read∫

Γ̂s

Jw̄ · n̂q dΓ̂ =
∫

Γ̂s

JF−1

(
∂η

∂t
ez − û

)
· n̂q dΓ̂, (5.66)

using the free-surface kinematic boundary condition for vertical mesh mo-
tion, Equation (5.46).

5.3.3 Properties

This section considers various properties of the gis variational formulation
of free-surface Navier-Stokes flow given by Equation (5.59) with the interface
flux according to Equation (5.63). A similar exercise has been performed in
Chapter 4 for the fixed spatial domain and the analysis is continued here by
considering the moving domain and free-surface issues.

5.3.3.1 Consistency

For sufficiently smooth functions, setting v̄ = 0 and q = 0 in Equation (5.59)
gives, after integration by parts,∫

Ω̃

[
∂ (Ju)

∂t
+ ∇χ · σ̂ − f̂

]
· v dΩ̂ +

∑
e

∫
∂Ω̂e

Jβ̂ · n̂ (ū − u) · v dΓ̂

+
∑

e

∫
∂Ω̂e

2ν (ū − u) · S (v) n̂ dΓ̂ = 0 ∀ v ∈ V, (5.67)

which demonstrates consistency with the referential form of the momentum
equation posed on a moving domain, given in Equation (5.31), and the
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enforcement of ū = u on Γ̃. Setting then v = 0, q = 0 and using ū = u on
Γ̃ in Equation (5.59) gives∫

∂Ω̂e\Γ̂h

σ̂n̂ · v̄ dΓ̂ +
∫

Γ̂h

(γJu ⊗ w + P ) n̂ · v̄ dΓ̂

=
∫

Γ̂h

ĥ · v̄ dΓ̂ ∀ v̄ ∈ V̄, (5.68)

which implies continuity of the referential flux between subdomains and
satisfaction of the Neumann boundary condition given by Equation (5.35).

For v = 0, v̄ = 0 and smooth functions u, partial integration of Equa-
tion (5.59) leads to∫

Ω̃

[
∂J

∂t
+ ∇χ · (Jw)

]
q dΩ̂ =

∫
Γ̂

J (w − w̄) · n̂q dΓ̂ ∀ q ∈ Q, (5.69)

which is consistent with the strong form of the continuity constraint posed
on the reference domain, given in Equation (5.33), and the enforcement of
w = w̄ on Γ̂. Setting w̄ = w on Γ̂s in the surface boundary condition
Equation (5.66) leads to∫

Γ̂s

JF−1

(
∂η

∂t
ez − u

)
· n̂q dΓ̂ = 0 ∀ q ∈ Q, (5.70)

which, by Nanson’s relation, implies the strong form of the kinematic free-
surface boundary condition for vertical mesh movement, Equation (5.46).

5.3.3.2 Volume conservation

Setting v = 0, v̄ = 0 and q = 1 in the general gis formulation given by
Equation (5.59) leads to∫

Ω̃

∂J

∂t
dΩ̂ +

∫
Γ̂

Jw̄ · n̂ dΓ̂ = 0. (5.71)

Pushing forward to Ω,

d

dt

∫
Ω

dΩ +
∫

Γ
(ū − û) · n dΓ = 0, (5.72)

reveals that the total volume change equals the net inward convective flow
over the boundary, thereby proving volume conservation. The replacement
of w̄ on Γ̂s in Equation (5.71), by using the kinematic free-surface condition
for vertical mesh motion from Equation (5.66), and applying the divergence
theorem on the boundary terms containing û leads to∫

Ω̃

[
∂J

∂t
− J∇x · û

]
dΩ̂ +

∫
Γ̂\Γ̂s

JF−1ū · n̂ dΓ̂

+
∫

Γ̂s

JF−1 ∂η

∂t
ez · n̂ dΓ̂ = 0. (5.73)
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By virtue of the geometric conservation law, Equation (5.24), the first inte-
gral in Equation (5.73) vanishes and the push-forward to the spatial domain
Ω gives ∫

Γ\Γs

ū · n dΓ +
d

dt

∫
Γs

η (ez · n) dΓ = 0. (5.74)

The term ez ·n dΓ projects a free-surface element onto the horizontal plane.
This projection remains constant for strictly vertical mesh motion. The as-
sociated surface integral then gives the volumetric change due to the surface
displacement which, as stated by Equation (5.74), equals the net inflow over
the remaining part of the boundary. Obviously, for the case where Γs = ∅,
Equation (5.74) shows that the net inward flow velocity over the boundary
equals zero which is an equivalent statement of volume conservation.

5.3.3.3 Momentum conservation

For the pure Neumann problem, i.e. Γ̂g = ∅, global conservation of linear
momentum can be proven by setting v = ej , v̄ = ej and q = 0 in Equa-
tion (5.59) which yields

d

dt

∫
Ω̃

Ju · ej dΩ̂ =
∫

Ω̃
f̂ · ej dΩ̂

−
∫

Γ̂h

(1 − γ) J (w · n̂) ū · ej dΓ̂ −
∫

Γ̂h

ĥ · ej dΓ̂. (5.75)

Pushing forward to Ω,

d

dt

∫
Ω

u · ej dΩ =
∫

Ω
f · ej dΩ

−
∫

Γh

(1 − γ) (c · n) ū · ej dΓ −
∫

Γh

h · ej dΓ, (5.76)

reveals that the global change of momentum is balanced by the net inward
momentum flux over the boundary and the total body force. For Dirichlet
boundary conditions, the proof is more complicated as it is not possible to
set v̄ = ej on Γ̂g. By defining an auxiliary flux on Γ̂g the problem can be
circumvented and global conservation can be demonstrated [37].

For local conservation, considering Equation (5.59) with q = 0, v̄ = 0,
v = ej on Ω̂e and v = 0 on Ω̂ \ Ω̂e results in

d

dt

∫
Ω̂e

Ju · ej dΩ̂ =
∫

Ω̂e

f̂ · ej dΩ̂ −
∫

∂Ω̂e

ˆ̄σn̂ · ej dΓ̂. (5.77)

The push-forward to the spatial domain Ω,

d

dt

∫
Ωe

u · ej dΩ =
∫

Ωe

f · ej dΩ −
∫

∂Ωe

σ̄n · ej dΓ, (5.78)
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proves local conservation of linear momentum in terms of the numerical flux
σ̄ on ∂Ωe. Yet, it has to be reminded that this flux is only weakly continuous
across element boundaries.

5.3.3.4 Energy conservation

Next, energy conservation is considered for the inviscid case which highlights
the stabilizing mechanism for advection dominated problems. In the diffu-
sive limit the analysis is similar to that on the fixed spatial domain and a
reference is made to Section 4.2.4. For a pure Neumann problem and in the
absence of body forces, subtracting Equations (5.65) from Equation (5.64),
setting ν = 0, v = u, v̄ = ū and q = p results in∫

Ω̃

∂ (Ju)
∂t

· u dΩ̂ +
∫

Ω̃
∇χ · (Ju ⊗ w) · u dΩ̂

−
∑

e

∫
∂Ω̂e

J (w · n̂) u · ū dΓ̂ −
∑

e

∫
∂Ω̂e

γJ (w̃ · n̂) |ū − u|2 dΓ̂

+
∫

Γ̂h

(1 − γ) J (w · n̂) |ū|2 dΓ̂ = −
∫

Γ̂h

ĥ · ū dΓ̂, (5.79)

where w̃ = F−1c̃ and strict geometric conservation has been assumed. Ap-
plying integration by parts to the advection term over Ω̂ and reformulating
the time derivative leads to

d

dt

∫
Ω̃

1
2
J |u|2 dΩ̂ +

∫
Ω̃

1
2
|u|2

[
∂J

∂t
+ ∇χ · (Jw)

]
dΩ̂

−
∑

e

∫
∂Ω̂e\Γ̂h

1
2
J |ū|2 w · n̂ dΓ̂ +

∑
e

∫
∂Ω̂e

J |ū − u|2
(

1
2
w − γw̃

)
· n̂ dΓ̂

+
∫

Γ̂h

1
2
J |ū|2|w · n̂| dΓ̂ = −

∫
Γ̂h

ĥ · ū dΓ̂. (5.80)

The first term in Equation (5.80) is the time derivative of the total kine-
tic energy. If the vector field w satisfies the continuity constraint Equa-
tion (5.33) point-wise, all remaining integrals in Equation (5.80) are non-
negative in which case the total kinetic energy cannot increase and will
generally decrease. The dissipative mechanism stems from the upwinding
of the momentum flux at the element facets and is determined partly by
the difference between the velocity field u and the interface function ū,
and partly by the referential velocity w at element facets. As the discrete
field w satisfies the continuity equation only in a weak sense, monotonic
energy decay is not guaranteed for the homogeneous Neumann problem.
This deficiency may be circumvented by adding correction terms rendering
the discrete advection operator skew-symmetric [28]. A monotonic energy
decay does not yet prove stability of the gis method as stability requires
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the satisfaction of an inf − sup condition, the proof of which is not pursued
here. For the P 1 − P 1 element a stabilizing mechanism is present which is
closely related to that of the pspg method and the mini-element, see also
Section 4.3.4.

For a free-surface problem in which the pressure is replaced by the pie-
zometric head, the Neumann boundary condition on the free surface reads
ĥ = JgηF−T n̂. Setting ĥ = 0 on Γ̂h \ Γ̂s, the surface integral on the right
hand side of Equation (5.80) reads∫

Γ̂h

ĥ · ū dΓ̂ =
∫

Γ̂s

JgηF−T n̂ · ū dΓ̂. (5.81)

Pushing forward to the spatial domain, using the free-surface boundary
condition for vertical mesh movement given by Equation (5.46) and Nanson’s
relation, gives ∫

Γ̂s

JgηF−T n̂ · ū dΓ̂ =
∫

Γs

gη
∂η

∂t
(n · ez) dΓ. (5.82)

Since the term n · ez dΓ remains constant for strictly vertical mesh motion,
Equation (5.81) may finally be restated as∫

Γ̂h

ĥ · ū dΓ̂ =
d

dt

∫
Γs

1
2
gη2 (n · ez) dΓ, (5.83)

which represents the time derivative of the global potential energy. The-
refore, in the case of free-surface flows, the sum of the global kinetic and
potential energy will decrease monotonically for point-wise satisfaction of
the continuity constraint and in the absence of forcing terms. For small-
amplitude wave motion, the advection terms in Equation (5.80) are negli-
gible and the sum of the total kinetic and potential energy is conserved, as
will be demonstrated by an example in Section 5.5.1.

5.4 The fully-discrete problem

Rather than solving for all unknown fields simultaneously, a fractional-step
algorithm is formulated to decouple the momentum and continuity equa-
tions. Problems are considered for which the domain update is either given
or is computed explicitly using known data.

5.4.1 Fractional-step formulation

For time stepping a partitioning I = (t0, t1, · · · , tN−1, tN ) is used which de-
fines the sub-intervals In = (tn, tn+1) and time step sizes Δt = tn+1 − tn.
The domain motion is often dependent on the flow field which complicates
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the solution procedure. This difficulty is by-passed by solving first the dis-
crete flow problem on sub-interval In with the required mapping ψ̂n → ψ̂n+1

determined explicitly from the known mesh velocity at time tn,

ψ̂n+1 = ψ̂n + ûnΔt. (5.84)

The above definition implies that û is piecewise constant in time. Once
ψ̂n+1 has been computed, Jn+1 and Fn+1 can be evaluated. Also, a term
J


n+1 is defined which is computed ‘consistently’ with the mesh velocity,

J

n+1 = Jn + Δt∇χ · (JnF−1

n ûn

)
= Jn + ΔtJn∇x · ûn. (5.85)

The use of this term will prove crucial in satisfying particular conservation
principles. It is assumed that ψ̂n+1 is affine on elements, implying linear
triangles or tetrahedral elements for defining the mesh displacement.

Next, the discrete flow problem can be solved on In for which the fully-
coupled scheme from Section 4.3.3 could be used. In case of a moving
domain it is however more convenient to solve the momentum equations and
the continuity constraint separately in two consecutive steps. An advantage
of this so-called predictor-corrector scheme is the reduced computational
effort relative to the fully-coupled scheme. In the first step an intermediate
flow field u


n+1 is computed from Equations (5.64) and (5.65) using the
explicitly known pressure pn. The resulting predictor step reads: given the
mapping ψ̂n → ψ̂n+1, the forcing term fn+θ, the boundary condition hn+θ,
the velocities un ∈ V and ūn ∈ V̄g, and the pressure pn ∈ Q, find the
intermediate velocity u


n+1 ∈ V and the velocity ūn+1 ∈ V̄g such that∫
Ω̃

J

n+1u



n+1 − Jnun

Δt
· v dΩ̂ +

∫
Ω̃
∇χ (Jnun+θ ⊗ wn) · v dΩ̂

+
∫

Ω̃
JnF−T

n ∇χpn · v dΩ̂ −
∫

Ω̃
2∇χ [νSn (un+θ)] · v dΩ̂

+
∑

e

∫
∂Ω̂e

Jnβ̂n · n̂ (ūn+θ − un+θ) · v dΓ̂

+
∑

e

∫
∂Ω̂e

2ν (ūn+θ − un+θ) · Sn (v) n̂ dΓ̂ =
∫

Ω̃
f̂n+θ · v dΩ̂ ∀ v ∈ V.

(5.86)

and∑
e

∫
∂Ω̂e

[Jnun+θ ⊗ wn − 2νSn (un+θ)] n̂ · v̄ dΓ̂

+
∑

e

∫
∂Ω̂e

Jnβ̂n · n̂ (ūn+θ − un+θ) · v̄ dΓ̂ +
∫

Γ̂h

JnpnF−T
n n̂ · v̄ dΓ̂

−
∫

Γ̂h

(1 − γ) Jn (wn · n̂) ūn+θ · v̄ dΓ̂ =
∫

Γ̂h

ĥn+θ · v̄ dΓ̂ ∀ v̄ ∈ V̄, (5.87)



5.4. The fully-discrete problem 141

where θ ∈ [1/2, 1] is a time stepping parameter and

un+θ = (1 − θ) un + θu

n+1, (5.88)

ūn+θ = (1 − θ) ūn + θūn+1, (5.89)

and
Sn (v) =

Jn

2

[
∇χvF−1

n + F−T
n (∇χv)T

]
F−T

n . (5.90)

The non-linear advection terms have been linearized by using the advec-
tive velocity at tn. For simplicity, various domain-dependent terms are also
evaluated at time tn. The solution procedure involves the static conden-
sation of the internal degrees of freedom u


n+1 from Equation (5.86) after
which Equation (5.87) yields a global system of equations for the global de-
grees of freedom ūn+1 only. The details for linear elements are explained in
Section 5.4.3.

In the subsequent corrector step, the velocity u

n+1 is modified using the

increment of the pressure Δpn = pn+1 − pn in Equation (5.64) such that
un+1 satisfies the weak continuity constraint at time tn+1. However, rather
than using the weak form of the continuity equation in Equation (5.65), the
pull-back of the weak incompressibility constraint ∇x · u = 0 is used. The
ensuing corrector step reads: given the map ψ̂n+1, the boundary condition
ū′

n+1 and the velocity u

n+1, find the velocity un+1 ∈ V and the pressure

increment Δpn ∈ Q such that

∫
Ω̃

Jn+1
un+1 − u


n+1

Δt
· v dΩ̂ +

∫
Ω̃

Jn+1F
−T
n+1∇χ (θΔpn) · v dΩ̂ = 0

∀ v ∈ V, (5.91)

and∫
Ω̃

Jn+1F
−1
n+1un+1 · ∇χq dΩ̂ −

∫
Γ̂

Jn+1F
−1
n+1ū

′
n+1 · n̂q dΓ̂ = 0

∀ q ∈ Q, (5.92)

where ū′
n+1 is either the computed ūn+1 or is supplied by the boundary

conditions which are given or are consistent with the impermeability condi-
tion w̄n+1 · n̂ = 0 on Γ̂s. The values of Δt and θ are the same as in the
preceding predictor step. Since ∇χQ ⊆ V and ψ̂ is affine on elements,
Equation (5.91) can be rewritten as

∫
Ω̃

Jn+1F
−1
n+1un+1 · ∇χq dΩ̂ =

∫
Ω̃

Jn+1F
−1
n+1u



n+1 · ∇χq dΩ̂

− θΔt

∫
Ω̃

Jn+1F
−1
n+1F

−T
n+1∇χ (Δpn) · ∇χq dΩ̂ ∀ q ∈ Q. (5.93)
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This result can be used to eliminate un+1 from Equation (5.92) leading to
an equation for computing the pressure which reads: given ψ̂n+1, u


n+1 and
ū′

n+1, find Δpn ∈ Q such that

θΔt

∫
Ω̃

Jn+1F
−1
n+1F

−T
n+1∇χ (Δpn) · ∇χq dΩ̂ =

∫
Ω̃

Jn+1F
−1
n+1u



n+1 · ∇χq dΩ̂

−
∫

Γ̂
Jn+1F

−1
n+1ū

′
n+1 · n̂q dΓ̂ ∀ q ∈ Q. (5.94)

Depending on the form of ū′
n+1 it may be necessary to provide boundary

conditions for Δpn, see also Section 5.4.3. Once Δpn has been computed,
the velocity un+1 can be easily evaluated from Equation (5.91), a step which
is particularly economical since un+1 is discontinuous across element facets
and can be computed element wise.

The solution at time tn+1 is used to update the domain for the next time
interval In+1. The process is repeated alternately until the solution on the
time interval I is found. Summarizing, the time stepping procedure evolves
as follows:

1. Given the mesh velocity ûn, the domain at tn+1 is found using Equa-
tion (5.84).

2. From the data at time tn compute the intermediate velocity u

n+1 and

the interface velocity ūn+1 using Equations (5.86) and (5.87).

3. Compute the pressure increment Δpn using Equation (5.94).

4. Compute the corrected velocity un+1 using Equation (5.91).

5. If tn+1 < tN the sequence is repeated from Step (1).

For θ = 1/2 (Crank-Nicolson scheme) the resulting time integration scheme
yields second order accuracy but is weakly stable only [72]. By using the
fs fractional-step θ scheme strong stability can be achieved while retaining
second order accuracy [9]. For the special case of free-surface flow the details
of the solution process are outlined in Section 5.4.3.

5.4.2 Discrete conservation

The alternating sequence of mesh update and flow computation, using the
predictor-corrector method for the latter, warrants a closer inspection of
the conservation properties as these do not carry over automatically to the
fully-discrete case. Of primary concern in this respect is the satisfaction
of the discrete geometric conservation law, coined d-gcl, which guarantees
that a uniform flow state can be preserved irrespective of the mesh motion
[29].
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For a constant velocity field, Equation (5.87) implies that ū is equal to
u on element facets. Insertion of constant fields u and ū into the predictor
Equation (5.86) and setting f̂ = 0 leads to∫

Ω̃

J

n+1 − Jn

Δt
u · v dΩ̂ +

∫
Ω̃
∇χ · (Jnwn) u · v dΩ̂ = 0 ∀ v ∈ V. (5.95)

Using the expression for w given by Equation (5.10) and taking into account
that u is constant, the satisfaction of Equation (5.95) requires that the
following form of the d-gcl holds∫

Ω̃

(
J


n+1 − Jn

)
u ·v dΩ̂ = Δt

∫
Ω̃
∇χ ·

(
JnF−1

n ûn

)
u ·v dΩ̂ ∀ v ∈ V, (5.96)

which states that the net volumetric change of an element (left hand side)
should equal the divergence of the ale mesh displacement. After conside-
ration of the expression for J


n+1 in Equation (5.85), the above condition is
obviously satisfied. The corrector step (5.91) is formulated such that it will
not modify the velocity for this case, therefore, a constant velocity can be
represented irrespective of the mesh movement. Using J
 in the predictor
Equation (5.86) is pivotal in satisfying discrete geometric conservation.

The d-gcl has an interesting link to discrete volume conservation and to
conservative and advective forms of the momentum equation. For discrete
volume conservation, consideration of continuity Equation (5.92) in combi-
nation with the definition of J
 given in Equation (5.85) gives, after partial
integration,∫

Ω̂

J

n+1 − Jn

Δt
q dΩ̂ −

∫
Ω̂

Jnwn · ∇χq dΩ̂ =
∫

Γ̂
Jnw̄n · n̂q dΓ̂

∀ q ∈ Q. (5.97)

Therefore, at time level n the advective field wn which is used in the next pre-
dictor step satisfies a weak form of continuity Equation (5.33). For discrete
momentum conservation, subtracting Equation (5.87) from Equation (5.86),
adding Equation (5.91) and setting v = ej and v̄ = ej yields, after summa-
tion and re-arrangement,∫

Ω̃

Jn+1un+1 − Jnun

Δt
· ej dΩ̂ +

∫
Ω̃

Jn+1 − J

n+1

Δt
u


n+1 · ej dΩ̂

=
∫

Ω̃
f̂n+θ · ej dΩ̂

−
∫

Γ̂h

(1 − γ)Jn (wn · n̂) ūn+θ · ej dΓ̂ −
∫

Γ̂h

ĥn+θ · ej dΓ̂, (5.98)

where the pressure has been fixed on Γ̂h in the corrector step. For cases
where Jn+1 = J


n+1 discrete volume and momentum are conserved in terms
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of the numerical fluxes at the boundary in Equations (5.97) and (5.98),
respectively. The formulations remain consistent with the strong form of
the incompressible Navier-Stokes problem, irrespective of the mesh motion.

Considering now an affine mapping with mesh movement in direction j
only, the determinant of the Jacobian is computed from

J =
∂ψ̂j

∂χj
(no summation), (5.99)

which, after insertion in Equation (5.85) proves that for uni-directional mesh
motion Jn+1 = J


n+1. Therefore, from Equation (5.98), global momentum
conservation is implied if the mesh moves in one direction. Setting Jn+1 =
J


n+1 and q = 1 in Equation (5.97) shows that the volumetric increase of
the spatial domain in the time interval (tn, tn+1) equals the net inflow over
the boundary at time tn, thereby proving volume conservation. Importantly,
Equation (5.99) and the implied discrete conservation properties will hold for
the vertical mesh displacement assumed earlier for geophysical free-surface
flows.

5.4.3 Implementation for geophysical flows

For the gis method, combining the previous time stepping scheme with li-
near function spaces for all variables in the finite element space definitions
of Section 5.3.1, that is k = l = m = 1, leads to a particularly simple imple-
mentation. The velocities un and ūn, the piezometric level ηn and the map
ψ̂n on the reference domain Ω̃ at time tn are expressed in terms of the basis
functions and nodal values as

un (χ) =
∑

i

N i (χ) ui
n, (5.100)

ūn (χ) =
∑

j

N̄ j (χ) ūj
n, (5.101)

ηn (χ) =
∑

j

Ñ j (χ) ηj
n, (5.102)

ψ̂n (χ) =
∑

j

Ñ j (χ) ψ̂j
n, (5.103)

where N i, N̄ j and Ñ j are finite element shape functions consistent with the
definitions of the spaces in Section 5.3.1, and ui

n, ūj
n, ηj

n and ψ̂j
n are nodal

degrees of freedom. On each reference element Ω̂e, the local index i and
global index j may be chosen such that they become locally equivalent. The
distinction can therefore be dropped in the resulting algebraic systems. The
piecewise linear mapping ψ̂ implies piecewise constant Jacobian matrices
F and piecewise constant Jacobian determinants J . Importantly, linear
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functions remain linear under the action of the mapping ψ̂ which also implies
that elements preserve their geometrical shape when transformed to the
spatial domain Ω.

5.4.3.1 Domain update

The computational sequence starts by determining the mapping ψn → ψn+1

on the considered time interval In. Assuming mesh movement in the vertical
direction only, the mesh velocity ûn at the free surface is determined by

ûn =
∂η

∂t

∣∣∣∣
χ,n

ez on Γs, (5.104)

which is used to update the free surface position via Equation (5.84). The
time derivative of the piezometric level is computed from

∂η

∂t

∣∣∣∣
χ,n

=
1
θ

ηn − ηn−1

Δt
− 1 − θ

θ

∂η

∂t

∣∣∣∣
χ,n−1

, (5.105)

where the value of θ is the same as that used in the predictor-corrector
scheme. All quantities that are required to compute ∂η/∂t|χ,n are available
from the previous time step.

Once the new position of the free surface has been determined, the mesh
velocity in the vertical direction, denoted by ûz = û · ez, is computed at all
points in the domain by solving the following Poisson problem: find ûz ∈ Qg

such that ∫
Ω̃
∇χûz · ∇χq dΩ̂ = 0, ∀ q ∈ Q, (5.106)

where Qg satisfies the necessary boundary conditions such as on the free-
surface boundary Γ̂s and on solid boundaries such as a sea bed. The un-
constrained movement of nodes along vertical walls is imposed by means of
the homogeneous Neumann boundary condition which is implicit in Equa-
tion (5.106). For a proper partitioning Ω̃, Equation (5.106) satisfies a dis-
crete maximum principle implying that the mapping ψ̂ is monotonic and
that J > 0, provided that the free surface remains located above the bottom
level. The restriction to vertical mesh displacement excludes the movement
of boundary nodes along inclined walls. In order to compute the run-up of
surface waves on a beach for example, one therefore has to resort to other
techniques such as flooding and drying of individual elements which is not
considered here.

5.4.3.2 Predictor step

The predictor-corrector scheme for free-surface flows follows directly from
Equations (5.86) and (5.87) by setting pn = gηn and f̂n = 0. For the case
of spatially constant viscosity, the terms involving the symmetric gradient
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can simply be replaced with the regular gradient which has the convenience
that the equations for the respective velocity components become decoupled.
Noting that any term involving second derivatives with respect to space will
vanish due to the choice of P 1 functions, and setting J


n+1 = Jn+1 (which is
the case for vertical mesh motion), this leads to∫

Ω̃

Jn+1u


n+1 − Jnun

Δt
· v dΩ̂ +

∫
Ω̃
∇χ · (Jnun+θ ⊗ wn) · v dΩ̂

+
∫

Ω̃
∇χ ·

(
JngηnF−T

n

)·v dΩ̂+
∑

e

∫
∂Ω̂e

Jnν (ūn+θ − un+θ)∇χvF−1
n F−T

n n̂ dΓ̂

+
∑

e

∫
∂Ω̂e

Jnβ̂n · n̂ (ūn+θ − un+θ) · v dΓ̂ = 0 ∀ v ∈ V, (5.107)

and∑
e

∫
∂Ω̂e

Jn (wn · n̂) un+θ · v̄ dΓ̂ −
∑

e

∫
∂Ω̂e

Jnν∇χun+θF
−1
n F−T

n n̂ · v̄ dΓ̂

+
∑

e

∫
∂Ω̂e

Jnβ̂n · n̂ (ūn+θ − un+θ) · v̄ dΓ̂−
∫

Γ̂h

(1 − γ) Jn (wn · n̂) ūn+θ · v̄ dΓ̂

=
∫

Γ̂h

(
ĥn+θ − JngηnF−T

n n̂
)
· v̄ dΓ̂ ∀ v̄ ∈ V̄ . (5.108)

Equations (5.107) and (5.108) are very similar, component wise, to the dis-
crete scalar transport problem from Section 3.4.2.

The solution proceeds with the elimination of u

n+1, element wise, from

Equation (5.107). To this end, the matrix format of Equation (5.107) reads

1
Δt

(
Mn+1U

k,

n+1 − MnUk

n

)
+ AUk

n+θ + Gkηn

+ (K + Q)
(
Ūk

n+θ − Uk
n+θ

)
= 0, (5.109)

where Uk
n is a vector containing the local unknowns of velocity component

k at time tn, ηn is the vector of nodal piezometric levels at tn. The element
matrices Mn,n+1, A, Gk, K and Q are given by, respectively,

M ij
n,n+1 =

∫
Ω̂e

Jn,n+1N
iN j dΩ̂, (5.110)

Aij =
∫

Ω̂e

N i∇χ · (JnwnN j
)

dΩ̂, (5.111)

Gij
k =

∫
Ω̂e

JnN i∇χ · (gN jF−T
n

) · ek dΩ̂, (5.112)

Kij =
∫

∂Ω̂e

JnνN j∇χN i · F−1
n F−T

n n̂ dΓ̂, (5.113)

Qij =
∫

∂Ω̂e

Jn

(
β̂n · n̂

)
N iN j dΓ̂. (5.114)
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The matrix K is algebraically equivalent to the standard element diffusion
matrix of a linear cg method. Replacing Uk,


n+1 = Uk
n +

(
Uk

n+θ − Uk
n

)
/θ in

Equation (5.109), following some re-arrangement, an expression for Uk
n+θ in

terms of the global degrees of freedom Ūk
n+θ reads

Uk
n+θ = Ūk

n+θ

− T

[
1

θΔt

(
Mn+1Ū

k
n+θ − Mn+1−θU

k
n

)
+ AŪk

n+θ + Gkηn

]
, (5.115)

where

T =
(

1
θΔt

Mn+1 + A − K − Q

)−1

, (5.116)

and Mn+1−θ = θMn + (1 − θ) Mn+1. Global Equation (5.108) leads to the
algebraic equation∑

e

[(
Ã − KT

)
Uk

n+θ + Q
(
Ūk

n+θ − Uk
n+θ

)
− PŪk

n+θ

]
=

∑
e

Hek,

(5.117)
where

∑
e denotes assembly of the element matrices into a global matrix.

The element matrices in the above equation are given by

Ãij =
∫

∂Ω̂e

Jn (wn · n̂) N iN j dΓ̂, (5.118)

P ij =
∫

∂Ω̂e∩Γ̂h

(1 − γ) Jn (wn · n̂) N iN j dΓ̂, (5.119)

and the vector H is given by

H ij =
∫

∂Ω̂e∩Γ̂h

N i
(
ĥn+θ − JngηnF−T

n n̂
)
· ej dΓ̂. (5.120)

As the basis functions are piecewise linear and ν is piecewise constant, the
matrix KT equals the matrix K in Equation (5.113). The format of the
above matrix equations is similar to that of the Navier-Stokes problem on
a fixed domain, with only a slight redefinition of the mass matrices due to
the mesh movement.

Static condensation using Equation (5.117) leads to a global equation for
Ūk

n+θ which after some algebraic manipulation, see also Section 4.3.3, can
be written compactly as

∑
e

W

[
1

θΔt

(
Mn+1Ū

k
n+θ − Mn+1−θU

k
n

)
+ AŪk

n+θ + Gkηn

]

+
∑

e

(
K + P − Ã

)
Ūk

n+θ +
∑

e

Hek = 0, (5.121)
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where the element ‘weighting matrix’ W is given by

W = I −
(

1
θΔt

Mn+1 + A − Ã

)
T . (5.122)

After solving for Ūk
n+θ, the local degrees of freedom Uk

n+θ are obtained from
a back-substitution step using Equation (5.115). To do this efficiently the
matrix T in Equation (5.116) is stored in memory during assembly. The
unknowns Uk,


n+1 are determined by extrapolation, using Equation (5.88),
and stored in memory.

5.4.3.3 Corrector step

Next, the increment of the piezometric level is computed from Equation (5.94),
setting Δpn = gΔηn, and using Equations (5.104) and (5.105) for the free-
surface boundary condition,

θΔt

∫
Ω̃

Jn+1gF−1
n+1F

−T
n+1∇χΔηn ·∇χq dΩ̂+

1
θΔt

∫
Γ̂s

Jn+1F
−1
n+1Δηnez ·n̂q dΓ̂

=
∫

Ω̃
Jn+1F

−1
n+1u



n+1 · ∇χq dΩ̂ −

∫
Γ̂\Γ̂s

Jn+1F
−1
n+1ū

′
n+1 · n̂q dΓ̂

+
1 − θ

θ

∫
Γ̂s

Jn+1F
−1
n+1

∂η

∂t

∣∣∣∣
n

ez · n̂q dΓ̂ ∀ q ∈ Q. (5.123)

The matrix format of this equation reads

∑
e

(
θΔt S +

1
θΔt

Ms

)
Δηn =

∑
e

(D − E + F ) , (5.124)

where Δηn is a vector of unknowns containing the nodal piezometric level
increments. The element matrices S and Ms are given by, respectively,

Sij =
∫

Ω̂e

Jn+1gF−1
n+1F

−T
n+1∇χN i · ∇χN j dΩ̂, (5.125)

M ij
s =

∫
∂Ω̂e∩Γ̂s

Jn+1N
iN jF−1

n+1ez · n̂ dΓ̂, (5.126)

and the right-hand side terms in (5.124) are given by

Dij =
∫

Ω̂e

Jn+1N
ju
,j

n+1 · F−T
n+1∇χN i dΩ̂, (5.127)

Eij =
∫

∂Ω̂e∩(Γ̂\Γ̂s)
Jn+1N

iN jF−1
n+1ū

′,j
n+1 · n̂ dΓ̂, (5.128)

F ij =
1 − θ

θ

∫
∂Ω̂s∩Γ̂s

Jn+1N
iN jF−1

n+1

∂η

∂t

∣∣∣∣j
n

ez · n̂ dΓ̂. (5.129)
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After solving Equation (5.124) for Δηn the corrected velocity unknowns
Uk

n+1 are obtained via a back-substitution step from

Uk
n+1 = Uk,


n+1 − θΔt g
(
F−T

n+1∇χN j · ek

)
Δηj

n, (5.130)

which is a local procedure on elements which for linear functions does not
involve the inversion of a global mass matrix. Finally, the time derivative
∂η/∂t on Γ̂s is updated using Equation (5.105) which is a point-wise opera-
tion.

The overall predictor-corrector solution procedure is very economical
since only the solution of d + 1 simple scalar sparse matrix systems is invol-
ved, each having the sparsity structure of the corresponding cg method on
the same mesh. The procedure requires the assembly of two global matrices,
one for the predictor step and one for the corrector step, and the construc-
tion of two corresponding ilu preconditioners. The approach as a whole is
facilitated by the ‘splitting’ of the velocity field in two complementary fields,
on element interiors and on element interfaces, respectively.

5.4.4 Normal mode analysis

To analyze the numerical behaviour of the P 1 − P 1-implementation of the
gis scheme in combination with the fs time stepping scheme, periodic small-
amplitude waves are considered. For a regular finite element mesh, as de-
picted in Figure 5.3, the associated algebraic system from Equations (5.107)
and (5.123) can be solved analytically to yield the vertical modes of the
numerical solution as a function of the horizontal wave number, defined as
k = 2π/L, where L is the wave length. Choosing the undisturbed water level
at z = 0 and the bottom level at z = −d, the theoretical solution for the
complex valued piezometric level of a linear small-amplitude wave is given
by

η = Ã
cosh [k (z + d)]

cosh (kd)
ei(ωt−kx), (5.131)

where Ã is the complex amplitude of the free-surface elevation and the radian
frequency ω is related to the wave number k through the dispersion relation

ω2 = gk tanh (kd) . (5.132)

Next, the numerical and analytical solutions are compared for different wave
length to water depth ratios. In particular, the celerity and amplitude errors
are determined as a function of the number of elements per wave length
NL = L/hH , the number of horizontal layers Nz = d/hV and the Courant
number CFL= cΔt/hH , where c is the wave celerity and hH and hV are the
element sizes in horizontal and vertical direction, respectively. The results
of the normal mode analysis are shown in Figures 5.4 and 5.5 giving, in
respective order, the relative celerity error and the relative amplitude error
after one wave period as a function of the number of nodes per wave length.
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Figure 5.3: Regular mesh configuration used for the normal mode analysis.

5.4.4.1 Dispersion

A relative celerity error |1 − cmodel/cexact| < 10−2 is considered sufficiently
accurate for most practical purposes. Figure 5.4 shows that this requirement
is usually satisfied for more than 20 nodes per wave length, provided that
the number of layers is sufficient. Obviously, the required vertical resolution
depends on the wave length to depth ratio. For highly dispersive waves the
element size in vertical direction hV should be approximately equal to the
horizontal mesh size hH . Longer waves require considerably fewer vertical
nodes. As shown in Figure 5.4 for L > 10d two layers are generally sufficient.
Comparing the magnitudes of the partial derivatives of η in the horizontal
and vertical direction, respectively, yields the following expression for the
optimal ratio of the vertical to horizontal element size

hV

hH
≈ coth (kd) . (5.133)

Having selected the element sizes hV and hH , the time step Δt should be
chosen such that the Courant number is not larger than 1 ∼ 2. The Courant
number may be increased provided that the number of nodes per wave length
increases accordingly. For example, Figure 5.4 shows that taking CFL =
4 would require about 80 elements per wave length in order to have an
acceptable celerity error.

5.4.4.2 Damping

While, theoretically, the cn time stepping scheme has no amplitude dam-
ping, the smoothing property of the fs scheme involves some attenuation of
high wave number components. This motivates a closer look at the dam-
ping properties of this scheme. Theoretical amplitude errors of the regular
P 1 − P 1 element with fs time stepping are shown in Figure 5.5. The am-
plitude error |1 − ρr| is defined as the relative error of the wave amplitude
after one wave period.
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Figure 5.4: Relative celerity error |1 − cr| for various wave length to depth
ratios L/d, Courant numbers and number of vertical layers: Nz = 2 (blue),
Nz = 5 (green) and Nz = 10 (red).

Figure 5.5 shows that the amplitude error generally decreases when in-
creasing the number of nodes per wave length while it is hardly influenced
by the vertical resolution of the mesh and the wave length to depth ratio.
For appropriate Courant numbers and a minimum of 20 nodes per wave
length the damping will cause a 0.1% to 1% amplitude decrease after one
wave period. This implies that the smoothing of the fs scheme is negli-
gible if the mesh sizes and time step are chosen such that also the phase is
sufficiently accurate. Higher wave number components however gradually
extinct loosing about 10% of their amplitude per wave period which explains
the excellent smoothing behaviour of the scheme. Interestingly, the damping
error is hardly dependent on the number of elements over the vertical.

5.5 Numerical examples

The moving free-surface gis method is illustrated by means of a few examples
representing a range of situations encountered in environmental hydraulics,
including sophisticated lab experiments. All examples use a gravitational
acceleration g = 9.81 m/s2, the interface penalty parameter α = 4 and,
unless otherwise stated, ν = 10−6 m2/s, which is the natural kinematic vis-
cosity of water. All problems use P 1 basis functions on simplexes for all
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Figure 5.5: Relative amplitude error |1 − ρr| after one wave period for va-
rious wave length to depth ratios L/d, Courant numbers and number of
vertical layers: Nz = 2 (blue), Nz = 5 (green) and Nz = 10 (red).

unknowns. The fs time stepping scheme is used throughout and reported
time steps are the averages of the three substeps of the scheme as described
in Section 2.3.2.

5.5.1 Linear waves

The series of tests presented first consider natural linear-wave modes in ba-
sins with a horizontal bottom and closed vertical walls. For the inviscid
case, these linear waves exhibit zero damping and the tests are thus parti-
cularly suited to detect dissipative mechanisms of the model. In particular
the treatment of the kinematic free-surface boundary condition is tested. In
practice, the occurrence of natural wave modes in enclosed basins is often
the result of near-resonant forcing [18]. Accurate numerical simulation of
these phenomena therefore hinges on minimal artificial dissipation.

5.5.1.1 Narrow channel

Consider a closed basin Ω: (x, z) ∈ (0, l)× (−d, 0) with vertical side walls in
x = 0 and x = l and the undisturbed free surface Γs at z = 0. Natural wave
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(a) (b)

Figure 5.6: Narrow channel: computational mesh and computed solution
(a), and exact solution (b) for η at t = 17.8 s (maximum elevation), units
in m .

modes in the basin have the following solution for the piezometric level

ηm = Am
cosh [km (z + d)]

cosh (kmd)
cos (kmx) cos (ωmt) , (5.134)

where m = 1, 2, 3 · · · denotes the wave mode, km = mπ/l is the associated
wave number, ωm is the eigen frequency and Am is the maximum surface
elevation, see for instance Mei et al. [60]. The frequency is related to the
wave number via the dispersion relation

ω2
m = gkm tanh (kmd) . (5.135)

The solution represents a standing wave with constant amplitude. The pro-
blem is frequently used as a test example in literature [41, 84].

This example concerns a mode m = 1 standing wave in a basin of depth
d = 10 m and length l = 10 m for which the wave number k1 = 0.314 rad/m
and the natural frequency ω1 = 1.751 rad/s. The amplitude A1 is set to
0.001 m. The computational domain Ω is partitioned by equilateral triangles
with approximately uniform element size he ≈ 1 m. The mesh used in the
computation is depicted in Figure 5.6. The nodes are not aligned in the
vertical direction. The time step Δt =0.1 s which involves approximately
35 time steps per wave period and a Courant number of 0.55 .

Figure 5.6 shows the computed and exact fields of the piezometric level
at t = 17.8 s. Considering that the mesh size and the time step are relatively
large compared to the wave length and the wave period, respectively, the re-
sult is very accurate. Time series of the computed and analytical piezometric
level at (x, y) = (0, 0) are shown in Figure 5.7. The computed solution shows
negligible damping while the phase error amounts approximately 1% which
corresponds to the results of the normal mode analysis. For larger wave
amplitudes the advective velocity will be larger which ultimately introduces
numerical damping due to the upwind mechanism at element interfaces.
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Figure 5.7: Narrow channel: time series of piezometric level η/A at (x, y) =
(0, 0), exact (solid) and numerical (circles) solutions.

5.5.1.2 Cylindrical basin

A cylindrical basin of radius a with a horizontal bottom at z = −d is consi-
dered. Using polar coordinates (r, θ), the solution for the piezometric level
of small-amplitude natural wave modes in the basin is given by

ηmn = AmnJm (kmnr) cos (mθ)
cosh [kmn (z + d)]

cosh (kmnd)
cos (ωmnt) (5.136)

where n = 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . denote the wave mode, Jm is the
Bessel function of order m, Amn is the maximum surface elevation, kmn is
the wave number and ωmn is the corresponding frequency, see Mei et al. [60].
Letting jmn denote the nth zero of J ′

m, the wave number kmn is determined
by the relation kmna = jmn. The natural frequency ωmn is related to kmn

via the dispersion relationship

ω2
mn = gkmn tanh (kmnd) . (5.137)

The simulated case concerns a basin of radius a = 10 m and depth
d = 10 m, with m = 2 and n = 1. The initial condition for η is obtained
from Equation (5.136) by setting A21 = 0.05 m and t = 0 while the initial
velocity is zero. The wave number k21 and frequency ω21 are 0.3054 rad/m
and 1.7271 rad/s, respectively. For the adopted element size he ≈ 1 m,
there are 10 elements over the depth of the basin and approximately 20
elements per wave length. The computational domain and mesh is shown in
Figure 5.8a. A time step Δt = 0.1 s is used, which results in approximately
35 time steps per oscillation.

Contours of the computed surface level at t = 10.9 s are shown in Fi-
gure 5.8b, together with the corresponding analytical solution. Considering
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(a) (b)

Figure 5.8: Cylindrical basin: (a) Computational domain and mesh; and (b)
exact (solid) and computed (colour) surface level contours (m) at t = 10.9 s.

that the element size is relatively large compared to the wave length, the
computed result is particularly accurate. Figure 5.9 shows the computed
time history of the surface elevation at (x, y) = (a, 0). Compared to the
analytical result, the computed elevation reveals a relative phase error of
approximately 1% and a damping error of approximately 0.5% per wave
period. These results confirm that for linear waves the interface stabiliza-
tion method introduces negligible energy dissipation.

5.5.2 Large amplitudes

In contrast to the previous linearized results, larger wave amplitudes involve
higher velocities which activate the upwind mechanism at element interfaces.
For higher waves, the associated dissipation may therefore result in some
decay of the wave energy. It is therefore interesting to take a closer look at
some problems with considerable amplitudes.

5.5.2.1 Periodic oscillations in a U-tube

This example concerns the oscillatory motion of a fluid in a U-shaped tube
with vertical open ends. For an inviscid fluid, and if the tube diameter is
small with respect to the radius of the bend of the tube, the free-surface
elevation ζ on the sides of the tube is described by

ζ = ±A sin (ωt) , (5.138)

where A is the amplitude of the free-surface oscillation and ω =
√

2g/l is
the frequency of the motion, where l is the total length of the fluid column
in the tube [62]. The corresponding axial fluid velocity is nearly-uniform.

The numerical example involves a tube of diameter 0.1 m, bend-radius
1/π m and total fluid column length l = 3 m, measured along the axis
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Figure 5.9: Cylindrical basin: time histories of the analytical (solid) and
computed (circles) normalized piezometric level at (x, y, z) = (10, 0, 0).

of the tube. The resulting analytical frequency is ω = 2.56 rad/s. The
adopted tetrahedral mesh of the tube has approximately six elements across
the diameter and 50 elements along the fluid column. The initial elevations
in the vertical pipe ends are set to ζ0 = ±0.3 m. The initial velocity is
zero and the initial piezometric level at time t = 0 is obtained by solving
a Laplace equation with the Dirichlet boundary conditions η = ζ0 at the
free surface and homogeneous Neumann boundary conditions along the pipe
wall. This procedure guarantees that the initial condition satisfies balance
of momentum. A time step size of Δt = 0.05 s is used, giving 50 time steps
per period of oscillation.

The computed configuration of the mesh at maximum elevation is shown
in Figure 5.10, and Figure 5.11 shows the computed vertical elevation on
one side of the tube as a function of time, together with the corresponding
analytical solution. The computed and analytical results in Figure 5.11 are
barely distinguishable, showing that negligible damping is present in the
model if the velocity gradients are small.

5.5.2.2 Soliton propagation

A soliton is a non-linear solitary wave which, in the absence of dissipation
and on a horizontal bottom, propagates without changing height and form
due to a subtle balance between dispersive and non-linear terms [60]. In
a (x, z)− reference frame, with the undisturbed surface at z = 0 and the
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Figure 5.10: Spatial mesh configuration for U-shaped tube problem at maxi-
mum surface elevation.
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Figure 5.11: U-shaped tube problem: time histories of the analytical (solid)
and computed (circles) surface elevations.
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Figure 5.12: Soliton: snapshot of mesh configuration for H/d =0.60 at
t =30 s, colour shading indicates piezometric level.

bottom at z = −d, the free-surface elevation ζ can be approximated by

ζ = H sech2

[√
3
4

H

d3
(x − ct)

]
(5.139)

in which H is the wave height, d is the undisturbed water depth and c =√
g (d + H) is the wave celerity. The horizontal velocity u, which is vertically

uniform, and the vertical velocity w are given by, respectively,

u = c
ζ

ζ + d
,

w = − (z + d)
∂u

∂x
.

(5.140)

The above approximate solution is accurate to the order (H/d)2, see for
instance Mei et al. [60].

The numerical simulation concerns a horizontal channel with depth d =
10 m and a horizontal length of 600 m. The initial condition is that of a
soliton having its crest at x =100 m where the initial velocity field is specified
according to Equation (5.140). The relative wave height H/d ranges from
0.15 to 0.60 giving corresponding wave lengths between 180 m and 90 m. The
element size he ≈2 m yielding 5 vertical layers of triangular elements and,
depending on the relative wave height, 45 to 90 elements per wave length.
A snapshot of the deformed mesh for the case H/d = 0.60 is depicted in
Figure 5.12 showing the vertical stretching of the unstructured elements.
The time step size Δt is set to 0.1 s giving a Courant number CFL =
c0Δt/hH ≈ 0.55, where c0 =

√
gd is the linear shallow water wave celerity.

The computation proceeds for 30 seconds during which the solitons travel
over a distance of about 300 m.

Figure 5.13 shows the computed relative surface elevations ζ/d at t = 30
s and the corresponding theoretical solutions. The computed results are
in good agreement with theory as the shape and height of the solitons are
nicely preserved. The higher solitons reveal a celerity error which increases
with the wave height up to about 4% for H/d = 0.60. Presumably this is
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Figure 5.13: Soliton: theoretical (solid) versus computed (dashed) surface
elevation at t = 30 s for varying relative wave heights H/d.

related to the non-linear advection terms and the associated dissipation by
the upwind mechanism at the element interfaces. It should be mentioned
however that Equation (5.139) is exact to second order of the relative wave
height which may also partly explain this discrepancy.

5.5.3 Wave propagation over a submerged bar

The propagation of regular waves over a submerged bar has been investigated
by Beji and Battjes [5] in a series of laboratory experiments. The wave flume
used in the experiments has a still water depth of 0.40 m, and a trapezoidal
bar was placed in the flume, with a minimum still water depth of 0.10 m
above the bar. The length of the flume is 30 m. Waves are generated by
a piston-type wave maker situated on the left-hand end of the flume (see
Figure 5.14). The slope at the opposite end of the flume absorbs the waves,
thereby avoiding reflections.

In the experiment considered here, referred to as Experiment A in Beji
and Battjes [5], the imposed wave height at the left-hand end is 0.02 m and
the wave period is 2.02 s. At the bar, bound higher harmonics are generated
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which become free as soon as the waves leave the bar. The simulation of these
higher harmonics is numerically demanding, and this problem has become a
frequently used example test case for non-hydrostatic wave models [43, 84].

x 30.0(m)0.0
−0.4

0.0282
z (m)

Figure 5.14: Waves over a submerged bar: configuration of the experimental
flume with snapshot of computed free surface and piezometric level (colour)
at t = 40 s.

The computational mesh of the flume uses triangular elements with an
element size he = 0.05 m in the deeper part of the flume, yielding eight
elements across the depth. Towards the shoal, the element size gradually
decreases to he = 0.025 m, with the intention to accommodate the decreasing
wave length and the emergence of higher harmonics at the shoal. The time
step size Δt is set to 0.01 s. At the left-hand boundary, a harmonic normal
velocity is imposed with an amplitude of 0.045 m/s. The right boundary
has a weakly reflective boundary condition prescribing the normal velocity
as u · n =

√
g/d η, where d = 0.05 m is the local water depth. This

treatment suppresses the reflection of waves back into the domain, as in the
laboratory experiments.

Figure 5.15 shows measured and computed water levels at several sta-
tions along the flume. Shoaling and steepening of the waves in front of the
bar (station 4) are reproduced well, and the computed bound higher harmo-
nics at the bar (stations 5, 6 and 7) match the experimental measurements
closely. The free propagation of the higher harmonic waves on the downward
slope of the bar (stations 8 and 9) is computed reasonably accurately, but
less well further from the bar (stations 10 and 11). Considering that the
mesh is relatively coarse, the results are particularly encouraging.

5.5.4 Undulating flow downstream of a weir

The stationary flow over a weir features many interesting free-surface phe-
nomena which are determined, in particular, by the Froude number at the
crest of the weir. The Froude number is defined as ratio of the local fluid
velocity to the celerity of surface waves. For Froude numbers slightly below
one, undulating flows develop downstream of the weir. This phenomena
has been investigated experimentally in a series of laboratory experiments
by Wols et al. [98]. The experiment considered here concerns a horizontal
flume having a width of 0.40 m and an upstream water depth of 0.31 m.
The weir has a height of 0.15 m, relative to the bottom of the flume, and
a length of 0.97 m. The weir has a rounded leading edge and a steep trai-
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Figure 5.15: Waves over a submerged bar: time series of measured (dashed)
and computed (solid) surface elevations.
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Figure 5.16: Undulating flow: computed flow velocity magnitude (m/s).

ling edge (see Figure 5.16). The discharge rate is 45 l/s. Water levels were
measured visually by taking photographs from the glass side walls, while
velocities were measured at the center line of the flume using laser Doppler
anemometer probes.

The computational mesh consists of tetrahedral elements with an ele-
ment size of he ≈ 0.025 m. On the inflow boundary, a normal velocity of
0.36 m/s is specified, while at the outflow boundary the piezometric level
is set to 0.26 m, in accordance with the experiment. The time step size Δt
is set to 0.005 s. Flow separation at the trailing edge of the weir induces a
turbulent mixing layer. The resulting momentum transport due to turbu-
lent fluctuations is modelled by using a simple turbulence viscosity νt which
is computed as

νt = l2m (∇su : ∇su)1/2 , (5.141)

where lm is the so-called mixing length, which is set to 0.01 m. The tangen-
tial shear stress at the vertical sides and the bottom of the flume is modelled
by a quadratic friction law,

h = cf |u|u, (5.142)

where cf is a dimensionless friction parameter which is computed via a
logarithmic wall-law. The form of cf can be found in Appendix B.1. The
wall-roughness height is set to kN =0.1 mm, which is a parameter used in
computing cf . Resolving the turbulent flow field sufficiently accurately is
important as it determines the characteristics of the lee wave. The total
simulation time is set to 75 s, during which time the surface profile has
reached a stationary state.

The computed free-surface waves downstream from the weir are evident
from the deformed mesh in Figure 5.16. Figure 5.17 shows the computed
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Figure 5.17: Undulating flow: measured (solid) versus computed (circles)
surface elevation behind weir, also showing the transects along which velocity
measurements are made (dashed lines).

and measured surface heights of the undulating flow along the side wall on
the lee side of the weir. The computed wave amplitude and wave length
agree well with the measurements, although the computed wave crests have
a slight offset in the upstream direction. Figure 5.18 shows measured and
computed velocity profiles at three transects at the center line downstream
of the weir. Considering the relatively simple turbulence model that is used,
the agreement is good. However, the mesh provides insufficient resolution
and the mixing length model is too simple to model the details of the circu-
lation zone which is situated directly behind the weir (station x = 1.23 m).
Importantly, the drop in the piezometric level over the weir is computed
accurately. The measured and computed values are 5.20 cm and 5.22 cm,
respectively.

5.5.5 Sub-marine landslide

Motivated by studies predicting the generation of catastrophic waves should
the Cumbre Vieja volcano at La Palma, Gran Canaria collapse [97], tsunamis
generated by sub-marine landslides have been investigated experimentally
in van Nieuwkoop [63]. The experiment involved a semi-ellipsoidal object
which was dragged along a sloped bottom, creating outward radiating free-
surface waves and waves bound to the moving object. The experimental set-
up consisted of a 15 m wide and 24 m long basin in which the undisturbed
water depth d varies with longitudinal position x, and is given by

d =

{
x/20 m 0 ≤ x ≤ 8 m,

0.4 m 8 m < x ≤ 24 m.
(5.143)

The semi-ellipsoidal object of length 0.7 m, width 0.3 m and height 0.12 m,
was moved along the bottom of the basin along the center line y = 0 at a
constant speed. In the experiments, various starting positions of the object
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Figure 5.18: Undulating flow: computed (solid) versus measured (circles)
flow velocities in several transects behind weir (see also Figure 5.17).
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Figure 5.19: Sub-marine landslide experiment [63].

and speeds were used. A photograph of the experimental set-up is shown in
Figure 5.19, which also illustrates the generated waves. At several locations,
listed Table 5.1, the surface elevation was measured. Acoustic probes were
placed at ‘g’ stations and capacitance gauges were placed at ‘a’ stations
to measure the water height. A sampling frequency of 100 Hz was used.
The numerical simulation concerns a case with an initial position of the

station g26 g27 g11 a1 a2 a3

x (m) 5.10 8.13 5.20 6.53 7.53 6.04
y (m) 0.51 0.52 3.52 0 0 4.22

Table 5.1: Locations of surface elevation measurement stations for the sub-
marine landslide experiments (object slides along the line y = 0).

trailing end of the object of x = 4.2 m, y = 0 m and a constant speed
of 1.3 m/s, measured along the slope, over a time interval of 2.3 s, after
which the object is stopped abruptly. The effect of the moving object is
modelled by deforming the mesh around the object by specifying a vertical
mesh velocity at the bottom of the basin. Therefore, not only does the mesh
move to accommodate the free surface, but also to model the solid object
moving along the bottom of the basin. The problem is symmetric about
the x-axis, hence it suffices to consider the region y ≥ 0. The horizontal
distance over which the waves radiate during the experiment is limited and
the numerical domain may be taken smaller than the actual size of the wave
basin. Therefore, the computational domain has a length, along the center
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t =0.3 s t =1.8 s

t =3.3 s t =4.8 s

t =6.3 s t =7.8 s

Figure 5.20: Snapshots at increasing times for the sub-marine landslide pro-
blem showing the displacement of the free surface and the displacement of
the bottom due to the slider. The figures have been stretched by a factor of
three in the depth direction.

line, of 13.2 m, a width of 7.5 m, while the side boundary has a straight
section of 8 m, and an arc joins the side boundary and the center line. The
element size he is approximately 0.04 m in the region around the path of
the object and the measuring stations. Towards the lateral boundary, the
element size on the horizontal plane increases to approximately 0.08 m. The
time step size Δt is set to 0.01 s.

Snapshots showing the computed surface elevation and position of the
moving object are shown in Figure 5.20. The basin is relatively shallow,
so the figure has been stretched by a factor of three in the depth direction
for illustrative purposes. The computations feature a low leading wave, a
surface depression above the object and a high trailing wave, which is in
accordance with the experimental observations. Figure 5.21 shows the com-
puted surface elevations as a function of time at the different measuring
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stations. The computed elevations are in good agreement with the experi-
mental measurements, both in terms of the wave height and the wave-phase.
The correspondence is generally better at the ‘a’ stations.
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Figure 5.21: Measured (dashed) and computed (solid) time series of the
surface elevation for the sub-marine landslide problem at various measuring
stations as given in Table 5.1.

The physics of the landslide generated tsunami is essentially different
from that of tsunamis following a large mega trust earthquake, see Pietrzak
et al. [67]. The shorter length scale and longer time scale of the former leads
to the formation of relatively much lower waves, see also the classical paper
by Hammack [32]. This fundamental difference has caused considerable
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Figure 5.22: Haringvliet barrier during construction.

confusion in literature and in public discussion.

5.5.6 Practical application: storm surge barrier

The barrier in the Haringvliet estuary, the Netherlands, is one of the major
construction works that were completed as a part of the ‘Delta Plan’ after
the catastrophic flood of 1953. The barrier consists of a series of long-crested
weirs with circular shaped ‘sector’ gates which are closed during high tide
and partly opened during low tide in order to discharge the river water,
see Figure (5.22). The resulting change of the tidal regime in the area has
affected the ecological condition of the Haringvliet delta. Restoring the tidal
motion, by opening a few gates permanently and to close the barrier only in
case of a storm surge, should mitigate these effects. The consequence of the
inflow of sea water has been the subject of many investigations, as part of
which some gates were opened for five days in March 1997 while measuring,
amongst others, the flow velocities and salinity distribution in the vicinity
of the barrier [40].

The numerical example concerns a maximum flood situation as observed
on March 12th, 1997, at 4:50 am with a gate elevation of 2 m. The employed
finite element mesh is shown in Figure 5.23. Each discharge sluice has a crest
height of 5.5 m below mean sea level, a total width of 58.5 m and a cross-
sectional width between the pillars of 53 m. The domain of interest extends
over 200 m towards the river and the sea sides, respectively. As the situation
is symmetric about the center line of the barrier it suffices to consider one
half of its cross section. The tetrahedral elements have an average size of
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Figure 5.23: Mesh configuration Haringvliet barrier showing crest, stilling
basin, side walls and gate (with sea side on the left).

0.5 m near the gate increasing to 3 m towards the sea and river boundaries,
respectively. At both open ends a Neumann boundary condition is specified,
imposing a zero tangential stress and piezometric levels of 1.49 m and 0.39 m
on the sea and river side, respectively, as observed during the measurements
[50]. At the bottom and side walls a partial slip boundary condition is
specified, using a Nikuradse roughness height kN = 0.05 m to compute the
friction parameter cf while the turbulence viscosity is computed from the
mixing length model with a mixing length lm = 0.5 m, see Appendix B.
The numerical results were not very sensitive to the precise value of kN nor
lm. At maximum flood, the density difference between sea and river hardly
influences the flow field due to the intense mixing within the sluice, which
is also confirmed by field observations [40]. The present computations are
therefore performed with the density coupling terms switched off. Density
effects may however become important further away from the barrier or
during situations with smaller flow velocities and/or smaller gate openings.

The computed flow field is shown in Figure 5.24. The flow accelerates
towards the gate from which a jet-like flow structure emerges. Due to flow
stagnation and contraction at the leading edge of the pillar the flow velo-
cities are relatively high near the side wall of the pillar. The jet gradually
diffuses across the depth and the width of the barrier. Near the trailing edge
of the pillar a small recirculation zone persists close to the side walls. The
computed piezometric level along the center line of the barrier is shown in
Figures 5.24a. The piezometric level is minimum at the maximum contrac-
tion point and gradually increases in several stages while the cross-sectional
profile increases. Figure 5.24b shows computed and measured velocity pro-
files in a vertical transect positioned at a distance of 67 m from the heart
of the barrier, measured in downstream direction. The observed velocity
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Figure 5.24: Haringvliet barrier: computed velocity field during flood.

profile reveals a recirculation zone near the bottom. The computed velocity
profile matches the measured (adcp) profile closely. The good results are
remarkable given the simple turbulence model that is used. As shown in Fi-
gure 5.24b the more sophisticated k− ε model, the implementation of which
is described in Appendix B, is less convincing in this particular application.

5.6 Conclusion

In this chapter the gis finite element method has been generalized to the in-
compressible Navier-Stokes equations on moving domains with free surfaces.
The formulation has been specialized for a class of geophysical flow problems
in which the pressure can be replaced by the piezometric head, which leads
to an elegant description of the free-surface dynamics. The stabilization me-
chanism due to the upwinding has been elucidated by examining the kinetic
and potential energy balance implied by the model. Particular attention has
been paid to the details of a predictor-corrector method used to advance the
model in time in the context of a moving domain. The continuity constraint
has been reformulated such that the convective velocity field on the new
mesh satisfies a discrete form of the geometric conservation law. It was de-
monstrated that discrete mass and momentum are conserved in terms of the
numerical fluxes.

As for the Navier-Stokes problem on the fixed domain, the gis approach
leads to stable results with minimal numerical dissipation. This is parti-
cularly important for the target application of geophysical flows, and free-
surface waves in particular, in which advective effects often dominate and
excessive numerical dissipation can alter the fundamental physics of a pro-
blem. It has been demonstrated via numerous complicated examples that
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Figure 5.25: Haringvliet barrier: computed surface level along center line
also showing vertical transect velocity measurements (a); measured (solid)
and computed velocity profiles in transect (b), mixing length model (circles)
and standard k − ε model (dots); n.a.p. refers to Dutch reference level.

the approach is robust, and indeed negligible artificial dissipation is introdu-
ced, which is particularly evident in the numerical examples which involve
periodic free-surface motion.





Chapter 6

General discussion and
outlook

6.1 General discussion

Evidently, there is a trend in environmental hydraulics focusing on small-
scale flow and transport phenomena, varying from the breaking of waves on
a beach to complex flows in the vicinity of man made objects such as weirs,
barriers, sluices and outfalls. The finite element method may be adopted as
a numerical tool for these problems as it allows complex geometries to be
modelled accurately and efficiently. Chapter 1 gives some examples which
clearly demonstrate the convenience of finite element methods in practical
applications.

Finite element modelling is generally complicated by the unstructured
topology of the underlying computational mesh. Problems involving a large
number of unknowns therefore result in large sparse matrix systems whose
solution typically relies on iterative solution procedures [69]. To minimize
the computational burden the associated sparse matrix structure should be
kept as simple as possible. This requirement is partially met by continuous
Galerkin (cg) methods which, given a certain polynomial order, lead to a
minimum number of floating point operations per iteration step, which is
demonstrated in Chapter 2. However, in the context of environmental flow
problems, continuous methods generally suffer from instabilities arising from
either dominant advection terms or from the incompressibility constraint.
The suppression of these instabilities, without violating consistency, has
been the topic of many investigations starting with the pioneering work of
Brooks and Hughes [10]. Typically, the numerical fluxes are modified using
residual based terms which automatically guarantees consistency. Since the
discrete flux differs from the modified flux conservation may be violated,
especially when an advective field is obtained from a stabilized formulation
[37]. Discontinuous Galerkin (dg) methods are superior to cg methods in
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that upwind fluxes on element interfaces are naturally defined such that
advective instabilities are avoided. Satisfaction of the inf − sup condition,
which guarantees stable pressure-velocity coupling, is easily accomplished by
expanding the velocity in a discontinuous space which includes the gradient
of the pressure space. An impediment for using dg models is the prolifera-
tion of degrees of freedom which renders the solution of implicit problems
time consuming. Explicit time stepping poses a strong limitation on the al-
lowable time step size, given the target applications of small scale, advection
dominated flow problems.

In this thesis a computational framework has been developed which com-
bines the unique properties of dg methods and the computational structure
of cg methods. Crucial in this respect is the use of continuous functions
that are defined on element interfaces and that are left undefined on element
interiors. In this way a particular field v is spanned by a discontinuous space
V defined on element interiors and a continuous space V̄ defined on inter-
faces, such that v ∈ V ⊕ V̄ . The decomposition is unique since V ∩ V̄ = ∅
which avoids ambiguities that would arise when choosing V̄ as a continuous
sub space of V [35]. The states in two adjacent cells interact via the inter-
face function. To this end the interface fluxes, which appear in the general
dg formulation, are written in terms of the interface variable and the traces
of element functions on element boundaries. This procedure is similar to
the determination of an intermediate flux in a particular class of Riemann
solvers except that flux continuity is imposed weakly in V̄ [33, 56]. For a
proper choice of the flux formulation, this leads to a set of local problems on
elements for which the interface variable provides a weak Dirichlet boundary
condition. The local degrees of freedom can be eliminated yielding a global
problem for the interface degrees of freedom which has the same structure as
that of the corresponding cg method. After solving the global problem, the
local solution is obtained via element wise back substitution. This final step
guarantees conservation in terms of the discrete flux, in contrast to residual
based stabilization methods [87]. This feature is also shared with methods
employing bubble degrees of freedom such as the mini element [7]. A mar-
ked difference with the former is the use of discontinuous functions which
involves the construction of discrete operators acting on the jump discon-
tinuities at element boundaries. Being slightly more complicated, this also
gives near-optimal stability. The proposed Galerkin Interface Stabilization
(gis) method is consistent and conservative. A stability and a priori error
analysis is not trivial since gis has the mathematical structure of a mixed
problem. In fact, the interface variable plays the role of a Lagrange multi-
plier enforcing weak flux continuity across element interfaces. This requires
the satisfaction of an inf − sup condition, the proof of which is not pursued
in his thesis. Various examples, ranging from simple advection-diffusion
problems to advanced non-linear surface wave propagation, have however
revealed remarkable stability properties for linear elements.
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In Chapter 3 the gis method is explored for the scalar advection-diffusion
problem. Using linear elements, the algebraic format of the resulting equa-
tions is similar to that of the Streamline Upwind Petrov-Galerkin (supg)
method. In the linear case the gis procedure requires nothing but the stan-
dard cg element matrices and an element wise stabilization matrix which
involves integration over element boundaries. Hence, the gis method can be
implemented efficiently in existing cg codes. A potential drawback is the
computation of the stabilization matrix which endures a matrix inversion on
each element. While the matrix to be inverted can never become singular,
due to the formulation of the local problem, this operation may somewhat
reduce the computational speed compared to conventional cg methods. For
a simple one-dimensional problem optimal behaviour is established across all
Péclet numbers for a fixed value of the penalty parameter α, which appears
in the computation of the interface flux in order to suppress a potential
instability associated with the diffusive terms [1]. This robustness is an
advantage over residual based methods where the stabilization parameters
must be adjusted to the flow regime. Bubble elements face similar difficul-
ties as the optimal ‘bubble’ is also a function of the flow condition in an
element [75, 81]. In two and three dimensions optimal values for α can not
be established analytically but good results are obtained using the optimal
value from the one-dimensional analysis. Multi-dimensional solutions are
not monotone which becomes especially manifest at outflow Dirichlet boun-
daries. The value of the interface function imposed at the outflow boundary
affects the flux towards all elements connected to the associated boundary
nodes which therefore looses its upwind nature. Although this overshoot re-
mains localized, a better option is to use Neumann boundary conditions at
such boundaries. At characteristic boundary layers over/undershoot is less
pronounced, typically a few percent of the jump. Altogether, the method
is perfectly suited for practical transport problems as demonstrated by an
example concerning long term sediment dispersal in the North Sea [71].

In Chapter 4 the gis method is applied to the incompressible Navier-
Stokes problem, focusing on small-scale advection dominated problems. The
advection-diffusion part of the momentum equations can be treated in a simi-
lar way as the scalar transport problem using a discontinuous velocity space
on elements in combination with H1/2 continuous interface velocity spaces
on element interfaces. The non-linearity of the advective fluxes requires a
careful formulation of the associated interface terms and the time stepping
scheme. Numerical examples of the one dimensional Burgers’ equation show
that non-linear shocks and rarefactions can be reproduced accurately with
a minimum of over/undershoot. The pressure gradient, which appears as a
source term in the momentum equations, can be included consistently if the
pressure space is H1 continuous. If the associated gradient space lies within
the discontinuous velocity space, the inf − sup stability condition is satisfied
automatically. This suggests using equal-order spaces for the pressure and
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the velocity, respectively, where the linear P 1−P 1 element pair is obviously
the simplest choice. The practical implementation of this element pair is
particularly elegant due to the cancellation of various second order terms.
The resulting elimination procedure for the momentum equations leads to a
global equation for the velocity and pressure unknowns which reside in the
same nodes. The system can be solved efficiently using compressed Block
Sparse Row (bsr) techniques, after which the velocity field on elements is
obtained in an explicit back substitution step. Due to the formulation of the
incompressibility constraint the discrete velocity field is weakly divergence
free. This guarantees that the velocity-pressure coupling does not intro-
duce artificial dissipation, in contrast to pressure stabilized Petrov-Galerkin
methods [87]. Quantities defined in a subspace of the pressure space can
be advected stably while avoiding stability problems when a conservative
formulation is chosen [37]. Similar properties hold for the discrete Navier-
Stokes problem if a Picard linearization is used with the discrete velocity
from the previous time step as the advective field. The minimal damping,
and stable momentum advection of the P 1−P 1

gis model enables large eddy
simulations, as confirmed for an example with Borda’s mouthpiece. Besides,
consistent inclusion of the forcing terms, inherited from the gis procedure,
significantly improves the numerical behaviour of internal waves compared
to methods using conventional upwinding for the advection of the density
field [49]. The Navier-Stokes and density transport equations are coupled in
a semi-implicit fashion, outlined in Appendix A, which imposes no serious
constraints on the allowable time step size given the relatively small celerity
of internal waves.

The extension to free-surface flows, an important class of problems in en-
vironmental fluid mechanics, is not as straightforward as may seem in first
instance. In Chapter 5 the arbitrary Lagrangian-Eulerian (ale) framework
is used to reformulate the Navier-Stokes equations in terms of quantities
defined on a constant reference domain. For a given motion of the spatial
domain, the resulting system of equations has the same format as on the
fixed domain and can be readily solved using the gis approach with a Picard
linearization of the advective velocity. Unlike cases with a fixed domain, mo-
mentum is not conserved for arbitrary mesh motion due a discrepancy bet-
ween discrete volume changes and the divergence of the mesh displacement
[29]. For free-surface flows the domain motion is not known beforehand but
follows from the surface position which is obtained naturally by expressing
the pressure variable in terms of the piezometric level. The mesh is advanced
in time using an estimate of the new free-surface position which is obtained
from a second order accurate extrapolation in time. The explicit nature
of the mesh update procedure may induce instable free surface behaviour
in near-critical flow conditions. The underlying mechanism is not yet fully
understood but can be avoided by taking the Courant number smaller than
one. For free-surface problems the domain motion is restricted to the ver-
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tical direction only. In combination with the chosen time stepping scheme
this leads to discrete geometric conservation. For the P 1 − P 1 element pair
a predictor - corrector scheme has been implemented which satisfies mass
and momentum conservation for vertically moving surfaces. An additional
advantage is that one time step involves the solution of independent systems
for each separate velocity component and the piezometric level, respectively,
which is an obvious advantage over the fully coupled scheme developed in
Chapter 4. As a consequence the tangential velocity can not be imposed
on inflow Neumann boundaries which may lead to instabilities. Linear wave
test cases reveal negligible damping. Non-linear waves are however attenua-
ted, depending on the mesh size and time step relative to the wavelength
and wave period, respectively. As shown by theoretical analysis this dissi-
pation is attributed to the upwind mechanism at the interfaces rather than
to the deformation of the mesh, which is confirmed by an example of large
amplitude surface oscillation in a U-shaped tube. For moderate wave am-
plitudes, the associated flow velocities introduce only a small amount of
upwind dissipation and excellent results are obtained for a number of tests
involving advanced laboratory experiments. From examples concerning a
long crested weir and the Haringvliet storm surge barrier, respectively, it is
evident that the flow separation downstream of discharge structures requires
reliable turbulence modelling. The performance of the standard k−ε model,
the implementation of which is outlined in Appendix B, is still questionable
in this respect.

Concluding, gis is a promising finite element method which can be used
to simulate a wide range of flow and transport problems in environmental
hydraulics. The general variational framework can be applied to a much wi-
der class of problems including structural mechanics and notably the shallow
water equations, for which the corresponding gis variational form is given
in Appendix C. Various favourable properties of the method enable ac-
curate simulation of many interesting, detailed flow phenomena. In terms
of computational speed, gis may not be as efficient as methods employing
structured grids. Yet, practically relevant flow problems can be handled
successfully with reasonable computational effort.

6.2 Outlook

Motivated by its transparent structure and the numerical examples given in
this thesis the gis method warrants further analysis and development. This
section gives some suggestions for topics which are worthwhile exploring in
more detail.

While this thesis primarily considers linear basis functions a rigorous er-
ror analysis for arbitrary polynomial orders could reveal other, possibly in-
teresting, combinations of local and interface function spaces. In particular,
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the approximation of local fields by higher order polynomials is interesting
as this would increase the accuracy of the method while retaining the same
number of global degrees of freedom. The required theoretical analysis is
however non-trivial since the method has the structure of a mixed formu-
lation which for stability requires the satisfaction of an inf − sup stability
condition.

The gis method has revealed near optimal behaviour for advection- dif-
fusion problems. Yet, results are not monotone in the high Péclet number
range if the solution involves steep gradients. Although numerical solutions
of Burgers’ equation have shown stable non-linear shock propagation, non-
monotone behaviour may become problematic when dealing with strongly
non-linear transport problems, for instance sediment transport. Given the
correspondence of the scheme with the supg method ‘discontinuity captu-
ring’ flux formulations may be pursued to obtain crisp solutions of problems
with discontinuities. For the scalar transport equation, gis stabilization is
not strictly necessary if explicit time stepping schemes are used. In this
case the problem can be stabilized efficiently by using the interfacial dg

fluxes directly. Schemes may be developed that exploit this property by
switching automatically to implicit gis stabilization, where dictated by the
local Courant number, while the more efficient explicit dg scheme is used
elsewhere.

While continuous pressure fields are employed to discretize the Navier-
Stokes equations, discontinuous pressures could pose certain advantages.
Most importantly, the incompressibility constraint can be satisfied element
wise, although efficient solution of the resulting elliptic pressure equation
would require an interface pressure field. Various alternative discrete forms
of the momentum advection and diffusion terms have different energy and
momentum conservation properties. By adapting the scheme locally to the
prevailing flow conditions, subgrid dissipation may be captured accurately
which will guarantee energy conservation in contracting flows and momen-
tum conservation where the flow diverges. Turbulence modelling requires
special attention. As the gis method can be given a variational multi-scale
interpretation, alternative les strategies can be pursued using the diffe-
rence between local and global velocity fields to define the turbulence closure
terms. Lagrangian averaging of the Navier-Stokes equations is an interes-
ting new approach that would fit seamlessly into the gis framework. The
present results of the standard k − ε model are not yet convincing in cases
with flow separation. The discretization of the source and boundary terms
involves certain numerical ‘tricks’ which must be addressed more carefully
to improve the performance in these situations.

The present implementation of the gis procedure for free-surface flows is
based on vertically moving meshes. Application is therefore limited to situa-
tions with vertical lateral boundaries. Extension to sloping or moving lateral
boundaries requires an algorithm which allows for arbitrary mesh motion.
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Particular attention must then be paid to discrete geometric conservation
the satisfaction of which is not trivial, yet crucial for volume and momen-
tum conservation. The surface wave problems in this thesis concern non-
breaking waves. In principle, the model can resolve spilling breakers as well
but further testing is needed to verify if surf-zone dynamics, including wave
induced circulations, can be reproduced correctly. The precise formulation
of momentum advection terms may play an important role here. Practical
improvements of the free-surface model concern the efficiency when dealing
with quasi two-dimensional geophysical flows. By using vertical stacks of
elements instead of allowing arbitrary mesh topologies the nearly-horizontal
structure of these problems can be exploited to enhance the computatio-
nal performance. It is thinkable that splitting the pressure into hydrostatic
and non-hydrostatic components may also reduce the computational burden.
Utilization of flow models in three-dimensional situations requires parallel
computing techniques for which the interface functions, inherited by the gis

formulation, may prove useful in decoupling sub domains.
Finally, the general mathematical format of the gis method can be ap-

plied to a much wider class of problems, including compressible gas flow or
solid mechanics. Of particular interest in the field of environmental fluid
mechanics are the shallow water equations. The further development of a
gis shallow water model should address specific issues such as flooding and
drying and non-linear breaking waves (bores). In this respect the present
results for Burgers’ equation are promising as stable results for non-linear
shocks were obtained without any form of limiting.





Chapter 7

Summary/samenvatting

7.1 Summary

‘Finite element modelling of transport and non-hydrostatic flow in
environmental fluid mechanics’

In this thesis a numerical method is designed for solving the advection-
diffusion and incompressible Navier-Stokes equations on unstructured finite
element meshes with moving free surfaces, although the presence of a free
surface is not strictly necessary. The resulting model is applicable to a
wide range of flows encountered in environmental engineering practice and
is primarily aimed at situations involving complex, small-scale geometries
and non-hydrostatic pressure. From the onset, no assumptions are being
made concerning a ‘preferred’ direction in the mesh. More specifically, the
vertical direction is treated in the same way as the horizontal directions
thus allowing intrinsic three-dimensional geometries. The resulting mesh
can be built of triangles or tetrahedrons having an arbitrary shape and
orientation. This flexibility is particularly useful in engineering projects as
it allows a quick set-up or modification of a computational mesh enabling
the interactive use of the model in a design process. In Chapter 1 some
practical examples are shown which clearly demonstrate these favourable
properties.

At the same time, the above starting points lead to a number of practical
difficulties that in some way have to be circumvented. First, the matrices
evolving from the spatial discretization on unstructured meshes are inhe-
rently difficult to manipulate when performing algebraic operations, except
for matrix-vector multiplications. This imposes some constraints on the
solution algorithms that can be adopted. Obviously, this calls for a simple
mesh topology where each node has a minimum number of direct neighbours.
In Chapter 2 the continuous and discontinuous Galerkin methods are com-
pared with particular emphasis on the resulting computational structures.
For a simple elliptic problem it is demonstrated that, while yielding the

181



182 Chapter 7. Summary/samenvatting

same order of convergence, the discontinuous Galerkin method is outperfor-
med by the continuous Galerkin method in terms of work load, moreover
when considering three-dimensional problems. Second, discrete flow and
transport problems may suffer from: (1) instabilities associated with the
advection terms and (2) instabilities due to the incompressibility constraint.
Both types of instabilities become particularly manifest when using conti-
nuous methods. Advective instabilities may be suppressed by modifying the
advective fluxes using stabilization terms which must be judiciously formula-
ted. Instabilities due to the incompressibility constraint are more difficult to
avoid in that different function spaces have to be chosen for the continuous
pressure and velocity fields where the latter generally requires a higher order
approximation. This leads to an even more complex data structure requiring
different mesh topologies for the velocity and pressure unknowns. Alterna-
tively, stabilization terms may be added explicitly to the formulation but
ensuring sufficient stability without the introduction of excessive dissipation
can become problematic. In this respect, discontinuous methods are more
attractive due to the ease with which the fluxes at element interfaces can be
formulated such as to gain complete control over the instabilities.

To this end a general variational framework has been developed which
blends the favourable properties of continuous and discontinuous finite ele-
ment methods. The formulation bears similarity with continuous Galerkin
methods in that the resulting sparse matrix system has the same compu-
tational structure, involving only global degrees of freedom. All element
matrices, computed during the assembly process, are standard except for a
local mass matrix which involves integration over element boundaries. The
similarity with discontinuous Galerkin methods stems from the use of up-
wind formulations at element interfaces where the local discontinuity of the
solution is exploited to construct an upwind biased flux that stabilizes the
formulation. However, unless classical discontinuous Galerkin methods, the
proliferation of degrees of freedom is completely avoided. This is effected by
rendering the interface flux dependent on an auxiliary global variable, which
is defined on interfaces, and on terms local to an element. In this way, the
interface variable provides a weak Dirichlet boundary condition for the local
problem on each element. This feature enables the elimination of the local
degrees of freedom from the system, through static condensation, in favour
of the global interface variable. An equation for the interface variable is
formulated by requiring weak continuity of the interface flux across element
interfaces. In this way the interface variable acts as a Lagrange multiplier
enforcing this constraint.

In Chapter 3 this approach, coined Galerkin Interface Stabilization (gis)
method, is explored for the linear advection-diffusion problem. The advec-
tive part of the interface flux is constructed using an upwind formulation
where on an inflow element boundary the flux is determined by the inter-
face variable whereas it is determined by the local element flux on outflow
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element boundaries. The diffusive part of the interface flux contains the
element diffusive flux plus a penalty term involving the jump between the
interface variable and the local field on an element, in a way similar to
the Interior Penalty method. The resulting semi-discrete formulation is
consistent and conservative. In the advective limit, the quadratic norm can
not increase if the transport velocity is divergence free. In the diffusive limit
the penalty parameter has to be chosen sufficiently large in order to ensure
energy stability. The fully-discrete problem is elaborated using linear basis
functions for the advected field combined with θ-methods for time stepping.
The matrix equations on the element level are obtained by multiplying the
standard continuous Galerkin terms with an element wise ‘stabilization’ ma-
trix. For stationary, one-dimensional problems the resulting stabilization is
near-optimal for a fixed value of the penalty parameter which leads to se-
cond order convergence in the L2 error-norm. Various examples show that
the method is accurate and involves minimum artificial diffusion. Howe-
ver, solutions are not monotone and in two or three dimensions significant
overshoot may develop at outflow boundary layers.

Chapter 4 extends the gis method to the incompressible Navier-Stokes
problem on a fixed domain. The momentum equations are treated, com-
ponent wise, in a similar way as for the advection-diffusion problem using a
continuous pressure field to evaluate the pressure gradient on elements. The
local velocity field, which can be expressed in terms of the interface velocities
and the local pressure gradient, is used in the weak form of the incompres-
sibility constraint. This procedure yields a consistent stabilization of the
continuity equation due to the emergence of a Laplacian pressure stabiliza-
tion term. The method contains no flow-dependent stabilization parameters
and is able to model a wide range of flow conditions stably without user in-
tervention. Moreover, as instabilities associated with the incompressibility
constraint are naturally suppressed, the use of equal-order basis functions
for the velocity and pressure fields is permitted. An implementation is des-
cribed for the P 1−P 1 element pair adopting a monolithic solution procedure
using efficient Block Sparse Row (bsr) techniques. The resulting flow sol-
ver is particularly efficient since the same number of unknowns results as
for linear continuous Galerkin methods on the same mesh. For a steady
linear Stokes problem O (

h2
)

and O (
h1
)

convergence rates are observed
for the L2 error-norms of the velocity and pressure, respectively. Numeri-
cal examples concerning internal wave propagation confirm that negligible
numerical dissipation is introduced by the stabilization mechanism. In par-
ticular, the performance of the method near shocks is promising as shown
by numerical tests for the Burgers’ equation. The low artificial dissipation
allows large eddy simulation (les) which is demonstrated by an example
concerning Borda’s mouthpiece.

In Chapter 5 the flow and transport model is generalized to moving
domains and free-surface problems. To this end the incompressible Navier-
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Stokes equations are restated on a constant reference domain as this avoids
ambiguities with respect to the precise form of the time integration scheme.
An additional complication in free-surface problems is the dependence of the
domain motion on the free-surface movement, the determination of which is
part of the solution process. The kinematic free-surface boundary condition
is therefore reformulated using the piezometric level, instead of the pressure,
which naturally defines the position of the free surface. Particular atten-
tion has been paid to the formulation of a predictor-corrector time stepping
scheme in the context of a moving domain. The fully-discrete continuity
constraint has been formulated such that the convective field on the new
mesh satisfies a discrete form of the geometric conservation law (d-gcl),
which is pivotal in proving discrete mass and momentum conservation. It is
shown that for linear free-surface waves negligible dissipation is introduced
while non-linear waves are slightly damped due to the upwind terms at ele-
ment interfaces. Numerical examples provide an extensive comparison with
analytical solutions and experimental data. The results confirm that the
approach is robust and that little artificial dissipation is introduced which is
particularly evident in the tests involving periodic free-surface motion. For
two examples concerning discharge structures, a long-crested weir in a la-
boratory flume and the Haringvliet storm surge barrier (The Netherlands),
the net head losses are computed accurately.

Concluding, the gis method reconciles the attractive upwinding possi-
bilities of discontinuous Galerkin finite element methods and the efficiency
of continuous methods. The method is elegant and exhibits superior sta-
bilization properties compared to conventional stabilized finite element me-
thods, especially for dominant advection and free-surface problems. As such
the method is promising and warrants further understanding and analysis.
Chapter 6 provides some suggestions for further research. While this thesis
is primarily directed at linear basis functions, a rigorous error analysis for
arbitrary polynomial orders could reveal other, possibly interesting, combi-
nations of local and interface function spaces that are worthwhile exploring.
This analysis is non-trivial since the method has the structure of a mixed
formulation which for stability requires the satisfaction of an inf − sup condi-
tion. As the gis method lacks monotonicity in multi-dimensional advection
problems modifications may be pursued in order to better resolve sharp
fronts and steep boundary layers. Given the resemblance of the method
with supg stabilization it should be possible to construct a discontinuity
capturing form of the interface flux. Owing to its general variational format
the gis method can be applied to a much wider class of problems, including
the shallow water equations (swe) which would entail specific issues such
as flooding and drying algorithms. Practical improvements of the model
concern the efficiency when dealing with quasi two-dimensional geophysical
flows. By using vertical stacks of elements instead of allowing arbitrary mesh
topologies the nearly-horizontal structure of these problems can be exploited
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to increase the computational performance. Utilization in three-dimensional
situations practically requires parallel computing techniques for which the
interface functions, inherited by the gis formulation, may also prove useful
in that subdomains can be decoupled.

R.J. Labeur

7.2 Samenvatting in het Nederlands

‘Eindige elementen modellering van transport en niet-hydrostatische
stroming in de waterloopkunde’

Dit proefschrift beschrijft de ontwikkeling van een eindige elementen model
voor het berekenen van drie-dimensionale transportverschijnselen en niet-
hydrostatische stromingen in de context van waterloopkundige stromings-
problemen. Uitgangspunt is het gebruik van ongestructureerde ruimtelijke
schematisaties waarmee willekeurige geometrieën kunnen worden weergege-
ven waarbij in een deel van het domein een vrij oppervlak aanwezig kan zijn,
al is dit laatste niet direct noodzakelijk. Het resulterende numerieke model
is toepasbaar binnen een ruime klasse van stromingsproblemen maar richt
zich vooral op relatief kleinschalige situaties met complexe geometrieën en
niet-hydrostatische drukken. Er worden op voorhand geen aannamen ge-
daan betreffende de oriëntatie van het rekenrooster. Anders gezegd, de ver-
ticale richting wordt op dezelfde manier behandeld als de beide horizontale
richtigen zodat intrinsiek drie-dimensionale rekenroosters kunnen worden
gebruikt. Modelschematisaties worden zodoende opgebouwd uit driehoeken
(in twee dimensies) of tetraeders (in drie dimensies) die betrekkelijk wille-
keurig van vorm en oriëntatie kunnen zijn. Deze aanpak is vooral handig bij
toepassingen binnen de adviespraktijk omdat een model snel opgezet danwel
gewijzigd kan worden waardoor een directie interactie met het ontwerpproces
mogelijk is. In Hoofdstuk 1 worden enkele voorbeelden aangehaald waaruit
de toegevoegde waarde hiervan duidelijk blijkt.

Tegelijkertijd leiden de genoemde uitgangspunten tot een aantal speci-
fieke moeilijkheden die omzeild moeten worden wil het een praktisch bruik-
baar numeriek model opleveren. Zo zijn de matrixstelsels die worden ver-
kregen bij discretisatie op ongestructureerde roosters in het algemeen lastig
te hanteren, wat beperkingen met zich mee brengt ten aanzien van de oplos-
technieken die gebruikt kunnen worden. Het is duidelijk dat men hier gebaat
is bij een zo eenvoudig mogelijke, ‘ijle’ matrixstructuur met zo min moge-
lijk matrixelementen ongelijk aan nul. In Hoofdstuk 2 worden continue en
discontinue Galerkin methoden op dit punt met elkaar vergeleken. Zoals
blijkt uit een eenvoudig elliptisch probleem leidt de discontinue Galerkin
(dg) methode tot zeer omvangrijke stelsels, ten opzichte van de continue
Galerkin (cg) methode op hetzelfde rooster, terwijl de orde van convergen-



186 Chapter 7. Summary/samenvatting

tie gelijk is. Dit maakt de eerstgenoemde methode praktisch onbruikbaar
voor het oplossen van impliciete problemen, vooral in drie dimensies. Een
andere moeilijkheid bij discrete transport- en stromingsproblemen zijn in-
stabiliteiten die de kop opsteken (1) als gevolg van de advectieve termen
in de vergelijkingen en (2) als gevolg van de onsamendrukbaarheidsvoor-
waarde. De eerstgenoemde categorie kan worden onderdrukt door het ge-
bruik van upwind formuleringen waarbij de advectieve flux wordt bepaald
aan de hand van de heersende stromingsrichting, wat echter zeer zorgvuldig
dient te gebeuren. Instabiliteiten samenhangend met de onsamendrukbaar-
heidsvoorwaarde zijn in het algemeen moeilijker te omzeilen. Bij de continue
Galerkin methode is het hiervoor nodig het snelheidsveld met hogere orde
polynomen te benaderen dan het drukveld. Dit levert echter complexe stel-
sels vergelijkingen op omdat verschillende matrixstructuren nodig zijn voor
respectievelijk de druk- en de snelheidsvariablen. Als alternatief kunnen
de stabilisatietermen rechtstreeks aan de vergelijkingen worden toegevoegd
maar formuleringen hiervoor zijn meestal probleemafhankelijk, en dus niet
algemeen toepasbaar, en leiden daarnaast al gauw tot te veel dissipatie. Dis-
continue Galerkin methoden hebben in dit opzicht het voordeel dat de fluxen
op de elementranden vrij eenvoudig geformuleerd kunnen worden zodanig
dat instabiliteiten onderdrukt worden.

Een algemene numerieke methode is ontwikkeld waarin de kenmerkende
voordelen van continue en discontinue eindige elementen methoden gecom-
bineerd zijn. De nieuwe methode deelt met de continue Galerkin methode de
eigenschap dat er slechts ijle matrixstelsels hoeven te worden opgelost voor
een set globale variabelen. De hiervoor benodigde elementmatrices zijn daar-
bij hetzelfde als die voor de standaard cg methode met uitzondering van
een matrix waarvoor over de elementranden gëıntegreerd moet worden. De
overeenkomst met discontinue Galerkin methoden schuilt in het toepassen
van upwind formuleringen voor het bepalen van de flux op de elementranden
om zodoende verschillende termen in de vergelijkingen te kunnen stabilise-
ren. In tegenstelling tot de klassieke dg methode leidt deze aanpak hier
echter niet tot een toename van het aantal onbekenden in de resulterende
stelsels vergelijkingen. Dit wordt bereikt door op de elementranden een
nieuwe, globale variabele te definiëren en de flux op de elementrand vervol-
gens afhankelijk te maken van deze nieuwe variable en de lokale oplossing op
het element. De globale variable fungeert zo als een zwakke Dirichlet rand-
voorwaarde voor een lokaal probleem dat per element kan worden opgelost.
De lokale, discontinue oplossing kan zodoende elementsgewijs worden uit-
gedrukt in een set globale vrijheidsgraden. Door eliminatie van de lokale
oplossing wordt vervolgens een stelsel vergelijkingen verkregen voor alleen
de globale variabelen, met dezelfde omvang als dat van de overeenkomstige
cg methode. Als extra vergelijking die hiervoor nodig is wordt een zwakke
formulering gebruikt die stelt dat de flux over de elementranden continu
is. De globale variabele op de elementranden kan zo worden gezien als een
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Lagrange multiplicator die de continuiteit van de flux over de elementrand
waarborgt.

In Hoofdstuk 3 wordt deze procedure, genaamd Galerkin Interface Stabi-
lisatie methode (kortweg gis methode), nader uitgewerkt voor het advectie-
diffusie probleem. Op een instroomrand van een element wordt het advec-
tieve deel van de flux bepaald door de globale concentratieverdeling op de
elementrand terwijl op een uitstroomrand de lokale waarde van de concen-
tratie in het element bepalend is. De diffusieve flux op een elementrand is ge-
lijk aan de diffusieve flux binnen het element vermeerderd met een ‘penalty ’
term die evenredig is met de discontinüıteit tussen de lokale concentratie in
het element en de globale concentratie op de elementrand. De resulterende
semi-discrete vergelijking is consistent met het advectie-diffusie probleem en
bovendien massa behoudend. Daarnaast kan voor advectief transport met
een divergentievrij snelheidsveld worden aangetoond dat de L2 norm van
de concentratie niet kan groeien. In het diffusie-gedomineerde geval geldt
dit laatste alleen als de ‘penalty ’ term voldoende groot is. De formulering
wordt verder uitgewerkt voor eerste-orde basisfuncties in combinatie met de
methode der lijnen voor de tijdsintegratie. De algebräısche vorm van de
vergelijkingen wordt in dit geval verkregen door de elementmatrices van de
cg methode te vermenigvuldigen met een per element te bepalen stabilisa-
tie matrix. Voor stationaire, één-dimensionale problemen leidt dit voor een
specifieke waarde van de ‘penalty ’ parameter tot een vrijwel optimale stabi-
lisatie. De bijbehorende L2 norm van de fout convergeert kwadratisch in de
roostermaat. Zoals blijkt uit verschillende rekenvoorbeelden is de methode
nauwkeurig terwijl de kunstmatige diffusie minimaal is. Oplossingen zijn
echter niet monotoon waardoor met name in twee of drie dimensies te hoge
en/of negatieve concentraties kunnen optreden, vooral in de nabijheid van
Dirichlet uitstroomranden.

In Hoofdstuk 4 wordt de gis methode uitgebreid naar de onsamendruk-
bare Navier-Stokes vergelijkingen op een vast domein. De impulsvergelij-
kingen worden hierbij per component op dezelfde manier gediscretiseerd
als een scalar advectie-diffusie probleem met als lokale bronterm de druk-
gradiënt volgend uit een continue drukverdeling. Het snelheidsveld binnen
een element kan zo worden uitgedrukt in termen van het globale snelheids-
veld op de elementranden en het globale drukveld. Dit lokale snelheidsveld
is zwak divergentievrij wat na substitutie van bovengenoemde uitdrukking
leidt tot een gestabiliseerde vorm van de onsamendrukbaarheidsvergelijking.
De stabilisatie hangt samen met een Laplaciaan voor de druk die via de eli-
minatieprocedure in deze vergelijking opduikt zonder aan consistentie in te
boeten. De gis methode is bruikbaar voor verschillende typen stroming
zonder dat aan stabilisatieparameters gesleuteld hoeft te worden. Dankzij
de stabilisatieprocedure kunnen de druk en de snelheid benaderd worden
door polynomen van gelijke orde. De methode is gëımplementeerd voor li-
neaire druk- en snelheidsvelden, hetgeen feitelijk resulteert in een co-lineair
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rekenrooster. Het stelsel vergelijkingen wordt iteratief opgelost, gebruikma-
kend van efficiënte Block Sparse Row (bsr) technieken, met een gelijk aantal
onbekenden als voor lineaire cg methoden op hetzelfde mesh. Uit een nume-
riek voorbeeld voor de stationaire, lineaire Stokes vergelijkingen blijkt dat
de fout in de L2 norm convergeert volgens O (

h2
)

voor de snelheid en volgens
O (

h1
)

voor de druk. Numerieke voorbeelden van interne golven bevestigen
dat de stabilisatie slechts een geringe extra dissipatie geeft. Dit maakt het
in principe mogelijk om Large Eddy Simulaties (les) met het model uit te
voeren, wat wordt gedemonstreerd aan de hand van het zogenaamde buisje
van Borda. Het is verder opmerkelijk dat de methode de voortplanting van
schokken nauwkeurig weergeeft, zonder enige vorm van limiting, zoals blijkt
uit rekenvoorbeelden met de Burgers’ vergelijking.

Stroming in een bewegend domein, in het bijzonder met een vrij op-
pervlak, is het onderwerp van Hoofdstuk 5. De Navier-Stokes vergelijkingen
worden hiertoe getransformeerd naar een tijdsonafhankelijk referentie do-
mein. Dit heeft als voordeel dat de tijdsintegratie eenduidig uitgevoerd kan
worden. Een moeilijkheid bij vrij-oppervlaktestroming is dat het ruimtelijke
domein niet vooruit bekend is maar, via de beweging van het oppervlak, af-
hangt van de oplossing van het probleem. De kinematische oppervlakterand-
voorwaarde en de drukgradiënt zijn hiertoe geformuleerd in termen van het
piëzometrisch niveau. De positie van het vrij oppervlak ligt hiermee eendui-
dig vast. Voor de tijdsintegratie wordt vervolgens een predictor-corrector
methode gebruikt waarbij de berekeningen van het piëzometrisch niveau
en van de snelheidscomponenten ontkoppeld worden. Een implementatie
wordt beschreven waarbij de divergentie van het convectieve snelheidsveld
overeenkomt met de volumeveranderingen als gevolg van de beweging van
het rooster. Dit blijkt cruciaal voor het behoud van volume en impuls.
Voor lineaire oppervlaktegolven kan vervolgens worden aangetoond dat ook
de som van de kinetische en potentiële energie behouden blijft. Niet-lineaire
golven worden enigszins gedempt door de stabilisatietermen. Via nume-
rieke voorbeelden wordt de methode uitgebreid vergeleken met theoretische
oplossingen en met laboratoriumexperimenten. De resultaten bevestigen dat
de methode robuust is en weinig kunstmatige dissipatie aan een probleem
toevoegt. Dit blijkt vooral uit de voorbeelden met vrij-oppervlaktegolven.
Daarnaast wordt de stroming over en langs kunstwerken beschouwd, een
modeloverlaat en de stormvloedkering in het Haringvliet, waarbij zowel het
berekende snelheidsveld als het berekende verval nauwkeurig zijn.

Concluderend biedt de gis methode de optimale stabilisatie van discon-
tinue Galerkin methoden en de efficiëntie van continue Galerkin methoden.
De formulering is helder en leidt voor lineaire basisfuncties tot betere ei-
genschappen dan conventionele stabilisatietechnieken. Verdere toepassing
is veelbelovend maar vereist een diepgaandere analyse en ontwikkeling van
de methode. In Hoofdstuk 6 worden enkele suggesties gedaan voor verder
onderzoek. Dit proefschrift beperkt zich vooral tot eerste-orde basisfuncties
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maar een analyse van de convergentie voor willekeurige basisfuncties zou an-
dere interessante combinaties aan het licht kunnen brengen. Een dergelijke
analyse is echter niet-triviaal door de structuur van de formulering die het
karakter heeft van een mixed probleem en waarvoor een inf − sup stabili-
teitsvoorwaarde geldt. In twee en drie dimensies voldoen gis oplossingen
van de advectie-diffusie vergelijking niet aan het maximum principe, vooral
bij uitstroomgrenslagen is dit duidelijk zichtbaar. Gezien de overeenkomst
met supg methoden is het wellicht mogelijk de flux op de elementranden
zodanig te herformuleren dat scherpere grenslagen en monotone oplossingen
verkregen kunnen worden. Omdat de gis methode generiek geformuleerd
is kan deze worden toegepast op een ruimere klasse van problemen. Inte-
ressant in de context van dit proefschrift zijn de ondiep-watervergelijkingen,
waartoe een eerste aanzet is gegeven in Appendix C.1, maar waarvoor spe-
cifieke moeilijkheden moeten woren aangepakt zoals bijvoorbeeld droogval.
De praktische bruikbaarheid zou verbeterd kunnen worden door bij quasi
twee-dimensionale problemen de verticale structuur van het rooster te be-
nutten. Door de elementen verticaal te stapelen en de hydrostatische druk
af te splitsen van de totale druk kan in dergelijke situaties de rekentijd sterk
worden bekort. Daarnaast verdient het aanbeveling een parallelle versie van
het model te ontwikkelen. De functies op de elementranden, die zo ken-
merkend zijn voor de gis methode, kunnen daarbij worden gebruikt om
subdomeinen te ontkoppelen.

R.J. Labeur
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Appendix A

Internal flow

If the transport of constituents (temperature, salinity, sediments) involves
inhomogeneous densities, the flow field and the advected density field will
interact. Even small density variations can have a huge impact on the flow
field and may thus be responsible for a wide range of internal flow phe-
nomena in estuarine environments or around discharge structures [24, 66].
The modelling of these phenomena requires the coupling of the transport
and flow models given in Chapters 3 and 4, respectively, and this section
describes some aspects of the underlying procedure. Numerical examples
are given in Section 4.4.5.

A.1 Boussinesq approximation

The coupling of the flow and transport equations is effected through the for-
cing term f in the momentum balance equations, which becomes dependent
on the density ρ of the fluid. Density changes caused by natural variations
of salinity and temperature are usually small with respect to some reference
(background) density. A constant reference density ρ0 may then be used
to define the momentum flux and the normalized pressure while density va-
riations are retained in the forcing term. This ‘Boussinesq approximation’
effectively leads to momentum Equation (4.1) with the forcing term f given
by

f = −ρ∗gez, (A.1)

where ρ∗ = (ρ − ρ0) /ρ0 is the dimensionless relative density difference, g
is the gravitational constant and ez denotes the vertical unit vector. The
Boussinesq approximation is valid when ρ∗ << 1. By assumption, the flow
remains incompressible and the incompressibility constraint Equation (4.3)
is used to determine the normalized pressure. The associated transport
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equation for ρ∗ reads

∂ρ∗

∂t
+ ∇ · σ = 0, (A.2)

σ = uρ∗ − κ∇ρ∗, (A.3)

where κ is the diffusivity. Boundary conditions for Equation (A.2) must be
supplied according to the procedure outlined in Section 3.1.1.

A.2 Solution algorithm

The semi-discrete variational form of Equations (A.2) and (A.3) is given in
Section (3.3). To discretize in time the θ method is used, see Section 3.4,
where the transport and flow equations are solved sequentially. Starting with
the transport equation, the updated values for ρ∗ are used to compute the
forcing term f in the Navier-Stokes equations. This semi-implicit procedure
is necessary because of the presence of the following subsystem in the coupled
set of equations

∂

∂t

(
ρ∗

w

)
+
(

0 ∂ρ∗/∂z
g 0

)(
ρ∗

w

)
= 0, (A.4)

where w is the vertical velocity component. For stable stratification Equa-
tion (A.4) has periodic solutions with eigen frequency N = (−g∂ρ∗/∂z)1/2.
The semi-implicit treatment renders the time stepping scheme conditionally
stable with maximum allowable time step size Δtmax = N−1. A slightly
modified version of the scheme uses an extrapolated value of ρ∗ to compute
the forcing term on the new time level n + 1,

fn+1 = − [
(1 + δ) ρ∗n+1 − δρ∗n

]
gez, (A.5)

where the damping parameter δ ∈ [0, 1] can be adjusted in order to smooth
unphysical transients while leaving steady solutions unaltered.

Still, in flows with dominant buoyancy, unphysical velocity and density
modes may emerge as the discrete forcing term in the momentum equation
is generally not compatible with the gradient of the discrete pressure [65].
This can be avoided by projecting the forcing term f onto the gradient of
a discrete potential function Φ ∈ Q, where Q is the discrete pressure space,
which leads to ∫

Ω̃
∇Φ · ∇q dΩ = −

∫
Ω̃

ρ∗g
∂q

∂z
dΩ ∀ q ∈ Q. (A.6)

The gradient ∇Φ is then used in place of the forcing term f in the momen-
tum equations. This projection removes the incompatible modes from the
solution [49].
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Turbulence modelling

Turbulence modelling involves the computation of the net contribution of
turbulent fluctuations to the mean flow. To this end, the underlying mo-
mentum equations are averaged over a time interval much larger than the
turbulence time-scale to yield the Reynolds averaged Navier-Stokes (rans)
equations. The averaging procedure leads to a closure problem which re-
quires a parameterization of the wall shear stress and the turbulent stress
within the fluid [61]. This section describes the numerical implementation
of some standard approaches in the context of a finite element method. For
notational convenience, the various equations are given on the fixed, spatial
domain. The ale form of the equations can be obtained using the transfor-
med transport theorem of Equation (5.25).

B.1 Wall-friction coefficient

For a plane, turbulent shear flow parallel to a solid wall, the velocity u at a
distance h from the wall is given by

u (h) =
u


κ
log

(
h

h0

)
, (B.1)

where κ ≈ 0.4 is Von Karman’s constant, h0 is a length scale which is related
to the wall roughness and u
 is the shear velocity which is related to the
wall shear stress τw and the density ρ according to

τw = ρu2

. (B.2)

The wall shear stress should be expressed in terms of the computed velocity
uw at the wall,

τw = ρcf |uw|uw, (B.3)
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in which cf is a dimensionless wall-friction parameter. According to the
mixing-length hypothesis τw is also related to the velocity gradient,

τw = ρl2m

∣∣∣∣∂u

∂h

∣∣∣∣ ∂u

∂h
, (B.4)

in which lm is the ‘mixing length’ [68]. In an element adjacent to the wall,
Equations (B.2) and (B.4) lead to

u
 = lm
|u (he) − uw|

he
, (B.5)

where he is the element size normal to the wall facet. Using Equation (B.1)
to express u (he) in terms of u
 and setting uw = u
/

√
cf yields

1√
cf

=
1
κ

log
(

he

h0

)
− he

lm
. (B.6)

The length scale h0 is computed from

h0 =
1
30

(
kN +

3.3 ν

u


)
, (B.7)

where kN is the Nikuradse roughness height and ν is the molecular kinematic
viscosity.

B.2 Turbulence viscosity

The mean turbulent stress is modelled in terms of the gradient of the resolved
velocities, analogous to the representation of viscous stresses, leading to an
expression for the total flux

σ = u ⊗ u − 2 (ν + νt)∇su, (B.8)

where u is the mean flow velocity, ν and νt are the molecular and turbulence
kinematic viscosities, respectively, and ∇s is the symmetric spatial gradient
operator.

Using the mixing-length hypothesis the turbulence viscosity νt is given
by

νt = l2m S, (B.9)

where S is the H1 semi-norm of the velocity,

S = (∇su : ∇su)1/2 . (B.10)

The mixing length may be prescribed directly or computed from the element
width he using

lm = Cshe, (B.11)
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cμ c1 c2 σk σε

0.09 1.44 1.92 1.0 1.3

Table B.1: Empirical constants used in the standard k − ε model [74].

where Cs ≈ 0.05− 0.20 is Smagorinsky’s constant. This approach should be
used if large, coherent turbulent structures are to be resolved, via large eddy
simulation (les), see the example in Section 4.4.4. Often, the mixing length
is not known a priori as it adjusts dynamically to the flow conditions.

The k − ε model [74], relates the turbulence viscosity to the turbulence
kinetic energy k and the turbulence dissipation rate ε according to

νt = cμ
k2

ε
, (B.12)

where cμ is an empirical constant, see Table B.1. The evolution of k and ε
in time is described by the following transport equations,

∂k

∂t
+ u · ∇k −∇ ·

(
νt

σk
∇k

)
= Pk − ε, (B.13)

∂ε

∂t
+ u · ∇ε −∇ ·

(
νt

σε
∇ε

)
=

ε

k
(c1Pk − c2ε) , (B.14)

where Pk is the kinetic energy production term which for a flow with homo-
geneous density is given by

Pk = νt S2, (B.15)

and σk, σε, c1 and c2 are additional empirical constants listed in Table B.1.
In case of buoyant flows the expression for Pk and the coefficient c1 are mo-
dified using the vertical gradient of the density [68]. At solid, impermeable
boundaries Γs the following Dirichlet boundary condition applies to k,

k =
u2


√
cμ

= cf
u2

w√
cμ

on Γs, (B.16)

and at free surfaces a zero Neumann boundary condition holds. The wall-
friction coefficient cf is computed from Equation (B.6) using a ‘near-wall’
mixing length lm = κhe. At impermeable walls, ε is a function of the distance
h to the wall,

ε (h) =
u3




κh
, (B.17)

from which the following flux boundary condition is obtained

νt

σε

∂ε

∂n
=

κu


σε
ε on Γs, (B.18)
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which is used either as a Robin boundary condition or as a Neumann boun-
dary condition by specifying a representative value for ε in the near-wall
region.

The spatial discretization of k and ε employs continuous piecewise linear
basis functions. The advective terms in Equations (B.13) and (B.14) are
stabilized by the supg method, see Section 3.2.1. Using the backward Euler
method for time stepping, the equations for k and ε are solved in a de-
coupled fashion. To enhance numerical stability, the corresponding source
terms are treated explicitly and the sink terms implicitly. This gives for
Equation (B.13),

kn+1 − kn

Δt
+ u · ∇kn+1 −∇ ·

(
νt

σk
∇kn+1

)
+

εn

kn
kn+1 = Pk,n, (B.19)

and for Equation (B.14),

εn+1 − εn

Δt
+ u · ∇εn+1 −∇ ·

(
νt

σε
∇εn+1

)
+ c2

εn

kn
εn+1 = c1

εn

kn
Pk,n. (B.20)

The turbulence viscosity and the coefficient ε/k are not bounded for arbi-
trary k and ε. Therefore, the turbulence viscosity is computed as

νt =

{
cμk2/ε where k̃3/2 < ε lmax,

max
(
ν, lmaxk̃1/2

)
elsewhere,

(B.21)

in which k̃ = max (k, 0) and lmax is a maximum turbulence length scale
defined by for instance the size of the domain. The coefficient ε/k is then
computed as cμk̃/νt. This strategy avoids zero division. Various details of
implementing the k − ε model are given in Kuzmin et al. [45].



Appendix C

Shallow-water equations

The shallow-water equations (swe) arise in the study of nearly-horizontal
geophysical flows for which the ratio of the vertical and horizontal velocity
magnitudes is very small. The piezometric level η is then constant in the
vertical direction and the Navier-Stokes equations can be integrated over
the water depth. If the horizontal velocity is nearly uniform in the vertical
direction, which in many cases is a reasonable assumption, the swe provide
a good approximation of the original flow problem while offering a sub-
stantial reduction in terms of complexity and computational burden. The
gis method can be adapted to solve the swe which only requires minor mo-
difications to the computer implementation of the free surface Navier-Stokes
problem given in Chapter 5.

C.1 Gouverning equations

Let Ω ⊂ R
2 denote a horizontal domain of interest having a boundary Γ =

∂Ω on which n denotes the outward unit normal vector. The boundary is
partitioned into Γg and Γh where Γ = Γg ∪ Γh and Γg ∩ Γh = ∅. Denoting
with I = (t0, tN ) the time interval of interest, the swe can be stated as:
given the forcing term f : Ω → R

2 and the boundary conditions g : Γg → R
2

and h : Γh → R
2, find the velocity u : Ω → R

2 and the piezometric level
η : Ω → R such that

∂ (du)
∂t

+ ∇ · σ + gd∇η + Fu = f , on Ω × I, (C.1)

σ = du ⊗ u − 2dν∇su on Ω × I, (C.2)
∂η

∂t
+ ∇ · (du) = 0 on Ω × I, (C.3)

u = g on Γg × I, (C.4)
(γdu ⊗ u + gdη I − 2dν∇su) n = h on Γh × I, (C.5)
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where g denotes gravitation, d is the water depth which is given by the
non-negative difference between η and the bottom level zb, and I is the
second-order identity tensor. The matrix F includes the effects of bottom
friction and the earth’s rotation and is given by

F =
(

cf |u| fc

−fc cf |u|
)

, (C.6)

where cf is a dimensionless friction parameter and fc is Coriolis’ coefficient.
On Neumann boundaries either the total flux or the diffusive flux is imposed,
depending on the sign of the normal velocity component which is control-
led by the parameter γ. The forcing term f includes atmospheric forcings
(variable pressure, wind shear stress) and wave-induced forces (radiation
stress divergence). As initial conditions the velocity u and piezometric level
η must be prescribed at time t = t0. A comparison with Equations (5.31)
to (5.33) shows that the mathematical format of the swe is nearly identical
to that of the incompressible Navier-Stokes equations with a free surface.

C.2 Variational formulation

The partitioning of the domain of interest into elements Ωe is denoted Ω̃ and
Γ̃ is the union of element interfaces Γi and the exterior boundary. Various
finite element spaces are defined

V =
{

v ∈ L2
(
Ω̃
)

: v ∈ Pk (Ωe) ∀ e
}

, (C.7)

V̄ =
{

v̄ ∈ H1/2
(
Γ̃
)

: v̄ ∈ Pm (Γi) ∀ i
}

, (C.8)

Q =
{

q ∈ H1
(
Ω̃
)

: q ∈ Pm (Ωe) ∀ e
}

, (C.9)

where H1/2 is the trace of H1 on Γ̃, the sets Pn and Pn denote the standard
polynomial finite element basis functions of degree n, and k ≥ 0 and m ≥ 1.
Furthermore, a space V̄g is defined which contains those functions of V̄ that
satisfy the Dirichlet boundary condition.

The gis variational problem corresponding to the equations in Section C.1
reads: at time t, given the source term f and the boundary condition h,
find u ∈ V, ū ∈ V̄g and η ∈ Q such that∫

Ω̃

∂ (du)
∂t

· v dΩ +
∫

Ω̃
∇ · σ · v dΩ +

∫
Ω̃

gd∇η · v dΩ

+
∫

Ω̃
Fu · v dΩ +

∑
e

∫
∂Ωe

dβ · n (ū − u) · v dΓ

+
∑

e

∫
∂Ωe

2dν (ū − u) · ∇sv n dΓ =
∫

Ω̃
f · v dΩ ∀ v ∈ V. (C.10)
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and

∑
e

∫
∂Ωe

σn · v̄ dΓ +
∑

e

∫
∂Ωe

dβ · n (ū − u) · v̄ dΓ +
∫

Γ
gdη n · v̄ dΓ

−
∫

Γh

(1 − γ) d (u · n) ū · v̄ dΓ =
∫

Γh

h · v̄ dΓ ∀ v̄ ∈ V̄, (C.11)

and ∫
Ω̃

∂η

∂t
q dΩ −

∫
Ω̃

du · ∇q dΩ +
∫

Γ
dū · nq dΓ = 0 ∀ q ∈ Q. (C.12)

Equation (C.10) is the local momentum balance equation, Equation (C.11)
is the momentum flux continuity constraint and Equation (C.12) is the weak
continuity equation. The element flux σ is defined by Equation (C.2). The
term β which arises in the definition of the interface flux, see Section 5.3.2,
is given by

β = γũ − α

he
νn, (C.13)

where ũ is a suitably chosen advective velocity, the upwind parameter γ
equals one on inflow element boundaries and zero elsewhere, α is an O (1)
penalty parameter and he is a measure of the local element width.

The fully-discrete problem is obtained by using the θ time stepping me-
thod, taking all non-linear coefficients on the previous time level. Static
condensation of the local momentum equation can be used to eliminate the
variable u from the global flux continuity constraint. The resulting discrete
global problem for (ū, η) can be solved by either the fully coupled scheme
from Chapter 4 or the predictor-corrector scheme from Chapter 5. A first
application concerns les computations for a shallow mixing-layer between
two parallel streams in a river [78].
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Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the
Stokes problem accommodating equal-order interpolations. Computer
Methods in Applied Mechanics and Engineering, 59:85–99, 1986.

[39] R.H.M. Huijsmans. Current force measurements on a 200 KDWT
tanker model. Technical Report 010146-2-BT, Maritime Research Ins-
titute Netherlands (MARIN), 1991.

[40] P. Jacobs, B.P.C. Steenkamp, and S. de Goederen. Analyse zoutme-
tingen inlaatproef Haringvliet in maart 1997. RIZA rapport 2003.001
ISBN 90 3695 481 9, Rijkswaterstaat, 2003. in Dutch.

[41] J.A. Jankowski. A non-hydrostatic model for free surface flows. PhD
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|ū| in m/s for ϕ = 50◦. . . . . . . . . . . . . . . . . . . . . . 118

4.14 Current load on vlcc: computed dimensionless non-hydrostatic
pressure pd/U2 at ships’ hull for ϕ = 50◦. . . . . . . . . . . . 118

5.1 Schematic illustration of mappings. . . . . . . . . . . . . . . . 122
5.2 Kinematic free-surface condition for vertical mesh motion. . . 129
5.3 Regular mesh configuration used for the normal mode analysis.150
5.4 Relative celerity error |1 − cr| for various wave length to depth

ratios L/d, Courant numbers and number of vertical layers:
Nz = 2 (blue), Nz = 5 (green) and Nz = 10 (red). . . . . . . . 151

5.5 Relative amplitude error |1 − ρr| after one wave period for
various wave length to depth ratios L/d, Courant numbers
and number of vertical layers: Nz = 2 (blue), Nz = 5 (green)
and Nz = 10 (red). . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Narrow channel: computational mesh and computed solution
(a), and exact solution (b) for η at t = 17.8 s (maximum
elevation), units in m . . . . . . . . . . . . . . . . . . . . . . . 153

5.7 Narrow channel: time series of piezometric level η/A at (x, y) =
(0, 0), exact (solid) and numerical (circles) solutions. . . . . . 154

5.8 Cylindrical basin: (a) Computational domain and mesh; and
(b) exact (solid) and computed (colour) surface level contours
(m) at t = 10.9 s. . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.9 Cylindrical basin: time histories of the analytical (solid) and
computed (circles) normalized piezometric level at (x, y, z) =
(10, 0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.10 Spatial mesh configuration for U-shaped tube problem at maxi-
mum surface elevation. . . . . . . . . . . . . . . . . . . . . . . 157

5.11 U-shaped tube problem: time histories of the analytical (solid)
and computed (circles) surface elevations. . . . . . . . . . . . 157

5.12 Soliton: snapshot of mesh configuration for H/d =0.60 at
t =30 s, colour shading indicates piezometric level. . . . . . . 158

5.13 Soliton: theoretical (solid) versus computed (dashed) surface
elevation at t = 30 s for varying relative wave heights H/d. . 159

5.14 Waves over a submerged bar: configuration of the experimen-
tal flume with snapshot of computed free surface and piezo-
metric level (colour) at t = 40 s. . . . . . . . . . . . . . . . . 160

5.15 Waves over a submerged bar: time series of measured (da-
shed) and computed (solid) surface elevations. . . . . . . . . . 161

5.16 Undulating flow: computed flow velocity magnitude (m/s). . . 162



List of Figures 217

5.17 Undulating flow: measured (solid) versus computed (circles)
surface elevation behind weir, also showing the transects along
which velocity measurements are made (dashed lines). . . . . 163

5.18 Undulating flow: computed (solid) versus measured (circles)
flow velocities in several transects behind weir (see also Fi-
gure 5.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.19 Sub-marine landslide experiment [63]. . . . . . . . . . . . . . 165
5.20 Snapshots at increasing times for the sub-marine landslide

problem showing the displacement of the free surface and the
displacement of the bottom due to the slider. The figures have
been stretched by a factor of three in the depth direction. . . . 166

5.21 Measured (dashed) and computed (solid) time series of the
surface elevation for the sub-marine landslide problem at va-
rious measuring stations as given in Table 5.1. . . . . . . . . 167

5.22 Haringvliet barrier during construction. . . . . . . . . . . . . 168
5.23 Mesh configuration Haringvliet barrier showing crest, stilling

basin, side walls and gate (with sea side on the left). . . . . . 169
5.24 Haringvliet barrier: computed velocity field during flood. . . . 170
5.25 Haringvliet barrier: computed surface level along center line

also showing vertical transect velocity measurements (a); mea-
sured (solid) and computed velocity profiles in transect (b),
mixing length model (circles) and standard k−ε model (dots);
n.a.p. refers to Dutch reference level. . . . . . . . . . . . . . . 171





List of Tables

2.1 Element comparison for the potential flow problem on a mesh
of N nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Flow in an outlet: number of required bicgstab iterations. . 37

3.1 Characteristic boundary layer: minimum and maximum va-
lues of computed φ and φ̄. . . . . . . . . . . . . . . . . . . . . 70

3.2 Advection in a box: minimum and maximum values of φ̄. . . 72
3.3 Summary simple-wave tests: minimum and maximum concen-

trations and relative celerity; initial distributions are Gaus-
sian with standard deviation 2 he; theoretical total displace-
ments 15he. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Driven cavity flow: primary vortex position and stream func-
tion value; present simulation, he ≈ 1/64; Donea and Huerta
[19], he = 1/30; Erturk et al. [23], he = 1/400. . . . . . . . . 111

4.2 Current load on vlcc: comparison of computed and measu-
red [39] longitudinal current force coefficient Cx, transverse
current force coefficient Cy and current yaw moment coeffi-
cient Cxy; zero angle denotes current stern-on; keel-clearance
k = 1.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Locations of surface elevation measurement stations for the
sub-marine landslide experiments (object slides along the line
y = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.1 Empirical constants used in the standard k − ε model [74]. . . 197

219





Notation

Abbreviations

Abbreviation Description

adcp Accoustic Doppler Current Profiler
ale Arbitrary Lagrangian-Eulerian
bi-cgstab Bi-Conjugate Gradient STABilized
bsr Block Sparse Row (matrix format)
CFL Courant-Friedrich-Lewis (number)
cg Continuous Galerkin (method)
cn Crank-Nicolson (method)
csr Compressed Sparse Row (matrix format)
dg Discontinuous Galerkin (method)
d-gcl Discrete Geometric Conservation Law
Fr Froude number
fs Fractional Step (method)
gis Galerkin Interface Stabilization (method)
ilu Incomplete Lower-Upper (decomposition)
lbb Ladyshenskaya-Babuška-Brezzi (condition)
les Large Eddy Simulation
nse Navier-Stokes Equations
Pe Péclet number
pspg Pressure-Stabilized Petrov-Galerkin (method)
rans Reynolds-Averaged Navier-Stokes (equations)
Re Reynolds number
supg Streamline Upwind Petrov-Galerkin (method)
swe Shallow-Water Equations
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222 Notation

Roman symbols

Symbol Description Unit

a advective velocity [m/s]
c convective velocity [m/s]
d number of spatial dimensions
d water depth [m]
ej unit vector in Cartesian direction j
f densimetric source term [1/s]
f specific body force [m/s2]
F Jacobian matrix
g gravitational acceleration [m/s2]
g, g Dirichlet boundary condition
h, he global, local element size
h, h Neumann boundary condition
H1 Hilbert space of differentiable functions
H1/2 fractional Hilbert (trace) space
I time interval
I second-order identity tensor
J Jacobian determinant, functional
k wave number [rad/m]
k turbulence kinetic energy [m2/s2]
lm turbulence mixing length [m]
L2 space of Lebesque-integrable functions
n unit normal vector
N number of nodes, basis function
p normalized pressure [m2/s2]
pa normalized atmospheric pressure [m2/s2]
pd normalized non-hydrostatic pressure [m2/s2]
P k Lagrange polynomial basis of order k
P Piola-Kirchoff stress [m2/s2]
S velocity shear [1/s]
S referential symmetric gradient operator
t time [s]
u flow velocity [m/s]
w referential material velocity [m/s]
x spatial coordinate [m]
X material coordinate [m]
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Greek symbols

Symbol Description Unit

α penalty term
β interface term [m/s]
γ upwind parameter
Γ, Γi boundary, interface
δ variation, damping parameter
Δ increment, difference
ε turbulence dissipation rate [m2/s3]
ζ elevation [m]
η piezometric head [m]
θ time stepping parameter
κ diffusivity, von Karman constant
λ Lagrange multiplier
μ dynamic viscosity [Ns/m2]
ν kinematic viscosity [m2/s]
ξ stabilization parameter
ρ density [kg/m3]
ρ∗ relative density difference
σ flux [m/s]
σ flux tensor [m2/s2]
τe stabilization parameter [s]
τ Cauchy stress [m2/s2]
ϕ angle
φ densimetric concentration
Φ gravity potential [m2/s2]
χ reference coordinate [m]
ψ map
ω frequency [rad/s]
ω vorticity vector [1/s]
Ω, Ωe domain, element

Diacritical marks

Diacritic Name Description

�̄ macron quantity is defined on element interfaces
�̂ circumflex quantity is defined on the reference domain
�̃ tilde generally denotes a union
�∗ asterisk non-dimensional quantity
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